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Abstract— Although existing inertial motion-capture systems
work reasonably well (≤10◦ error in Euler angles), their
accuracy suffers when sensor positions change relative to
the associated body segments (±60◦ mean error and 120◦

standard deviation). We attribute this performance degradation
to undermined calibration values, sensor movement latency and
displacement offsets. The latter specifically leads to incongruent
rotation matrices in kinematic algorithms that rely on rotational
transformations. To overcome these limitations, we propose
to employ machine-learning techniques. In particular, we use
multi-layer perceptrons to learn sensor-displacement patterns
based on 3 hours of motion data collected from 12 test subjects
in the lab over 215 trials. Furthermore, to compensate for
calibration and latency errors, we directly process sensor data
with deep neural networks and estimate the joint angles. Based
on these approaches, we demonstrate up to 69% reduction in
tracking errors.

I. INTRODUCTION

Since its introduction two decades ago, motion-capture
technology has revolutionized a variety of applications in
robotics, computer graphics, virtual reality, rehabilitation
engineering and athletic training. The increasing popular-
ity of this technology has motivated researchers to keep
improving capture accuracy [1]–[4], and experiment with
reconstruction techniques such as filtering, optimization and
physics-based approaches [5]–[7]. One particular line of
research has focused on making motion-capture technology
accessible outside of traditional indoor studio-like environ-
ments, enabling relatively non-intrusive tracking [8]. Inertial
sensing is a technique that makes this approach possible since
it eliminates the need for external sensors such as cameras or
localization rigs. One limitation of existing inertial-sensing
systems, however, is that they require sensors to be precisely
positioned on human body parts with the use of either elastic
straps or snugly-fitting custom-built clothing [8]–[10]. While
allowing motion-capture to take place outside of studios, the
necessity to brace sensing devices firmly to the body is still
considered intrusive. Furthermore, tight mounting of sensors
precludes long-term tracking in a natural way.

Emerging systems have begun the integration of sensors
into loose garments, allowing us to overcome the mounting
limitations of inertial motion-capture technology [11]–[13].
However, signals in such systems are heavily corrupted
with motion artifacts [14]. Thus, tracking accuracies are
extremely poor; mean Euler angle errors of up to ±60◦ and
standard deviations of 120◦ are observed. In this paper, we
use machine-learning algorithms to overcome the challenges
posed by noise in garment-integrated inertial motion-capture
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Fig. 1: We tackle issues that arise when sensors move relative
to the associated body segments. Such displacements are
extreme in case of garment-integrated sensors.

systems. Fig. 1 shows the performance of our system in
comparison with existing approaches of using kinematics-
based motion capture. From the figure, and video illustrations
that accompany this paper, we observe that our system per-
formance is robust even in the presence of large displacement
between IMU sensors and body segments. The following are
the specific contributions that we make:

• We demonstrate different methods of combining inertial
and infrared (IR) proximity sensors for motion capture.
IR sensors provide stable measures of distance, while
inertial sensors suffer from drift.

• We fuse sensor data within a deep neural network
(DNN) model that learns displacement patterns between
inertial measurement units (IMUs) and body segments
when there is relative motion between them.

• We propose a machine-learning model that trades gen-
eralizability for accuracy. It directly exploits raw sensor
data to overcome latency and calibration issues.

The rest of the paper is organized as follows. In Sec. II, we
provide an overview of the state-of-the-art in inertial motion-
capture systems along with background on kinematics-based
pose tracking. In Sec. III, we describe our proposed machine-
learning techniques of modeling sensor-displacement pat-
terns within the kinematics algorithm and directly estimating
joint-angles with neural networks. In Sec. IV, we present
tracking results obtained from the proposed methods and
compare them with kinematics-based estimation. In the same
section, we discuss advantages and disadvantages of the
proposed methods and identify directions for future research.
Finally, we conclude in Sec. V.



II. BACKGROUND AND RELATED WORK

In this section, we provide an overview of existing techniques
for motion capture. We also present a kinematics-based
algorithm that we utilize in this paper.

A. Limitations of Inertial Motion Capture

Traditional camera-based motion-capture systems constrain
tracking to a small capture volume and are sensitive to oc-
clusions. Although multiple cameras alleviate the occlusion
problem, they incur substantial complexity and are limited
in mobility [15]. Inertial motion-capture systems have aimed
to address the occlusion problem by employing techniques
of sensor fusion and numerical optimization [5], [6], [16].
Further, to tackle the mobility issue, sparse collections of
sensors have been utilized within custom-built compression
suits [8]–[10]. Although, combinations of such systems per-
mit occlusion-free, far-field pose tracking, they are highly
intrusive. Extra sensors still need to be firmly affixed to the
body making it impractical for long-term tracking. Emerging
systems have proposed to handle this issue by embedding
sensors into everyday loose-fitting clothes [11], [12]. This
provides a natural way to merge motion-capture technology
into our lives. However, these approaches introduce move-
ment artifacts that can hurt the accuracy of even the most
sophisticated tracking algorithms.

To the best of our knowledge, there is little existing
work that improves accuracy of inertial motion capture in
the presence of sensor noise. Furthermore, there are only
a limited number of efforts that employ machine-learning
techniques to improve tracking accuracy. For good perfor-
mance during complex motions, researchers have explored
dynamic shifting of root points from pelvis to the feet [1].
Support-vector regression has been used to make estimation
of knee angles more accurate during walking [2]. Including
dynamics and combining optical and inertial sensors has
also helped increase tracking accuracy [3], [4], [7]. In this
paper, we propose to employ deep-learning techniques to
improve tracking accuracy in the presence of signal noise
(due to motion artifacts). Before we present our approach,
we describe a kinematics-based algorithm that we utilize.

B. Kinematics-based Pose Tracking

Kinematics-driven tracking is a known approach for inertial
motion capture [12], [17], [18]. It depends on a rotational
transformation of points in 3D space. For instance, any point
can be transformed from frame X to frame Y via the rotation
matrix RY

X . Suppose Bi, Si and G represent coordinate
frames associated with the body segment i, corresponding
sensor on the body segment i, and the global reference
(aligned with the Earth’s magnetic field) at calibration time,
respectively. Further suppose B′i and S′i represent the body
and sensor frames after arbitrary motion. We can express
any imaginary point P via a transformation of coordinate
systems between body segments i and j as follows:
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Fig. 2: DNN architecture for modeling sensor displacement
patterns during limb movement.

By simplifying this expression with matrix inversion, we get:
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sent displacement between sensors and body parts. They are
obtained during calibration and assumed to remain the same
through the course of motion. This assumption is valid if
sensors are rigidly mounted to the body. Thus, by measuring
RG

S′
i

and RG
S′
j
, we can compute the joint angle R

B′
i

B′
j

between
body parts i and j.

III. MACHINE-LEARNING TO IMPROVE TRACKING
PERFORMANCE

In this section, we propose techniques to quantify sensor
displacements on the body and utilize them within the
kinematics algorithm for pose tracking. We also explore
direct joint-angle estimation with neural networks.

A. Learning Sensor-displacement Patterns

The main issue when sensors move relative to body segments
is that the rotation matrices R
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and R
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in Eq. (2) cannot

be assumed to equal RBi

Si
and R

Bj

Sj
, which are measured

at calibration time. These matrices represent transformations
between the sensor and body segment coordinate frames. If
mounting is not rigid, they change depending on how sensors
are displaced during the course of motion. Our strategy is
to use data-driven techniques to model this displacement
behavior.

Suppose, we have knowledge of joint angles through other
means (such as an external optical tracker), we can re-arrange
terms in Eq. (2) to obtain the following relationship:
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We fix the kinematic root on the head and assume that there
is minimal displacement offset of the sensor with respect
to the body segment at this point. Thus, for this specific
body segment, we assume R
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to be approximately equal
to RBi

Si
, which is the transformation matrix obtained at the

time of calibration. We proceed to solve Eq. (3) for R
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,
which is the body segment connected to the head i.e., middle
spine. Similarly, we continue along the kinematic chain up to
4 body extremities and estimate values of the displacement



matrices R
B′

j
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at different limb positions. These form the
ground-truth labels in our modeling framework.

We formulate a regression setup based on the deep neural-
network architecture shown in Fig. 2. For the network, we
build an input vector that comprises raw readings from one
IR proximity sensor and 10 IMU data channels per body
part (3 values each from the accelerometer, gyroscope and
magnetometer and 1 value from the temperature sensor).
These vectors are formed at a fast frame rate (typically 30
per second). Further, to account for temporal context, we
concatenate additional such vectors that appear a few steps
before the current time leading to an extended super-vector
of dimensionality 11 × m × n, where m is the number
of body segments being tracked and n is the number of
additional context windows being used. The output of the
network is a set of three Euler angles corresponding to
each body segment. Thus, the output of our network is a
vector ŷ with dimensionality 3×m. To set up the regression
cost function, we determine the sensor-displacement matrices
R

B′
j
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j

by solving Eq. (3) and transform them to Euler angles,
yielding a target vector y that also has dimensionality 3×m.
Thus, we train the neural network to minimize the following
mean absolute error (MAE) function:
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Once the model is trained, we apply it to the test
data at inference time to predict sensor displacements
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(obtained after transforming Euler an-
gles to rotation matrices). We plug these displacement values
into Eq. (2) to compute the joint angles R
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. Thus, our

system naturally fuses information from the IMU and IR
sensors to account for sensor displacement during limb
motion.

B. End-to-End Joint Angle Estimation

One limitation of modeling sensor displacement is that it
does not account for other sources of error in the inertial-
tracking system such as sensor-movement latency and cal-
ibration inaccuracies. To overcome these challenges, we
propose to exploit the abstraction power of neural-networks
by directly estimating joint-angles without the kinematic
constraints.

The modified DNN architecture is shown in Fig. 3.
It utilizes the same input super-vector as the previous
model. However, the output vector is the set of joint angles
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as in the previous
model. Thus, the output vector has dimensionality 3× (m−
1). The ground-truth labels for the joint angles are still
obtained from an optical tracking system. The cost function
in this case is the MAE computed between the Euler values
of the estimated and ground-truth joint angles.

Layer No. Layer Type IO Shape No. Parameters
1 Dense 2660, 128 340608
2 Dense 128, 128 16512
3 Dense 128, 128 16512
4 Dense 128, 36 4644

Total 378276

Fig. 3: DNN architecture and parameter values for directly
estimating joint angles from raw sensor data.

IV. EXPERIMENTAL RESULTS

In this section, we study the static and dynamic performance
of the two machine-learning models in comparison with the
kinematics-based algorithm, which incorrectly assumes that
sensors are not moving with respect to the body segments.
We also explore optimization of network parameters.

Data and implementation. We collected data with the
use of a set of clothes (jacket, pants, hat, gloves and shoes)
that had IMU and IR sensors integrated into them. Data
from these sensors was streamed over a WiFi user data-
gram protocol (UDP) network, filtered, interpolated and re-
sampled to 30 samples-per-second to simultaneously match
the frame rate of our optical tracking system. We fused data
from two Microsoft Kinect sensors via a third-party software
to obtain the ground-truth optical joint-angle estimates [20].
We tracked 12 joint angles (m = 13 body segments) using
a total of 143 sensor channels (11 × 13 body segments)
and 4290 sensor samples-per-second (143 × 30). After an
internal approval process, we invited 12 adult subjects (8
male and 4 female) to perform 5 motion patterns in a
calibrated studio for a total duration of 3.5 hours. The
motion patterns comprised upper and lower arm lifts to reach
multiple extremities, arm swings and periodic movements
such as boxing and walking. We avoided motion along the
axis of bones since Kinect is not capable of tracking this
type of motion. We also collected data samples for arbitrary
motion patterns in order to study the generalization capacity
of the neural-network models. Overall, we collected over half
a million data samples via 215 trials.

We used Theano with Keras APIs for the neural networks.
The model parameters are shown in Fig. 3. We used Xavier
normal initializer for the neurons and rectified linear unit
(ReLU) activation function after each dense layer. We im-
plemented the proposed models on a PC with 64 GB DDR4
RAM, 2.8 GHz, 16 core 2× Intel Xeon CPUs, and an Nvidia
Titan X (Pascal) GPU with 12 GB DDR5 RAM and 3584
Cuda cores running at 1.5 GHz. We utilized 64, 16 and 20%
of the collected data as training, validation and test sets,
respectively. To avoid over-fitting, we tracked loss profiles
of both the training and validation sets. An example of these
scores for one of our network models is shown in Fig. 4.



Fig. 4: Consistent trends in training and validation losses
indicate no over-fitting of our models.

From the figure, we see that the validation loss follows the
training loss ensuring model resilience to over-fitting.

A. Hyper-parameter Tuning

We perform sparse grid search to find the best parameters
for our models. Due to space constraints, we only discuss
parameter optimization for the second method of end-to-
end joint-angle estimation. We observe that there are 3
parameters that impact network performance: number of
dense layers, number of neurons per layer, and size of the
context window. We experimented with these along with a
selection of different sensor modalities (more than 1 IMU
per body segment). Eventually, the optimal DNN architecture
comprised 4 dense layers, 128 neurons per layer and a 7-
frame context window. The best results also came from
utilizing more than one IMU per body segment, while leaving
out the IR sensors. To ease visualization of the design space,
we fix one parameter to the optimal value and illustrate the
behavior of the remaining two. Fig. 5 shows the change in
performance with respect to the number of layers, neurons
and context-window size. We observe that deeper DNNs can
help improve the test score. Furthermore, a larger context
window makes the DNN depth more effective.

The impact of sensor modalities for estimation is shown in
Fig. 6. We performed the same sweep of network parameters

Fig. 5: Network performance with different parameters.

Fig. 6: Network performance improves with extra sensors.

as before while utilizing data from different sensors. We
use 1 IMU, 2 IMUs and 2 IMUs + 1 IR sensor per body
segment for the plots on the left, center and right of Fig. 6,
respectively. We observe that sensor redundancy substantially
reduces the tracking errors. Thus, utilizing more than one
sensor is an effective approach to mitigate artifacts. An
interesting future direction of research would be to deter-
mine strategies that would effectively exploit multiple sensor
modalities for pose tracking.

B. Tracking Accuracy

Fig. 7 shows the absolute joint-angle error from the following
three approaches: (a) kinematics-based modeling with the
assumption of no sensor displacement, also referred to as
the baseline algorithm, (b) neural-network based estimation
of sensor displacement combined with kinematic model-
ing, and (c) direct estimation of joint angles with a deep
neural network. Although all of them exhibit significant
error when tracking upper-limb movements, compensating
for sensor displacement helps improve the accuracy of
kinematics-based modeling. Furthermore, end-to-end esti-
mation achieves the best precision; tracking accuracy is
improved by 69% compared to kinematics-based tracking.
Besides MAE, the standard deviation also improves for the
proposed approaches. As expected, sensors mounted on a
single piece of garment (like the jacket and pants) exhibit
error patterns that are highly correlated.

Time-domain performance. Fig. 8 shows the tracking
profile of the right shoulder joint angle with the three
approaches for one random trial. Three repetitions of the
same motion were performed by one subject over 1.4 min.
The worst performing baseline approach (red line) suffers
from different error sources like invalid calibration, sensor
displacement and movement latency (sensor position changes
slower than the body segment position during motion). From
the figure, we observe that learning sensor displacement
(gray line) helps improve tracking accuracy. However, it
still suffers from calibration errors (frames 300-800). This
is because the neural-network model does not have ground-
truth information to find a mapping between sensor data and
initial sensor displacement during calibration (T-pose). Our
approach helps mitigate errors due to movement latency and
sensor displacement. It is worth noting that this approach
relies on the output of IMU sensor fusion to compute
RG
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and estimate the displacement ground-truth
labels [Eq. (3)]. Thus, noise from the sensor-fusion algorithm
propagates over to the DNN labels, which leads the neural-



(a) Kinematics-based modeling (b) Learning sensor displacement (c) End-to-end joint-angle estimation

Fig. 7: The proposed machine-learning approaches achieve the best tracking accuracy. Compared to kinematics-based tracking,
end-to-end joint angle estimation results in a 69% lower MAE in the estimated Euler angles.

network to learn data patterns that are imprecise. As a result,
very aggressive spatial filtering is applied to maintain a
smooth tracking trajectory. This is apparent from the rising
slope observed during the first 300 frames in Fig. 8. The best
performance is achieved by the direct joint-angle estimation
approach (green line). It completely eliminates the calibra-
tion and sensor-displacement errors. Since the estimated pose
is accurate during calibration phase, the tracker responds
as soon as the ground-truth pose changes. Thus, errors due
to sensor movement latency are also mitigated. On motion
extremities, there is still some tracking error. However, this
approach is still the closest to the ground-truth.

Dynamic response. As expected, the performance of
inertial motion-capture is hurt during fast movements. The
accuracy degradation is extreme in case of the baseline
kinematics algorithm. This is because during fast movements,
errors due to sensor displacement and movement latency are
amplified. Fig. 9 shows the distribution of tracking errors at
different speeds of motion. We compute these results based
on a spectral-domain analysis of the joint-angle profiles.
From the figure, we observe that our DNN-based direct joint-
angle estimator maintains tracking accuracy even during fast

Fig. 8: DNN-based modeling closely tracks the ground-truth
pose. End-to-end estimation achieves the best result.

movements, which potentially makes it the algorithm of
choice for tracking pose in most practical scenarios.

C. Trading Accuracy for Generalizability

Both machine-learning algorithms are capable of generating
better tracking accuracy than kinematics-based modeling that
is oblivious to sensor displacement. On the one hand, due
to the fact that noisy IMU sensor-fusion information is
utilized to compute ground-truth rotation matrices, training
labels are corrupted with fusion noise. This deteriorates the
final tracking accuracy of the DNN that models sensor dis-
placement. Aggressive filtering helps but makes the tracker
less responsive. On the other hand, directly estimating joint
angles with sensor data can lower average Euler-angle errors
to 6◦. These gains come at the cost of model generalizability.
To study the robustness of the neural-network approaches, we
utilized data from subjects and motions that were not part
of the collected dataset. Baseline kinematics-based modeling
achieves an average root mean-squared error (RMSE) of 20◦

over all joint angles. The results for the proposed machine-
learning approaches are shown in Table. I.

When presented with motions that are not part of the
training set, directly estimating joint angles with the neural

Fig. 9: The DNN models maintain performance even for fast
limb movements, while the baseline accuracy is poor.



TABLE I. Average RMSE of joint angles on unseen test data.

Seen Unseen

DNN to learn sensor displacement 16.42◦ 14.54◦

DNN to directly estimate joint angles 6.14◦ 10.17◦

network is less accurate. However, this is not the case
with the approach of modeling sensor displacement. In fact,
in this case the performance is slightly increased; error
reduces from 16.42◦ to 14.54◦. We hypothesize that this
performance difference is due to the nature and amount of
training data that we use. Given the finite set of motion
and subject samples, our training set is only able to encode
a subset of variance in the large space of possible Euler
angles. Thus, a completely data-driven approach, such as
the direct joint-angle estimator, suffers from low accuracy
on unseen test data. This exposes the limited generalizability
of such a method. In contrast, utilizing machine learning to
model sensor displacement within a kinematics framework
is a hybrid approach that relies on patterns that have lower
variance; the space of sensor displacements is smaller than
that of Euler angles. Thus, our training dataset potentially
has more coverage over this domain. Therefore, unless there
is access to sufficient labeled training data, the approach
of directly estimating joint-angles may be more suitable for
structured tasks such as recognizing specific activities rather
than tracking pose. On the other hand, the hybrid approach
of modeling sensor displacement may be a good candidate
for motion capture in general.

In this paper, we implemented simple DNN models for
inertial motion capture. More advanced neural-network ar-
chitectures could help boost the accuracy further. We utilized
temporal information in the data through a simple context
window. Recursive neural networks (RNNs) may be effective
alternatives to exploiting time-domain relationships. This is
especially interesting since motion-capture can be modeled
as a sequence-prediction problem with kinematic constraints.
To develop these ideas further, there is a dire need for
labeled datasets that not only capture motion variations to a
comprehensive degree but are also rich in sensor modalities
and subject diversity.

V. CONCLUSIONS

We developed two machine-learning methods based on deep-
neural networks to address the issue of significant motion
artifacts during inertial motion capture. These artifacts arise
naturally in systems where sensors are allowed to move
freely without constraints on mounting, such as in the case of
sensors integrated into garments. We demonstrated superior
tracking accuracy of both approaches when compared to a
kinematics-based algorithm that is oblivious to sensor dis-
placements during motion capture. Specifically, we showed
that direct estimation of joint angles with DNNs can lower
RMSE from 20◦ to 6◦. Based on a study of the dynamic
response of the algorithms, we found that these low errors
are maintained even in the presence of drastic motion. We
identified that a large amount of motion data is needed to

achieve good generalizability of the DNN models. However,
the hybrid approach of learning sensor-displacement patterns
within a kinematics algorithm can be a viable alternative
when we lack large volumes of labeled training data.

REFERENCES

[1] Y. Zheng, K.-C. Chan, and C. C. Wang, “Pedalvatar: An IMU-based
real-time body motion capture system using foot rooted kinematic
model,” in Int. Conf. Intelligent Robots and Systems. IEEE, Sep.
2014, pp. 4130–4135.

[2] S. Ahuja, W. Jirattigalachote, and A. Tosborvorn, “Improving accu-
racy of inertial measurement units using support vector regression,”
Stanford University, Tech. Rep, Oct. 2016.

[3] E. Foxlin, M. Harrington, and G. Pfeifer, “Constellation: A wide-range
wireless motion-tracking system for augmented reality and virtual
set applications,” in Proc. Annual Conf. Computer Graphics and
Interactive Techniques. ACM, Jul. 1998, pp. 371–378.

[4] T. von Marcard, G. Pons-Moll, and B. Rosenhahn, “Human pose
estimation from video and IMUs,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 38, no. 8, pp. 1533–1547, Aug. 2016.

[5] R. Zhu and Z. Zhou, “A real-time articulated human motion tracking
using tri-axis inertial/magnetic sensors package,” IEEE Trans. Neural
Systems and Rehabilitation Engineering, vol. 12, no. 2, pp. 295–302,
Jun. 2004.

[6] M. Kok, J. D. Hol, and T. B. Schön, “An optimization-based approach
to human body motion capture using inertial sensors,” Proc. Int.
Federation of Automatic Control, vol. 47, no. 3, pp. 79–85, Aug. 2014.

[7] S. Andrews, I. H. Casado, T. Komura, L. Sigal, and K. Mitchell, “Real-
time physics-based motion capture with sparse sensors.” in European
Conf. Visual Media Production, Dec. 2016, pp. 1–5.

[8] D. Vlasic et. al., “Practical motion capture in everyday surroundings,”
in ACM Trans. Graphics, vol. 26, no. 3. ACM, Jul. 2007, p. 35.

[9] D. Roetenberg, H. Luinge, and P. Slycke, “Xsens MVN: Full 6DOF
human motion tracking using miniature inertial sensors,” Xsens Motion
Technologies, Tech. Rep, Jan. 2009.

[10] T. von Marcard, B. Rosenhahn, M. J. Black, and G. Pons-Moll,
“Sparse inertial poser: Automatic 3D human pose estimation from
sparse IMUs,” in J. Computer Graphics Forum, vol. 36, no. 2. Wiley
Online Library, May 2017, pp. 349–360.

[11] H. Harms, O. Amft, and G. Troster, “Influence of a loose-fitting
sensing garment on posture recognition in rehabilitation,” in Int. Conf.
Biomedical Circuits and Systems. IEEE, Nov. 2008, pp. 353–356.

[12] X. Xiao and S. Zarar, “A wearable system for articulated human
pose tracking under uncertainty of sensor placement,” in under review,
2018.

[13] C. Mattmann, O. Amft, H. Harms, G. Troster, and F. Clemens,
“Recognizing upper body postures using textile strain sensors,” in Int.
Symp. Wearable Computers. IEEE, Oct. 2007, pp. 29–36.

[14] S. Mohammed and I. Tashev, “Unsupervised deep representation learn-
ing to remove motion artifacts in free-mode body sensor networks,”
in Int. Conf. Body Sensor Networks. IEEE, May 2017, pp. 183–188.

[15] M. Windolf, N. Götzen, and M. Morlock, “Systematic accuracy and
precision analysis of video motion capturing systems-exemplified on
the Vicon-460 system,” J. Biomechanics, vol. 41, no. 12, pp. 2776–
2780, Jan. 2008.

[16] D. H. Kang, Y. J. Jung, A. J. Park, and J. W. Kim, “Human body
motion capture system using magnetic and inertial sensor modules,”
in Proc. Int. Universal Communication Symp., Oct. 2011, pp. 1–6.

[17] J. Favre, R. Aissaoui, B. M. Jolles, J. A. de Guise, and K. Aminian,
“Functional calibration procedure for 3D knee joint angle description
using inertial sensors,” J. biomechanics, vol. 42, no. 14, pp. 2330–
2335, Oct. 2009.

[18] G. Pons-Moll, A. Baak, J. Gall, L. Leal-Taixe, M. Mueller, H.-P.
Seidel, and B. Rosenhahn, “Outdoor human motion capture using
inverse kinematics and von mises-fisher sampling,” in Int. Conf.
Computer Vision. IEEE, Nov. 2011, pp. 1243–1250.

[19] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of
IMU and MARG orientation using a gradient descent algorithm,” in
Int. Conf. Rehabilitation Robotics. IEEE, Jul. 2011, pp. 1–7.

[20] iPi Soft LLC. iPi Soft motion capture for the masses. [Online].
Available: http://ipisoft.com/


