
Computation Reuse in Analytics Job Service at Microsoft
Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Marc Friedman,

Yifung Lin, Konstantinos Karanasos, Sriram Rao
Microsoft

{aljindal,shqiao,hirenp,zhyin,jiedi,malayb,marc.friedman,yifungl,kokarana,sriramra}@microsoft.com

ABSTRACT
Analytics-as-a-service, or analytics job service, is emerging as a
new paradigm for data analytics, be it in a cloud environment or
within enterprises. In this setting, users are not required to manage
or tune their hardware and software infrastructure, and they pay
only for the processing resources consumed per job. However, the
shared nature of these job services across several users and teams
leads to significant overlaps in partial computations, i.e., parts of
the processing are duplicated across multiple jobs, thus generating
redundant costs. In this paper, we describe a computation reuse
framework, coined CLOUDVIEWS, which we built to address the
computation overlap problem in Microsoft’s SCOPE job service.
We present a detailed analysis from our production workloads to
motivate the computation overlap problem and the possible gains
from computation reuse. The key aspects of our system are the
following: (i) we reuse computations by creating materialized views
over recurring workloads, i.e., periodically executing jobs that have
the same script templates but process new data each time, (ii) we
select the views to materialize using a feedback loop that reconciles
the compile-time and run-time statistics and gathers precise measures
of the utility and cost of each overlapping computation, and (iii) we
create materialized views in an online fashion, without requiring an
offline phase to materialize the overlapping computations.

CCS CONCEPTS
• Information systems → Query optimization; • Computer sys-
tems organization → Cloud computing;

KEYWORDS
Materialized Views; Computation Reuse; Shared Clouds

ACM Reference Format:
Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag,
Marc Friedman, Yifung Lin, Konstantinos Karanasos, Sriram Rao. 2018.
Computation Reuse in Analytics Job Service at Microsoft. In SIGMOD’18:
2018 International Conference on Management of Data, June 10–15, 2018,
Houston, TX, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3183713.3190656

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3190656

 0

 20

 40

 60

 80

 100

cluster1 cluster2 cluster3 cluster4 cluster5

P
er

ce
nt

ag
e

Overlapping jobs
Users with overlapping jobs

Overlapping subgraphs

Figure 1: Overlap in different production clusters at Microsoft.

1 INTRODUCTION
1.1 Background
There is a recent trend of offering analytics-as-a-service, also re-
ferred to simply as job service, by major cloud providers. Examples
include Google’s BigQuery [15], Amazon’s Athena [3], and Mi-
crosoft’s Azure Data Lake [5]. Similar job services are employed
for the internal needs of large enterprises [11, 49]. These services
are motivated by the fact that setting up and running data analytics
is a major hurdle for enterprises. Although platform as a service
(PaaS), software as a service (SaaS), and more recently database as
a service (DBaaS) [4, 6] have eased the pain of provisioning and
scaling hardware and software infrastructures, users are still respon-
sible for managing and tuning their servers. A job service mitigates
this pain by offering server-less analytics capability that does not
require users to provision and manage servers. Instead, the service
provider takes care of managing and tuning a query engine that can
scale instantly and on demand. Users can get started quickly using
the all familiar SQL interface and pay only for the processing used
for each query, in contrast to paying for the entire provisioned server
infrastructure irrespective of the compute resources actually used.

1.2 Problem
Given the above shift from provisioned resources to actually con-
sumed resources, enterprises naturally do not want to duplicate their
resource consumption and pay redundant costs. However, this is a
major challenge in modern enterprise data analytics which consists
of complex data pipelines written by several users, where parts of the
computations end up running over and over again. Such computation
overlap not only adds to the cost, but it is also really hard for the
developers or even the administrators to detect these overlaps across
different scripts and different users.

To illustrate the problem, consider SCOPE [11, 52], which is
the equivalent of Azure Data Lake for internal data analytics at Mi-
crosoft. SCOPE is deployed over hundreds of thousands of machines,
running hundreds of thousands of production analytic jobs per day

https://doi.org/10.1145/3183713.3190656
https://doi.org/10.1145/3183713.3190656
https://doi.org/10.1145/3183713.3190656

that are written by thousands of developers, processing several ex-
abytes of data per day, and involving several hundred petabytes of
I/O. Almost 40% of the daily SCOPE jobs have computation over-
lap with one or more other jobs. Likewise, there are millions of
overlapping subgraphs that appear at least twice. These overlaps are
incurred by 70% of the total user entities (humans and machines) on
these clusters. Figure 1 shows the cluster-wise computation overlap
in five of our clusters. We can see that all clusters, except cluster3,
have more than 45% of their jobs overlapping. Likewise, more than
65% of users on all clusters end up having computation overlap in
their jobs and the percentage of subgraphs appearing at least twice
could be as high as 80%. While the ideal solution would be for the
users to modularize their code and reuse the shared set of scripts and
intermediate data, this is not possible in practice as users are dis-
tributed across teams, job functions, as well as geographic locations.
Thus, we need an automatic cloud-scale approach to computation
reuse in a job service.

1.3 Challenges
There is a rich literature for materializing views [19, 20, 22, 30, 33,
44, 46, 53] and for reusing intermediate output [10, 12, 18, 23, 36–
38, 50]. However, there are a number of new challenges in building
a computation reuse framework for the SCOPE job service.

First, enterprise data analytics often consists of recurring jobs
over changing data. The SCOPE job service has more than 60% of the
jobs in its key clusters as recurring [25]. With recurring jobs, sched-
uling and carefully materializing views over the new data is crucial,
which was not an issue in traditional view selection. Incremental
maintenance would not work because data might be completely new.
SCOPE jobs are further packed in tight data pipelines, i.e., multiple
jobs operate in a given time interval with strict completion dead-
lines. Tight data pipelines leave little room to analyze the recurring
workload over the new data in each occurrence.

Second, we need a feedback loop to analyze the previously ex-
ecuted workload and detect overlapping computations. Given the
large volume of overlaps, materializing all of them for reuse is sim-
ply not possible. Typical methods to select the interesting overlaps
(or views) depend on the utility and cost of each overlap, i.e., the
runtime savings and the storage cost of each overlap. Unfortunately,
however, the optimizer estimates for utility and costs are often way
off due to a variety of factors (unstructured data, inaccurate operator
selectivities, presence of user code, etc.) [17, 29, 31]. Thus, the feed-
back loop needs to reconcile the logical query trees with the actual
runtime statistics to get more precise measures of utility and cost of
each overlap.

Third, a job service is always online and there is no offline phase
available to create the materialized views, which is expected with
traditional materialized views. Halting or delaying recurring jobs
to create materialized views is not an option, as it carries the risk
of not meeting the completion deadlines and affecting downstream
data dependency. Thus, we need to create materialized views just
in time and with minimal overheads. This is further challenging
because multiple jobs can now compete to build views (build-build
interaction), and they depend on each other for the availability of
views (build-consume interaction).

Finally, we need an end-to-end system for computation reuse
that has a number of requirements, including automatic reuse and

transparency to the end users, that are inspired from our production
environments.

1.4 Contributions
In this paper, we describe why and how we built an end-to-end
system for automatically detecting and reusing overlapping compu-
tations in the SCOPE job service at Microsoft. Our goal is to allow
users to write their jobs just as before, i.e., with zero changes to user
scripts, and to automatically detect and reuse computations wherever
possible. We focus on exact job subgraph matches, given that exact
matches are plentiful and it makes the problem much simpler without
getting into view containment complexities. Although we present
our ideas and findings in the context of the SCOPE job service, we
believe that they are equally applicable to other job services. Our
core contributions are as follows.

First, we present a detailed analysis of the computation reuse
opportunity in our production clusters to get a sense of the magnitude
of the problem and the expected gains. Our analysis reveals that
computation overlap is a major problem across almost all business
units at Microsoft, with significant runtime improvements to be
expected with relatively low storage costs. We also note that the
overlaps often occur at shuffle boundaries, thereby suggesting that
the physical design of the materialized view is important (Section 2).

Then, we discuss enabling computation reuse over recurring jobs.
The key idea is to use a combination of normalized and precise
hashes (called signatures) for computation subgraphs. The normal-
ized signature matches computations across recurring instances,
while the precise signature matches computations within a recurring
instance. Together these two signatures enable us to analyze our
workload once and reuse overlapping computations over and over
again (Section 3).

We provide an overview of our CLOUDVIEWS system, an end-
to-end system for computation reuse in a job service, along with
our key requirements and the intuition behind our approach. The
CLOUDVIEWS system consists of an offline CLOUDVIEWS analyzer
and an online CLOUDVIEWS runtime. To the best of our knowledge,
this is the first work to present an industrial strength computation
reuse framework for big data analytics (Section 4).

We describe the CLOUDVIEWS analyzer for establishing a feed-
back loop to select the most interesting subgraphs to materialize and
reuse. The CLOUDVIEWS analyzer captures the set of interesting
computations to reuse based on their prior runs, plugs in custom
view selection methods to select the view to materialize given a set
of constraints, picks the physical design for the materialized views,
and also determines the expiry of each of the materialized views. We
further describe the admin interface to trigger the CLOUDVIEWS

analyzer (Section 5).
We describe the CLOUDVIEWS runtime which handles our online

setting for computation reuse. Key components of the runtime in-
clude a metadata service for fetching the metadata of computations
relevant for reuse in a given job, an online view materialization mech-
anism as part of the job execution, a synchronization mechanism to
avoid materializing the same view in parallel, making materialized
views available early during runtime, automatic query rewriting us-
ing materialized views, and job coordination hints to maximize the
computation reuse (Section 6).

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

P
er

ce
nt

ag
e

O
ve

rla
p

Virtual Clusters

(a) Percentage overlap

 1

 10

 100

 0 20 40 60 80 100 120 140 160A
ve

ra
ge

 O
ve

rla
p

F
re

qu
en

cy

Virtual Clusters

(b) Average overlap frequecy

Figure 2: Overlap in one of the largest SCOPE clusters

Thereafter, we present an experimental evaluation of CLOUD-
VIEWS. We present the impact over production workloads at Mi-
crosoft, both in terms of latency and CPU hours. Our results show
an average and overall latency improvement of 43% and 60% respec-
tively, as well as an average and overall CPU hour improvement
of 36% and 54% respectively. We further show evaluation over the
TPC-DS benchmark. Our results show 79 out of the 99 TPC-DS
queries having improvements with CLOUDVIEWS, with an overall
runtime improvement of 17%. We also discuss the various overheads
of CLOUDVIEWS, including the cost of workload analysis, the meta-
data lookup, and the impact on compiler runtime (Section 7).

Finally, we discuss the lessons learned from the CLOUDVIEWS

project. (Section 8)

2 THE REUSE OPPORTUNITY
We saw the overall overlap across our SCOPE clusters in Figure 1.
Below we analyze the overlap at different granularity levels.

2.1 Overlap within a Cluster
We analyze one of the largest clusters, in terms of the number of jobs,
to better understand the overlap. Figure 2(a) shows the percentage
of jobs overlapping in each of the virtual clusters1 (VCs) in this
physical cluster. Our analysis shows that while some VCs have no
overlapping jobs, 54% of the VCs have more than 50% of their jobs
overlapping, and few others have 100% of their jobs overlapping.
Figure 2(b) shows the average overlap frequencies across different
virtual clusters. The average overlap frequency ranges from 1.5 to
112 (median 2.96, 75th percentile 3.82, 95th percentile 7.1). The key
lesson here is that computation overlap is a cluster-wide phenomenon
and not limited to specific VCs or workloads.

Our interactions with the internal SCOPE customers reveal two
main reasons for the prevalence of computation overlap seen above:
(i) users rarely start writing their analytics scripts from scratch, rather
they start from other people’s scripts and extend/modify them to suit
their purpose, (ii) there is a data producer/consumer model at play in
SCOPE, where multiple different consumers process the same inputs
(generated by the producers), and they often end up duplicating the
same (partial or full) post-processing over those inputs.

2.2 Overlap within a Business Unit
We further analyze one of the largest business units, in terms of the
number of jobs, in the above cluster. Figure 3 shows the overlapping
1A virtual cluster is a tenant having an allocated compute capacity, called tokens, and
controlling access privileges to its data.

computations from all VCs in this business unit. Note that business
unit is a meaningful granularity because VCs within a business unit
compose a data pipeline, with some VCs cooking the data (produc-
ers) and some VCs processing the downstream data (consumers).

Figures 3(a)–3(d) show the cumulative distributions of per-job,
per-input, per-user, and per-VC overlaps. Surprisingly, we see that
most of the jobs have 10s to 100s of subgraphs that overlap with one
or more other jobs. This suggests that there are significant opportuni-
ties to improve the data pipelines in order to reduce the redundancy.
Apart from reusing computations, one could also consider sharing
computations in the first place. We make a similar observation from
per-input overlap distribution, where we see that more than 90% of
the inputs are consumed in the same subgraphs at least twice, 40%
are consumed at least five times, and 25% are consumed at least ten
times. In terms of users, we again see 10s to 100s of overlaps per
user, with top 10% having more than 1500 overlaps. These heavy
hitters could be consulted separately. Lastly, for VCs, we see at least
three groups having similar number of overlaps. Overall, computa-
tion overlap is widespread across jobs, inputs, users, and VCs, and it
needs to be addressed in a systematic manner.

2.3 Operator-wise Overlap
We now analyze the operator-wise overlap, i.e., the root operator
of the overlapping computation subgraph. Figure 4(a) shows the
operator distribution for the overlaps shown in Figure 3. We can
see that sort and exchange (shuffle) constitute the top two most
overlapping computations. This is interesting because these two are
typically the most expensive operations as well and so it would make
sense to reuse these. In contrast, the next three most overlapping
operators, namely Range (scan), ComputeScalar, and RestrRemap
(usually column remapping), are expected to be much cheaper to
re-evaluate, since they are closer to the leaf-level in a query tree.
Among other operators of interest, we see group-by aggregate, joins,
and user defined functions (including process, reduce, and even
extractors) having significant overlaps.

Figures 4(b)- 4(d) show the cumulative overlap distribution for
three of the operators, namely shuffle, filter, and user-defined proces-
sor. Even though we show the shuffle operator to be more overlap-
ping, only a small fraction of the shuffles have high frequency. This
changes for the filter operator, where the cumulative distribution
grows more flat, meaning that more number of filters have higher
frequency. Finally, for user defined operators in Figure 4(d), the
curve is more flatter. This is because user defined operators are likely
to be shared as libraries by several users and teams.

2.4 Impact of Overlap
In the previous section, we saw the computation overlaps in different
clusters, VCs, and operators. We study the impact of these overlaps
along several dimensions. Figures 5(a)–5(d) show the cumulative
distributions of frequency, runtime, output size, and relative costs
(i.e., view-to-query cost ratio) of the overlapping computations in
one of our largest business units (same as from Section 2.2).

In terms of frequency, there are close to a million computations
appearing at least twice, with tens of thousands appearing at least
10 times, few hundreds appearing at least 100 times, and some ap-
pearing at least 1000 times — all in one single day! The average

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104

F
ra

ct
io

n
of

 J
ob

s

(a) Overlap by jobs

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106 107
F

ra
ct

io
n

of
 In

pu
t S

et
s

(b) Overlap by inputs

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106 107

F
ra

ct
io

n
of

 U
se

rs

(c) Overlap by users

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106

F
ra

ct
io

n
of

 V
C

s

(d) Overlap by VCs

Figure 3: Cumulative distributions of overlap in one of the largest business units.

 0.001

 0.01

 0.1

 1

 10

 100

S
or

t
E

xc
ha

ng
e

R
an

ge
S

ca
la

r
R

es
tr

R
em

ap
F

ilt
er

H
as

hG
bA

gg
S

tr
ea

m
G

bA
gg

P
ro

ce
ss

S
po

ol
M

er
ge

Jo
in

S
eq

ue
nc

e
H

as
hJ

oi
n

U
ni

on
A

ll
C

om
bi

ne
V

irt
ua

lD
at

as
et

R
ed

uc
e

E
xt

ra
ct

G
bA

pp
ly

T
op

Lo
op

sJ
oi

n
O

ut
pu

t
T

ab
le

S
ca

n
W

in
do

w
N

O
P

W
rit

e

P
er

ce
nt

ag
e

of
 S

ub
gr

ap
hs

(a) Operator breakdown

 0.5

 0.6

 0.7

 0.8

 0.9

 1

101 102 103 104

F
ra

ct
io

n
of

 S
hu

ffl
es

(b) Shuffle

 0.5

 0.6

 0.7

 0.8

 0.9

 1

101 102 103

F
ra

ct
io

n
of

 F
ilt

er
s

(c) Filter

 0.5

 0.6

 0.7

 0.8

 0.9

 1

101 102 103

F
ra

ct
io

n
of

 P
ro

ce
ss

or
s

(d) Processor

Figure 4: Operator-wise overlaps in 4(a); Per-operator cumulative distributions of overlap in 4(b)– 4(d).

 0.5

 0.6

 0.7

 0.8

 0.9

 1

101 102 103 104

F
ra

ct
io

n
of

 V
ie

w
s

(a) Frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

F
ra

ct
io

n
of

 V
ie

w
s

(b) Runtime (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

10-410-310-210-1 100 101 102 103 104 105 106

F
ra

ct
io

n
of

 V
ie

w
s

(c) Size (GB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 V
ie

w
s

(d) View-Query Cost Ratio

Figure 5: Quantifying the impact of overlap in one of the largest business units.

overlap frequency however is 4.2 (median 2, 75th percentile 3, 95th
percentile 14, and 99th percentile 36). Thus, computation overlap
frequencies are heavily skewed and we need to be careful in picking
the views to materialize.

In contrast to the frequency, the runtime and the output size
distributions have much less skew. Interestingly, 26% of the overlaps
have runtime of 1s or less, indicating there are opportunities to prune
many of the reuse candidates, while 99% of the overlaps have runtime
below 1000s. In terms of output size, 35% of the overlaps have size
below 0.1MB, which is good (in case they are useful) for storage
space, and 99% have size below 1TB. Lastly, view-to-query cost ratio
is an interesting metric to understand the relative importance of a
view to a query. We note that 46% of the overlapping computations
have view-to-query cost ratio of 0.01 (1%) or less. These overlaps will
not result in significant savings in latency, although their cumulative
resource consumption savings may still be of interest to the customer.
Overall, this is again a highly skewed distribution with only 23% of
the overlaps having a view-to-query cost ratio of more than 0.1, and
just 4% having a ratio of more than 0.5.

3 REUSE OVER RECURRING WORKLOADS
Our goal is to materialize overlapping computations over recur-
ring jobs in SCOPE, i.e., jobs that appear repeatedly (hourly, daily,
weekly, or monthly), have template changes in each instance, and
operate over new data each time. Prior works require the workload
to be known a-priori in order to analyze the workload and select
the views to materialize. However, with recurring jobs changing
and running over new data in each instance, the exact workload is
not available until the next recurring instance, e.g., the next hour.
Running the workload analysis to select the views to materialize
within the same recurring instance, before running the actual jobs, is
simply not possible.

To handle recurring jobs, we collect a combination of two sig-
natures for each subgraph computation: one which identifies the
computation precisely and one which normalizes the precise sig-
nature by the recurring changes, e.g., data/time predicates, input
names, etc. These signatures are created during compilation and
they are similar to plan signatures or fingerprints in prior works [1].

CloudViews:	View	Materialization	&	Reuse

SCOPE	Workload	
Repository

Compile-time	
query	plans

Run-time	
statistics

Query	subgraphs	
with	features

Materialized	
View	selection

Interesting	
subgraphs

Query	
annotations

Enabled	by	
VC	admin

Unmodified	scripts

1.	Check	annotations	
for	each	subgraph

2.	Check	if	the	subgraph	is	already	
materialized	in	the	view	repository

3.	Add	an	expression	using	view
(still	let	optimizer	pick	the	best	expression)

Materialized	view	
repository

4.	Materialize	subgraph	as	
part	of	query	processing

No	matching	
annotations

match

exists !exists

view

view

120205167609!Recurring	Annotation	BuildView D:\viewPath.ss
120205167609!Recurring	Annotation	MatchView D:\viewPath.ss

CloudViews Analyzer CloudViews Runtime

Figure 6: CLOUDVIEWS System Architecture.

Precise Signature Normalized Signature

Detect Overlapping
Computations

Preserve Corresponding
Normalized Signatures

Match for Creating
Materialized View

Preserve Corresponding
Precise Signatures

Match for
Reuse

Expire and
Delete

Runtime

Analysis 1 2

4 3

5 6

Figure 7: Use of precise and normalized signatures for compu-
tation reuse over recurring workloads.

However, we extended the precise signature to further include the
input GUIDs, any user code, as well as any external libraries used
for custom code. The normalized signature ensures that we capture
a normalized computation that remains the same across different
recurring instances. Figure 7 shows the use of these two signatures in
our approach. We analyze any recurring instance from the workload
history and select frequent computations (views) based on their pre-
cise signatures (Step 1), and collect their corresponding normalized
signatures into our metadata service (Step 2). This analysis needs
to be run periodically, only when there is a change in the workload,
thereby removing the need to run workload analysis within each
recurring instance. Later during runtime, we materialize subgraphs
based on their normalized signatures (Step 3), but we also record the
precise signature of each of the materialized view into the physical
path of the materialized files (Step 4). The precise signatures are
used to match future computations for reuse (Step 5), as well as for
expiring a materialized view (Step 6). In summary, the normalized
signature identifies subgraphs across recurring instances (for ma-
terialization) while the precise signature matches subgraph within

a recurring instance (for reuse). Together, they make computation
reuse possible over recurring workloads.

4 CLOUDVIEWS OVERVIEW
In this section, we give a brief overview of the CLOUDVIEWS system.
Our key goals derived from our engagement with product teams are
as follows:

(1) Automatic: We need minimal manual intervention, since it is re-
ally hard for developers to coordinate and reuse overlapping compu-
tations amongst themselves. Thus, overlapping computations should
be detected, materialized, reused, and evicted automatically.

(2) Transparent: With hundreds of thousands of jobs, it is simply
not possible to make changes in user scripts or their libraries.

(3) Correct: Computation reuse should not introduce incorrect re-
sults, i.e., data corruption. This is especially challenging due to the
presence of parameters, users code, and external libraries.

(4) Latency-sensitive: SCOPE users cannot afford to slow down
their data pipelines and hence computation reuse should offer bet-
ter or same performance. This requires accurate estimates on the
cost/benefit of materialized views, and the optimizer should still be
able to discard a view in case it turns out to be too expensive.

(5) Maximize reuse: The obvious goal is to do the computation
reuse wherever possible. This is hard because overlapping jobs may
arrive concurrently and so views materialized in one job may not
end up being reused.

(6) Debuggability: SCOPE has a rich debuggability experience and
computation reuse should preserve that. Specifically, customers (and
operations team) should be able to replay the job, see which mate-
rialized views are created or used, trace the jobs which created any
of the views, and even drill down into why a view was selected for
materialization or reuse in the first place.

(7) Reporting: Finally, we need to report the impact of computation
reuse on job performance, i.e., the storage costs and runtime savings,
as well as make all metadata related to the overlapping computations
queryable.

Traditional materialized view technologies typically have three
components, an offline view selection component, an offline view
building component, and an online view matching component. In
our approach, we have two online components: a periodic workload
analyzer to mine overlapping computations, and a runtime engine to
materialize and reuse those computations.

Figure 6 shows the high-level architecture of CLOUDVIEWS. The
left side shows the periodic workload analyzer that is used to analyze
the SCOPE workload repository. Admins can choose to include or
exclude different VCs for analysis. The output of this analysis is a
set of annotations telling future jobs the subgraph computations that
must be materialized and reused. The right side of Figure 6 shows the
runtime component of CLOUDVIEWS. Here, each incoming job can
be processed in one of three ways: (i) exactly same as before in case
none of the job subgraphs are materialized or are deemed to be too
expensive by the optimizer, (ii) modified job graph that reads from
a materialized view (i.e., there is a matching subgraph annotation
and it is materialized) and reading from the materialized view is
considered more efficient than recomputing it by the optimizer, and
(iii) modified job graph that spools and materializes the output of a
subgraph (i.e., there is a matching subgraph annotation but it is not
materialized). While the analyzer part of CLOUDVIEWS could be
triggered explicitly by the user or scheduled as another recurring job,
the runtime part is triggered by providing a command line flag during
job submission. The job scripts of the end users remain unchanged.

5 CLOUDVIEWS ANALYZER
In this section, we describe the analyzer component of CLOUD-
VIEWS. The key features of this component include: (i) providing
feedback loop for runtime statistics, (ii) picking the physical design
for the selected views to materialize, (iii) determining the expiry of
a materialized view, and (iv) providing a user interface to tune and
visualize the workload analysis. We describe each of these below.

5.1 The Feedback Loop
Picking the right set of views to materialize is a hard problem. State-
of-the-art approaches rely on what-if optimization to estimate the
expected improvements if the view were to be materialized [2]. Un-
fortunately, the optimizer cost estimates are often way off due to the
presence of complex DAGs and user code. The problem becomes
even more severe in a distributed cloud setting where virtual hard-
ware and scheduling issues make it even harder to model the actual
gains in terms of job latencies. As a result, the actual improvements
from a materialized view may be much lower while its actual mate-
rialization costs may be much higher than the estimated ones. Thus,
we need higher confidence on which views to materialize and do
not want to materialize a view which later ends up not being used,
thereby wasting customer money in a job service. This gets further
challenging with dynamic resource allocation within a job graph as
well as with opportunistic resource allocation in SCOPE [8].

We handle the above issues by providing a feedback loop that rec-
onciles compile-time estimates with run-time statistics, as depicted

Compiler Optimizer Scheduler RuntimeQuery
Result

Actual	runtime	
statistics

Optimized	plans	&	
estimated	statistics

Execution	graphs	
&	resources

Compiled	
query	DAGs

Workload	
Analyzer

Feedback

Figure 8: Feedback loop for computation reuse.

in Figure 8. Our feedback mechanism goes beyond learning from
the same query, as in LEO [45], and considers arbitrary fine-grained
commonalities across multiple jobs. We do this by enumerating all
possible subgraphs of all jobs seen within a time window in the past,
e.g., a day or a week, and finding the common subgraphs across
them. Though this is more restricted than considering generalized
views2, the subgraphs considered have actually been used in the past
(likely to be also used in the future) and there are runtime statistics
available from those previous runs (can cost them more accurately).

In order to use the runtime statistics from the previous runs, we
connect the job data flow (one which actually gets executed on a
cluster of machines) back to the job query graph (the tree represen-
tation of the input user query). We do this by linking the operators
executed at every stage in the data flow to operators in the query
graph. Then, for every query subgraph, we extract corresponding
runtime statistics from the data flow. These include latency (time
taken to execute the subgraph), cardinality (number of output rows in
the subgraph), data size (in bytes), and resource consumption (CPU,
memory, parallelism, IO, etc.). In cases where several operators are
pipelined in a data flow, we attribute runtime statistics such as re-
source consumption to individual operators, e.g., by sub-dividing
the total resource consumption of all pipelined operators based on
the exclusive runtime of each operator in the pipeline.

Our feedback loop has several key benefits. First, there is an
inevitable duplication of analysis in user scripts, due to common
data preparation needed in multiple analyses or simply due to the
fact that developers often start from someone else’s script before
adding their own logic. With the feedback loop in our job service,
users do not have to worry about de-duplicating their scripts; the
system takes care of doing it automatically at runtime. Second,
the runtime statistics provide more predictable measures of view
materialization costs and benefits, thereby giving the customer a
better idea of how much he will pay and how much he will save
with this feature. Third, the feedback loop makes it more likely that
the selected (and materialized) subgraphs will actually end up being
used in future jobs, in contrast to picking materialized views based
on cost estimates and later finding them not useful if the estimates
turn out to be incorrect. Fourth, our feedback loop considers job
subgraphs without considering merging two or more subgraphs, as in
more general view selection. This ensures that materializing a view
never requires additional computation (and hence additional money)
than that would anyways be done by a job using that view. And
finally, the runtime statistics observed from the subgraphs of one job
get shared across all future queries having any of those subgraphs.
In fact, for any new job that comes in, the system may already know

2Queries Q1 and Q2 reading attributes (A, B) and (A, C), respectively, would generate
a view (A, B, C) as candidate, even though it is neither a subgraph of Q1 nor of Q2.

the costs of its several subgraphs and may decide to not recompute
them.

5.2 Selecting Subgraphs to Materialize
As mentioned before, we simplify the view selection problem by re-
stricting ourselves to common subgraphs. Although this is more lim-
ited than generalized view selection, we are able to capture precise
utility and cost estimates, since the subgraphs have been executed
in the past. In addition, during query rewriting we simply scan the
materialized view, without incurring any other post-processing, and
hence the gains are more predictable.

We consider two kinds of approaches to select the subgraphs to
materialize:
(i) selecting the top-k subgraphs using one or more heuristics, e.g.,
total subgraph utility, or total utility normalized by storage cost, or
limiting to at most one subgraph per-job, etc. The system allows
users to plug in custom heuristics to narrow down to the subgraphs
of their interest.
(ii) packing the most interesting subgraphs (or subexpressions) given
a set of constraints, e.g., storage constraints, view interaction con-
straints, etc. We investigated the subexpression packing problem in
more details in a companion work [24].

5.3 Physical Design
One of the early lessons we learned in this project was the importance
of view physical design. The physical design of materialized views
is typically not paid much attention, i.e, views and their physical
design are typically not selected at the same time. However, we
observed that materialized views with poor physical design end up
not being used because the computation savings get over-shadowed
by any additional repartitioning or sorting that the system needs to do.
This happens because with massively large datasets and massively
parallel processing in SCOPE, repartitioning and sorting are often
the slowest steps in the job execution.

CLOUDVIEWS, therefore, pays close attention to view physical
design. To do so, we extract the output physical properties (partition-
ing type, partitioning columns, number of partitions, sort columns,
sort direction) of each of the subgraph while enumerating them. The
output physical properties are good hints for view physical design as
they are expected by subsequent operators in the job graph. In case
of no explicit physical properties at the subgraph root, we infer them
from the children, i.e., we traverse down until we hit one or more
physical properties. Depending on how an overlapping subgraph is
used in different jobs, there may be multiple sets of physical proper-
ties for the same subgraph. The default strategy is to pick the most
popular set. However, in case of no clear choice, we treat multiple
physical designs (of the same view) as different views and feed them
to the view selection routine.

5.4 Expiry and Purging
Although storage is cheap, the storage space used by materialized
views still needs to be reclaimed periodically. A simple heuristic is
to remove all views from the previous recurring instance. However,
discussions with our customers revealed that output of hourly jobs
could also be used in weekly jobs or monthly jobs. Therefore, re-
moving views after each hour/day could be wasteful. A better option

is to track the lineage of the inputs of the view, i.e., for each of
the view input, check the longest duration that it gets used by any
of the recurring jobs. The maximum of all such durations gives a
good estimate of the view expiry. Apart from using standard SCOPE
scripts, this type of lineage tracking could also be facilitated using
provenance tools such as Grok [43] and Guider [35], or Goods [21].
The view expiry thus obtained is encoded into the physical files, and
our Storage Manager takes care of purging the file once it expires.

Cluster admins could also reclaim a given storage space by run-
ning the same view selection routines as described in Section 5.2
but replacing the max objective function with a min, i.e., picking
the views with minimum utility. In the worst case, the materialized
view files can be simply erased from the cluster. Both of the above
operators, however, require cleaning the views from the metadata
service first before deleting any of the physical files (to ensure that
jobs consuming any of those inputs do not fail).

5.5 User Interfaces
CLOUDVIEWS provides a few ways to interact with the workload
analyzer. First, there is a command line interface to run the analyzer
over user specific cluster, VCs and time ranges. Users can also pro-
vide their custom constraints, e.g., storage costs, latency, CPU hours,
or frequency, to filter down the overlapping computations. Then,
there is a Power BI [39] dashboard to look at various summaries
from computation overlap analysis, as well as drill down into the
top-100 most overlapping computations in more detail. Together,
the goal is to help users understand the computation overlap in their
workloads and to tailor computation reuse for their needs.

6 CLOUDVIEWS RUNTIME
In this section, we describe the various components that make com-
putation reuse possible during query processing. We collectively
refer to them as the CLOUDVIEWS runtime, which consists of: (i) a
metadata service to query the relevant overlaps in each incoming job,
(ii) an online view materialization capability to materialize views
as part of query processing, (iii) a synchronization mechanism to
prevent concurrent jobs materializing the same view, (iv) an early
materialization technique to publish a materialized view even before
the job producing it completes, (v) automatic query rewriting to
use materialized views wherever possible, and (vi) hints to the job
scheduler in order to maximize the computation reuse.

6.1 Metadata Service
The goal of the metadata service is to provide the lookup for overlap-
ping computations and to coordinate the materialization and reuse of
those computations. Recall that we have an online setting, i.e., data
batches and jobs arrive continuously, and hence view materialization
and reuse is a dynamic activity. Therefore, instead of simply looking
up the views in the compiler, multiple SCOPE components interact
with the metadata service at runtime, as illustrated in Figure 9.

First, the compiler asks the metadata service for overlapping
computations (views) for a given job J (Step 1). The naïve approach
would be for the compiler to lookup each subgraph individually to
check whether or not this is an overlapping computation. However,
the number of lookup requests can explode since SCOPE job graphs
can be quite large, thereby leading to higher compilation overhead

CloudViews Metadata Service

1

2

3

4

5

6

Compiler Optimizer JobManager

Get relevant
views for a job J

Propose to materialize
a view Vs, with precise
signature s

Report successful
materialization of Vs

List of normalized
signatures

Exclusive lock
Success/Failure

Lock
Release
ACK

Figure 9: CLOUDVIEWS metadata service interactions with dif-
ferent SCOPE components.

as well as higher throughput requirements from the metadata service.
Instead, we make one request per-job and fetch all overlaps that
could be relevant for that job. This is done by creating an inverted
index as follows. For each overlapping computation instance, we
extract tags from its corresponding job metadata. We normalize the
tags for recurring jobs and create an inverted index on the tags to
point to the corresponding normalized signatures. The metadata
service returns the list of normalized signatures relevant to J to the
compiler (Step 2). The signatures returned by the metadata service
may contain false positives, and the optimizer still needs to match
them with the actual signatures in the query tree.

Second, when the optimizer tries to materialize an overlapping
computation, it proposes the materialization to the metadata service
(Step 3). The metadata service tries to create an exclusive lock to
materialize this view. Due to large number of concurrently running
jobs, the same view could be already materialized by another job,
i.e., the lock already exists. In this case, the service returns a failure
message, otherwise, it returns success (Step 4). Note that we mine
the average runtime of the view subgraph from the past occurrences,
and use that to set the expiry of the exclusive lock. Once the exclusive
lock expires, and if the view is still not materialized, another job
could try to create the same materialized view. This gives us a fault-
tolerant behavior for view materialization.

Finally, the job manager reports the successful materialization of a
view to the metadata service (Step 5) and the service acknowledges
the lock release (Step 6). The metadata service now makes the
materialized view available for other jobs to reuse, i.e., it may appear
the next time the compiler asks for relevant views for a job (Step1).

We deployed our metadata service using AzureSQL as the back-
end store. The metadata service periodically polls for the output of
CLOUDVIEWS analyzer and loads the set of selected overlapping
computations whenever new analysis is available. We purge expired
computations at regular intervals.

6.2 Online Materialization
Traditional materialized views require an offline process where the
database administrator is responsible to first create all relevant ma-
terialized views, i.e., the preprocessing step, before the database
becomes available for running the query workload. This is not possi-
ble with recurring jobs which run in tight data pipelines with strict
completion deadlines, where there is little room to do the prepro-
cessing for creating the materialized views. Preprocessing blocks the
recurring jobs, thereby causing them to miss their completion dead-
lines. Recurring jobs also have data dependency between them, i.e.,

Core Plan Search

Follow-up Optimization

Input: set of annotations that could be relevant for this job

Output: plan with one or more view materialization / reuse

Top-down
Enumeration

Norm
Matches

Precise
Match

Precise
Match

. . . . . .

Get Stats on View
and Propagate
them

. . .
. . .

No Precise Match

} Overall
best plan

Bottom-up
Enumeration

Norm
Matches

Propose
Materialize

Propose
Materialize

. . . . . .

Physical
Properties

Physical
Properties

Encode precise
signature and
JobID. . . . . .

. . .

Propose
Materialize

New
plan

Limited

Encode precise
signature and
JobID

Get Stats on View
and Propagate
them

Follow-up on
the best plan

Re-optimize
the new plan

Figure 10: Illustrating online materialization and query rewrit-
ing mechanisms in the SCOPE query optimizer.

the result of one recurring job is used in subsequent recurring jobs.
Thus, missing completion deadline for one recurring jobs affects the
entire data pipeline.

We introduce a mechanism for creating and reusing materialized
views as part of the query processing, as depicted in Figure 10. Af-
ter fetching the relevant normalized signatures from the metadata
service, the compiler supplies them as annotations to the query opti-
mizer. The compiler also preserves the annotations as a job resource
for future reproducibility. The optimizer first checks for all reuse
opportunities in the plan search phase before trying to materialize
one or more views in a follow-up optimization phase, shown in lower
half of Figure 10. This ensures that views already materialized (and
available) are not attempted for materialization. During follow-up
optimization, the optimizer checks whether the normalized signature
of any of the subgraphs matches with the ones in the annotation. We
match the normalized signatures in a bottom-up fashion (material-
izing smaller views first as they typically have more overlaps) and
limit the number of views that could be materialized in a job (could
be changed by the user via a job submission parameter). In case of
a match, the optimizer proposes to materialize the view (Step 3 in
Figure 9). On receiving success from the metadata service, the opti-
mizer adjusts the query plan to output a copy of the sub-computation
to a materialized view, while keeping the remainder of the query
plan unmodified as before. The new output operator also enforces
the physical design mined by the analyzer for this view. The opti-
mizer takes care of adding any extra partitioning/sorting operators
to meet those physical property requirements. The optimizer stores
the precise signature of each materialized view as well as the ID
of the job producing the materialized view (for tracking the view
provenance) into the physical path of the materialized file.

The salient features of our approach are as follows. First, we
introduce a mechanism to create materialized views with minimal
overhead as part of the query processing, without requiring any up-
front preprocessing that would block the recurring queries. Second,
our approach causes the first query that hits a view to materialize
it and subsequent queries to reuse it wherever possible. As a result,
we materialize views, and hence consume storage, just when they
are to be needed, instead of creating them a priori long before they

would ever be used. Third, we do not need to coordinate between
the query which materializes the view (as part of its execution), and
the queries which reuse that materialized view; in case of multi-
ple queries arriving at the same time, the one which finishes first
materializes the view. Fourth, in case there is a change in query
workload starting from a given recurring instance, then the view
materialization based on the the previous workload analysis stops
automatically as the signatures do not match anymore. This avoids
paying for and consuming resources for redundant views that are not
going to be used after all. This also indicates that it is time to rerun
the workload analysis. Finally, our approach does not affect any of
the user infrastructure in their analytics stack. This means that the
user scripts, data pipelines, query submission, job scheduling, all
remain intact as before.

For traditional users with enough room for upfront view material-
ization, e.g., weekly analytics, CLOUDVIEWS still provides an of-
fline view materialization mode. In this mode, the optimizer extracts
the matching overlapping computation subgraph while excluding
any remaining operation in the job. The resulting plan materializes
only the views and could be executed offline, i.e., before running
the actual workload. The offline mode can be configured at the VC
level in the metadata service, and later the annotations passed to
the optimizer are marked either online or offline depending on the
metadata service configuration.

6.3 Query Rewriting
To rewrite queries using materialized views, we added an additional
task in the Volcano style plan search [16]. This additional task,
as shown in the upper half of Figure 10, matches the normalized
signatures retrieved from the metadata service with the normalized
signatures of each of the query subgraphs in a top-down fashion, i.e,
we match the largest materialized views first. In case of a match,
the optimizer matches the precise signature as well. Only if the
precise signature matches then the materialized view could be reused.
In such a scenario, the optimizer adds an alternate subexpression
plan which reads from the materialized view. We do not limit the
number of materialized views that could be used to answer a query.
Once all applicable materialized views have been added as alternate
subexpressions, the optimizer picks the best plan based on the cost
estimates, i.e., one or more materialized views may end up not
being used if their read costs are too high. The plan that reads
from the materialized view also loads the actual statistics (for that
sub-computation) and propagates those statistics up the query tree.
This gives more confidence in deciding whether the plan using the
materialized view is actually a good one or not. Overall, we provide
fully automatic query rewriting using views, with zero changes to
user scripts.

6.4 Synchronization
We have two goals in terms of synchronization: (i) build-build syn-
chronization, i.e., not having multiple jobs materialize the same view,
and (ii) build-use synchronization, i.e., reuse a computation as soon
as it is materialized. We handle the build-build synchronization by
trying to reuse computations before trying to materialize them, as
described in Section 6.2. For concurrent jobs, we also create ex-
clusive locks via the metadata service, as described in Section 6.1.

Given that the service is backed by AzureSQL, it provides consistent
locking, and only a single job can actually materialize a view at
a time. To handle the build-use synchronization, we modified the
SCOPE job manager to publish the materialized view as soon as it is
available. This means that the materialized view output is available
even before the job that produces it finishes. We refer to this as
early materialization. Early materialization is a semantic change
as it breaks the atomicity of SCOPE jobs, however, it very useful
because the views could be a much smaller subgraph of the overall
job graph. Furthermore, the materialized view is not a user output,
but is rather treated as a system output, and therefore we do not
affect the user contract. Finally, early materialization also helps in
case of jobs failures, since the job can restart from the materialized
view now, i.e., early materialization acts as a checkpoint.

6.5 Job Coordination
The perfect scenario for computation reuse is when one of the jobs
with overlapping computation is scheduled before others, so that
the view could be computed exactly once and reused by all others.
However, in reality, multiple jobs containing the same overlapping
computation could be scheduled concurrently. In this case, they will
recompute the same subgraph and even attempt to materialize it
(though only one will prevail). We mitigate this problem by reorder-
ing recurring jobs in the client job submission systems3. To do this,
in addition to selecting the interesting computations to materialize,
the CLOUDVIEWS analyzer also provides the submission order of
the recurring jobs, that contain those computations, which will give
the maximum benefit. We do this by grouping jobs having the same
number of overlaps (job with multiple overlaps can appear in multi-
ple groups), and picking the shortest job in terms of runtime, or least
overlapping job in case of a tie, from each group. The deduplicated
list of above jobs will create the materialized views that could be
used by all others, and so we propose to run them first (ordered
by their runtime and breaking ties using the number of overlaps).
Such an ordering can be enforced using the SCOPE client-side job
submission tools. Future work will look into how view-awareness
could be handled centrally by the job scheduler itself.

7 EVALUATION
In this section, we present an experimental evaluation of CLOUD-
VIEWS. We break down our evaluation into three parts, answering
each of the following questions: (i) what is the impact on perfor-
mance over production jobs at Microsoft? (ii) what is the impact
on traditional TPC-DS benchmark? and (iii) what are the overheads
involved in CLOUDVIEWS? Below we address each of these.

7.1 Impact on Production Jobs
We first present performance evaluation results from our production
clusters. Given the capacity constraints and costs involved in running
experiments on these clusters, we carefully picked a small set of job
workload for our evaluation, as described below.

Workload. We ran CLOUDVIEWS analyzer over one day worth of
jobs from one of the largest business units at Microsoft. We narrowed
down the overlapping computations to those appearing at least thrice,
3There are multiple client side tools developed and maintained by different business
units at Microsoft to create workflows on top of our job service.

PN Hours

Queries Baseline CloudViews

1 67 139 -107.462686567164

2 250 56 77.6

3 67 221 -229.850746268657

4 192 47 75.5208333333333

5 64 95 -48.4375

6 59 74 -25.4237288135593

7 73 39 46.5753424657534

8 73 36 50.6849315068493

9 84 51 39.2857142857143

10 59 102 -72.8813559322034

11 72 51 29.1666666666667

12 85 50 41.1764705882353

13 108 47 56.4814814814815

14 79 63 20.253164556962

15 65 27 58.4615384615385

16 362 53 85.3591160220994

17 103.3 116.1 -12.3910939012585

18 247.6 60.6 75.5250403877221

19 723.8 38.6 94.667035092567

20 78.8 22.4 71.5736040609137

21 111.6 18.1 83.7813620071685

22 163.3 20.3 87.5688916105328

23 103.2 20.2 80.4263565891473

24 102 19.8 80.5882352941177

25 169.6 21.7 87.2051886792453

26 126 22.8 81.9047619047619

27 75.7 26.1 65.5217965653897

28 216.6 27.4 87.3499538319483

29 68.4 60.5 11.5497076023392

30 138.9 59.1 57.451403887689

31 104.8 89.7 14.4083969465649

32 245.5 60.7 75.2749490835031

4538.1 1835.1 1138.9148314294

Latency

Queries Baseline CloudViews

1 148 180 -21.6216216216216

2 268 103 61.5671641791045

3 173 241 -39.3063583815029

4 261 89 65.9003831417624

5 142 140 1.40845070422535

6 120 100 16.6666666666667

7 117 89 23.9316239316239

8 149 82 44.9664429530201

9 181 86 52.4861878453039

10 104 154 -48.0769230769231

11 143 91 36.3636363636364

12 133 85 36.0902255639098

13 185 68 63.2432432432432

14 128 107 16.40625

15 106 66 37.7358490566038

16 444 107 75.9009009009009

17 147 122 17.0068027210884

18 329 108 67.1732522796353

19 689 61 91.1465892597968

20 144 61 57.6388888888889

21 189 35 81.4814814814815

22 256 45 82.421875

23 165 40 75.7575757575758

24 166 62 62.6506024096386

25 257 54 78.988326848249

26 185 87 52.972972972973

27 214 145 32.2429906542056

28 291 55 81.0996563573883

29 145 98 32.4137931034483

30 223 81 63.677130044843

31 159 122 23.2704402515723

32 334 98 70.6586826347305

6695 3062 1394.26318213547

C
PU

 T
im

e
(m

in
s)

0

75

150

225

300

Jobs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Baseline
CloudViews

To
ta

l P
N

 H
ou

rs
 (m

in
s)

0

1250

2500

3750

5000

Baseline CloudViews

60%
drop

R
un

tim
e

(s
)

0

100

200

300

400

Jobs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Baseline
CloudViews

To
ta

l R
un

tim
e

(s
)

0

1750

3500

5250

7000

Baseline CloudViews

54%
drop

�1

Figure 11: Production jobs: end-to-end latency.

whose cost is at least 20% of the overall job cost, and considering at
most one overlapping computation per job. From the resulting set of
overlapping computations, we picked the top-3 computations (views)
based on their total utility, i.e., frequency times the average runtime
of the overlapping computations. For each of these computations,
we looked up the jobs relevant to those computations to construct
our workload, consisting of a total of 32 jobs — 16, 12, and 4 jobs
respectively for the three overlapping computations.

Setup. We ran the above jobs in a pre-production environment and
over production data, but with output redirection as described in [1].
For each view, we ran the relevant jobs in a sequence, in the same or-
der as they arrived in the past workload. The first job in the sequence
materializes the overlapping computation, while the remaining jobs
reuse it. We executed each job twice, once with and once without
CLOUDVIEWS enabled. In order to make the two runs comparable,
we used the same number of machine instances and disabled oppor-
tunistic scheduling [8]. We also validated the outputs of the two runs
to ensure that there is no data corruption.

Results. Figure 11 shows the end-to-end job latency. While there is
latency improvement in all but three jobs that create the materialized
view, the actual improvements vary (maximum of 91% speedup
and 48% slowdown, and average speedup of 43%). This is due to a
number of factors, including: (i) materialized view read costs could
be significant and variable based on the parallelism used at runtime,
(ii) accurate estimates are propagated only in the subexpression that
uses a view and the estimates are still way off in other cases (often
over-estimated to avoid failures in big data systems), (iii) there could
be additional partitioning or sorting applied by the optimizer to
satisfy the required physical properties of the parent subexpressions
(very hard to get the best view physical design for every query), and
(iv) latency improvements depend on the degree to which the overlap
is on the critical path. Still, the overall workload sees a total latency
improvement of 60% and even though we evaluated some of the most
overlapping jobs for this particular customer, it demonstrates the
effectiveness of CLOUDVIEWS in speeding up analytical jobs in our
job service.

Figure 12 shows the resource consumption in terms of the to-
tal CPU-hours for each of the jobs in our workload. Similar to
latency, CPU-hour improvements are also variable (maximum of
95% speedup, minimum of 230% slowdown, and average speedup of
36%). In particular, increased parallelism to read and write the mate-
rialized view, which could be often large, affects the overall resource
consumption. Overall, however, there is a 54% drop in CPU time

PN Hours

Queries Baseline CloudViews

1 67 139 -107.462686567164

2 250 56 77.6

3 67 221 -229.850746268657

4 192 47 75.5208333333333

5 64 95 -48.4375

6 59 74 -25.4237288135593

7 73 39 46.5753424657534

8 73 36 50.6849315068493

9 84 51 39.2857142857143

10 59 102 -72.8813559322034

11 72 51 29.1666666666667

12 85 50 41.1764705882353

13 108 47 56.4814814814815

14 79 63 20.253164556962

15 65 27 58.4615384615385

16 362 53 85.3591160220994

17 103.3 116.1 -12.3910939012585

18 247.6 60.6 75.5250403877221

19 723.8 38.6 94.667035092567

20 78.8 22.4 71.5736040609137

21 111.6 18.1 83.7813620071685

22 163.3 20.3 87.5688916105328

23 103.2 20.2 80.4263565891473

24 102 19.8 80.5882352941177

25 169.6 21.7 87.2051886792453

26 126 22.8 81.9047619047619

27 75.7 26.1 65.5217965653897

28 216.6 27.4 87.3499538319483

29 68.4 60.5 11.5497076023392

30 138.9 59.1 57.451403887689

31 104.8 89.7 14.4083969465649

32 245.5 60.7 75.2749490835031

4538.1 1835.1 1138.9148314294

Latency

Queries Baseline CloudViews

1 148 180 -21.6216216216216

2 268 103 61.5671641791045

3 173 241 -39.3063583815029

4 261 89 65.9003831417624

5 142 140 1.40845070422535

6 120 100 16.6666666666667

7 117 89 23.9316239316239

8 149 82 44.9664429530201

9 181 86 52.4861878453039

10 104 154 -48.0769230769231

11 143 91 36.3636363636364

12 133 85 36.0902255639098

13 185 68 63.2432432432432

14 128 107 16.40625

15 106 66 37.7358490566038

16 444 107 75.9009009009009

17 147 122 17.0068027210884

18 329 108 67.1732522796353

19 689 61 91.1465892597968

20 144 61 57.6388888888889

21 189 35 81.4814814814815

22 256 45 82.421875

23 165 40 75.7575757575758

24 166 62 62.6506024096386

25 257 54 78.988326848249

26 185 87 52.972972972973

27 214 145 32.2429906542056

28 291 55 81.0996563573883

29 145 98 32.4137931034483

30 223 81 63.677130044843

31 159 122 23.2704402515723

32 334 98 70.6586826347305

6695 3062 1394.26318213547

C
PU

 T
im

e
(m

in
s)

0

75

150

225

300

Jobs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Baseline
CloudViews

To
ta

l P
N

 H
ou

rs
 (m

in
s)

0

1250

2500

3750

5000

Baseline CloudViews

60%
drop

R
un

tim
e

(s
)

0

100

200

300

400

Jobs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Baseline
CloudViews

To
ta

l R
un

tim
e

(s
)

0

1750

3500

5250

7000

Baseline CloudViews

54%
drop

�1

Figure 12: Production jobs: resource consumption.

for the entire workload. Again, this is quite significant for reducing
operational costs in our clusters.

7.2 TPC-DS Experiments
We now present results from TPC-DS benchmark [48]. Even though
TPC-DS does not really model the recurring workloads with produc-
er/consumer behavior that we have in SCOPE, it is still helpful to
evaluate our system on a more widely used benchmark.

Workload. We generated 1TB of TPC-DS dataset and considered all
of the 99 queries in the benchmark. We ran all TPC-DS queries once
without using CLOUDVIEWS. Then, we ran the CLOUDVIEWS ana-
lyzer to detect and select top-10 overlapping computations, similar
to what was described in Section 7.1. Note that this is a very con-
servative selection of overlapping computations, and much higher
gains could be realized by using more sophisticated view selection
methods proposed in the literature [33].

Setup. We ran the above workload in a test environment using the
CLOUDVIEWS runtime. We use our job coordination hints to run
one of the jobs containing an overlap first (to create the materialized
view) and the other jobs containing the same overlap after that (to
use the materialized view). We ran each query with 100 machine
instances and disabled opportunistic scheduling [8] in order to make
the performance comparable.

Results. Figure 13 shows the runtime improvements with CLOUD-
VIEWS in each of the TPC-DS queries. We can see that even with
our conservative selection of overlapping computations, most of the
queries (79 out of 99) see an improvement in performance. Both
the peak improvement as well as the peak slowdown is close to
62%. Overall, the average runtime improves by 12.5%, while the total
workload runtime improves by 17%. These would translate to signifi-
cant cost savings in a job service where users pay for the resources
used, which is proportional to the runtime, per query.

7.3 Overheads
Finally, we discuss some of the overheads associated with CLOUD-
VIEWS. First, we have an overhead of running the CLOUDVIEWS

analyzer. A typical run to analyze all jobs (several tens of thousands)
in a cluster takes a couple of hours. However, since we analyze the
recurring templates, we only need to analyze once in a while when
there are changes in workload. We detect changes in workload by
monitoring changes in the number of materialized views created
over time.

Table 1

Queries Baseline CloudViews Change

1 412 285 30.8252427184466

2 1288 980 23.9130434782609

3 792 702 11.3636363636364

4 1946 1168 39.9794450154162

5 2191 1643 25.0114103149247

6 1679 739 55.9857057772484

7 1310 496 62.1374045801527

8 1075 738 31.3488372093023

9 430 447 -3.95348837209302

10 1288 1108 13.9751552795031

11 1713 885 48.3362521891419

12 761 606 20.3679369250986

13 1315 1040 20.9125475285171

14 4053 3294 18.7268689859363

15 652 626 3.98773006134969

16 1157 1046 9.59377700950735

17 2373 1659 30.0884955752212

18 1139 691 39.332748024583

19 942 652 30.7855626326964

20 911 564 38.0900109769484

21 321 162 49.5327102803738

22 412 296 28.1553398058252

23

24 1158 1000 13.6442141623489

25 1820 2156 -18.4615384615385

26 723 1102 -52.4204702627939

27 823 812 1.33657351154313

28 1339 1038 22.4794622852875

29 1819 1738 4.45299615173172

30 347 262 24.4956772334294

31 711 668 6.0478199718706

32 714 537 24.7899159663866

33

34 1423 1011 28.952916373858

35 936 776 17.0940170940171

36 498 534 -7.2289156626506

37 509 290 43.0255402750491

38 1259 1048 16.7593328038126

39 340 470 -38.2352941176471

40 653 622 4.74732006125574

41 94 122 -29.7872340425532

42 396 385 2.77777777777778

43 520 488 6.15384615384615

44 782 797 -1.91815856777494

45 793 626 21.0592686002522

46 1324 646 51.2084592145015

47 1184 1289 -8.86824324324324

48 770 633 17.7922077922078

49 2407 2259 6.14873286248442

50 1634 975 40.3304773561811

51 655 538 17.8625954198473

52 403 576 -42.9280397022332

53 712 586 17.6966292134831

54 1525 1257 17.5737704918033

55 666 648 2.7027027027027

56 1357 1090 19.6757553426676

57 779 679 12.8369704749679

58 1287 1035 19.5804195804196

59 777 1137 -46.3320463320463

60 1082 1121 -3.60443622920518

61 1686 1130 32.9774614472123

62 375 505 -34.6666666666667

63 760 566 25.5263157894737

64 2304 1948 15.4513888888889

65 1229 907 26.20016273393

66 961 930 3.2258064516129

67 925 779 15.7837837837838

68 809 723 10.6304079110012

69 801 706 11.8601747815231

70 645 710 -10.077519379845

71 1290 1336 -3.56589147286822

72 11112 9483 14.6598272138229

73 1020 873 14.4117647058824

74 870 1072 -23.2183908045977

75 1479 1535 -3.78634212305612

76 665 822 -23.609022556391

77 1220 849 30.4098360655738

Queries

0

3000

6000

9000

12000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Baseline CloudViews

Ru
nt

im
e

Im
pr

ov
em

en
t (

%
)

-70

-56

-42

-28

-14

0

14

28

42

56

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

�1

Figure 13: TPC-DS queries: percentage runtime improvements.

Then, there is compile time overhead to lookup the metadata
service and to do additional work during query optimization. We
measured the latency added due to metadata service lookup and it
turned out to be 19ms on average with a single thread and 14.3ms
on average when using 5 threads in the metadata service. This is rea-
sonable given that the overall compilation time for TPC-DS queries
was in the range of 1-2 minutes. Likewise, we measured the query
optimization overhead with CLOUDVIEWS over TPC-DS queries. In-
terestingly, while the optimization time increased by 28% on average
when creating a materialized view, the optimization time decreased
by 17% on average when using the view. This is because the query
tree becomes smaller when using the view and so any follow-up
optimizations become faster.

8 LESSONS LEARNED
In this section, we outline experiences from deploying CLOUD-
VIEWS to our production clusters. The CLOUDVIEWS analyzer is
available as an offline tool for VC admins, while the CLOUDVIEWS

runtime ships with the most recent SCOPE release. The technology
is currently in preview and available to our customers in an opt-in
mode, i.e., each VC admin can enable CLOUDVIEWS either for the
entire VC or for certain jobs in that VC. Eventually, the goal is
to make CLOUDVIEWS opt-out, i.e., overlapping computations are
reused wherever possible, but customers can explicitly turn it off in
special cases, e.g., SLA sensitive jobs. Below we summarize the key
lessons learned from the CLOUDVIEWS project.

Discovering hidden redundancies. Data analytics jobs have hidden
redundancies across users (or sometimes even for the same user), and
it is really hard to detect and mitigate these redundancies manually
at scale. Most of the customers we talked to already expected to
have computation overlaps in their workloads, and it was interesting
for them to see the exact jobs and the overlapping computations
present in them. While some of the customers were willing to take
the pain of manually modifying their scripts to prevent overlaps,
most preferred to use our automatic reuse approach instead.

Improving data sharing across VCs. SCOPE workloads are typi-
cally organized as data pipelines, with dependencies across VCs that
are fulfilled via explicit data materialization. With CLOUDVIEWS,
we could help customers detect the most efficient of these material-
izations, better than those from the manual best effort and that could
speedup downstream processing. This is an interesting side-effect of
CLOUDVIEWS and would be a subject for future work.

Extracting static computations. In many cases, we saw that there
were overlapping computations even across multiple recurring in-
stances of the same job, i.e., even with different inputs. This was be-
cause portions of the job were unchanged across multiple instances,
i.e., the inputs to those portions were still the same while other por-
tions of the job had different inputs. CLOUDVIEWS was therefore
effective in detecting such static computations across multiple job
instances.

Reusing existing outputs. In several other cases, a subgraph rooted
at an output operator was common across jobs. This means that mul-
tiple jobs were producing the same output without ever realizing it.
CLOUDVIEWS was helpful to consolidate such redundant outputs by
materializing the common computation once and reusing it wherever
possible; we separately asked the owners of those jobs to remove
the redundant output statements in their jobs.

Discarding redundant jobs. In multiple cases, entire jobs were
detected as overlapping. This was because of two reasons: (i) given
that jobs are recurring, some of the jobs end up scheduled more
frequently than the new data arrival, and (ii) there were rare cases
of plain redundancy where multiple users unknowingly submit the
same job. CLOUDVIEWS helped in detecting such redundancies.

Utility of view physical design. Our workloads had explicit data
dependencies across jobs, but the users had little idea on how to
set the physical designs of the output from one job that needs to
be consumed by another job. With CLOUDVIEWS, we not only
capture many of these dependencies across jobs, but also pick the
best physical designs for those dependency outputs.

Better reliability. By materializing the shared computations across
jobs, CLOUDVIEWS not only provides better performance, but it also
reduces the failure rates as fewer tasks are scheduled in subsequent
jobs hitting the same overlapping computation. Thus, view mate-
rialization acts as a checkpoint providing better reliability. This is
further useful when the first job that hits an overlapping computation
fails, since the overlapping portion may be already materialized due
to early materialization in CLOUDVIEWS runtime.

Better cost estimates. As mentioned before, view materialization
improves the cost estimates since we can collect exact statistics from
the materialized output. Given that we materialize computations
that are frequent as well as expensive, better estimates over those
computations are even more significant.

User expectations. It was important to manage the user expectations
in CLOUDVIEWS project. This includes VC admin expectations to
see the cost of overlaps in their workload and expected gains with
CLOUDVIEWS, end-user expectations to know whats going on in
their job and reacting accordingly, and the operational support team
expectations to be able to reproduce and debug the jobs submitted
with CLOUDVIEWS enabled.

Updates & privacy regulations. Finally, any updates in the input
data results in a different precise signature, thus automatically in-
validing any older materialized view for reuse. This is crucial for
privacy reasons when the customers explicitly request to stop using
their personal data, as provisioned in the new EU GDPR [13].

9 RELATED WORK
Traditional materialized views. Selecting views to materialize has
been a long standing topic of research in databases. Given a set of
queries, view selection deals with the problem of selecting a set
of views to materialize to minimize some cost function (such as
query evaluation and/or view maintenance cost) under some con-
straints (e.g., space budget) [33]. Several approaches have been pro-
posed, especially in the context of data warehouses [19, 46] and data
cubes [22]. These include modeling the problem as a state optimiza-
tion problem and using search algorithm to find the most appropriate
view set [46], using AND/OR to model the alternatives in a single
DAG [19], or using a lattice to model data cube operations [22].
MQO [42] is similar to view selection, with the difference that views
are typically only transiently materialized for the execution of a
given query set. [41] describes how to incorporate MQO with a
Volcano-style optimizer. It uses an AND/OR DAG and proposes
heuristic algorithms for choosing intermediate results to material-
ize (with no space budget). Recycling intermediate results has also
been proposed in the context of MonetDB [23] and pipelined query
evaluation [36].

Views are more generic than subexpressions, as they can consider
computation that does not appear in the logical query plan. This
increases the space of possible solutions, and complicates query
containment and answering queries using views [20]. Subexpression
selection has also been considered in SQL Server [53]. Other related
works have looked at common subexpressions within the same job
script [44].

All of the above works have focussed on traditional databases
with few tens to hundreds of queries. In contrast, the SCOPE job
service processes tens of thousands of jobs per cluster per day. Thus,
scalability is a major concern in our setting. In this paper, we de-
scribed a system that can create and reuse materialized views at our
scale. In a companion work, we looked at scalable view selection
for our workload size [24].

Computation reuse in big data platforms. Reusing computation
has received particular attention in big data platforms, since (i) there
is a lot of recurring computation, (ii) optimization time is relatively
short compared to the execution time of the jobs, and (iii) perfor-
mance and resource benefits can be significant. ReStore [12], for
instance, considers the caching of map-reduce job outputs, given
a space budget. Others have looked at history-aware query opti-
mization with materialized intermediate views [38] and at allocating
the cache fairly amongst multiple cloud tenants [28]. Still others

have looked at multi-query optimization in the context of map-
reduce [37, 50]. PigReuse [10] addresses MQO for Pig scripts. It
creates an AND/OR graph using the nested algebra representation
of the Pig jobs, and then uses an ILP solver to select the least costly
plan that can answer all queries. Most of these works consider shar-
ing opportunities only for map and reduce operators, and hence their
applicability is limited. Nectar [18] considers caching intermediate
result in a more generalized DAG of operators. It uses heuristics,
based on lookup frequency and the runtime/size of the intermediate
results, to decide on the cache insertion. Still, an intermediate result
is typically the output of an operator pipeline (i.e., consisting of
multiple operators), without considering the outputs of all possible
subexpressions. Finally, Kodiak [30] applies the traditional database
approach of selecting and materializing views, while ensuring that
queries meet their SLA and the total view storage is within a budget.

Our approach is different from the above works, since we consider
computation reuse over recurring jobs in a job service that is always
online, i.e., there is no offline phase for view creation. Furthermore,
our end-to-end system includes establishing a feedback loop to
ensure that computation reuse is actually effective.

Recurring and progressive query optimization. Both recurring
and progressive optimization focus on the problem of inaccurate or
missing statistics in query optimization, and not on reusing common
subexpressions across jobs. In particular, recurring optimization
(such as DB2’s LEO [45] and more recently Scope’s RoPE [1])
collects actual statistics of query subexpressions at runtime, and
uses them in future executions of the same subexpression to improve
statistics, and hence the quality of the optimized plan. Progressive op-
timization has been studied both in the traditional query optimization
setting [7, 26, 34], and for big data clusters [9, 27]. These systems
observe statistics at runtime and can change the query plan mid-
flight in case the observed statistics are significantly different from
the estimated ones. We borrow the concept of signatures from [9] to
efficiently identify common subgraphs across jobs.

Shared workload optimization. A lot of works have looked at
building a common query plan for a set of queries to share oper-
ators, such as scans [40, 54] or joins [32]. A global optimization
approach to find the overall best shared plan is presented in [14].
Work sharing has also been explored in big data systems. Examples
include scan sharing in MapReduce [37], Hive [47] and Pig [51], Un-
like such approaches, we opted to keep each job separate: operator
sharing in pay-as-you-go job services makes billing and accounting
tedious, while it introduces artificial dependencies between jobs,
which become even worse in the case of failures.

10 CONCLUSION
In this paper, we presented a case for computation reuse in an ana-
lytics job service. We motivated the problem via a detailed analysis
from production SCOPE workloads at Microsoft, and described the
CLOUDVIEWS system for automatically reusing overlapping com-
putations in SCOPE. The CLOUDVIEWS system addresses several
novel challenges including recurring workloads, establishing a feed-
back loop, and an online setting. Overall, computation overlap is a
problem across almost all business units at Microsoft and CLOUD-
VIEWS can automatically reuse computations wherever possible,
resulting in significant potential cost savings.

REFERENCES
[1] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu, Ion Stoica,

and Jingren Zhou. 2012. Re-optimizing data-parallel computing. In NSDI.
[2] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated

Selection of Materialized Views and Indexes in SQL Databases. In VLDB. 496–
505.

[3] Amazon Athena 2018. https://aws.amazon.com/athena/. (2018).
[4] Amazon RDS 2018. https://aws.amazon.com/rds/. (2018).
[5] Azure Data Lake 2018. https://azure.microsoft.com/en-us/solutions/data-lake/.

(2018).
[6] Azure SQL 2018. https://azure.microsoft.com/en-us/services/sql-database/.

(2018).
[7] Shivnath Babu, Pedro Bizarro, and David J. DeWitt. 2005. Proactive Re-

optimization. In SIGMOD Conference. 107–118.
[8] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,

Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and Coordinated Scheduling
for Cloud-Scale Computing. In OSDI.

[9] Nico Bruno, Sapna Jain, and Jingren Zhou. 2013. Continuous Cloud-Scale Query
Optimization and Processing. In VLDB.

[10] Jesús Camacho-Rodríguez, Dario Colazzo, Melanie Herschel, Ioana Manolescu,
and Soudip Roy Chowdhury. 2016. Reuse-based Optimization for Pig Latin. In
CIKM.

[11] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib,
Simon Weaver, and Jingren Zhou. 2008. SCOPE: easy and efficient parallel
processing of massive data sets. PVLDB 1, 2 (2008), 1265–1276.

[12] Iman Elghandour and Ashraf Aboulnaga. 2012. ReStore: Reusing Results of
MapReduce Jobs. PVLDB 5, 6 (2012).

[13] EU GDPR 2018. https://www.eugdpr.org/. (2018).
[14] Georgios Giannikis, Darko Makreshanski, Gustavo Alonso, and Donald Kossmann.

2014. Shared Workload Optimization. PVLDB 7, 6 (2014).
[15] Google BigQuery 2018. https://cloud.google.com/bigquery. (2018).
[16] Goetz Graefe. 1995. The Cascades Framework for Query Optimization. IEEE

Data Eng. Bull. 18, 3 (1995), 19–29.
[17] Zhongxian Gu, Mohamed A. Soliman, and Florian M. Waas. 2012. Testing the

Accuracy of Query Optimizers. In DBTest. 11:1–11:6.
[18] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan

Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and Computa-
tion in Datacenters. In OSDI.

[19] Himanshu Gupta and Inderpal Singh Mumick. 2005. Selection of Views to
Materialize in a Data Warehouse. IEEE Trans. Knowl. Data Eng. 17, 1 (2005),
24–43.

[20] Alon Y. Halevy. 2001. Answering queries using views: A survey. VLDB J. 10, 4
(2001).

[21] Alon Y. Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis
Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Goods: Organizing
Google’s Datasets. In Proceedings of the 2016 International Conference on Man-
agement of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016. 795–806.

[22] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. 1996. Implement-
ing Data Cubes Efficiently. In ACM SIGMOD.

[23] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. 2009.
An architecture for recycling intermediates in a column-store. In SIGMOD.

[24] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2017. Thou
Shall Not Recompute: Selecting Subexpressions to Materialize at Datacenter Scale.
Under Submission (2017).

[25] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayana-
murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Íñigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. 2016. Morpheus: Towards Auto-
mated SLOs for Enterprise Clusters. In OSDI. 117–134.

[26] Navin Kabra and David J. DeWitt. 1998. Efficient Mid-Query Re-Optimization of
Sub-Optimal Query Execution Plans. In SIGMOD Conference. 106–117.

[27] Konstantinos Karanasos, Andrey Balmin, Marcel Kutsch, Fatma Ozcan, Vuk
Ercegovac, Chunyang Xia, and Jesse Jackson. 2014. Dynamically optimizing
queries over large scale data platforms. In SIGMOD.

[28] Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath Babu. 2017.
ROBUS: Fair Cache Allocation for Data-parallel Workloads. In SIGMOD. 219–
234.

[29] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB 9, 3
(2015), 204–215.

[30] Shaosu Liu, Bin Song, Sriharsha Gangam, Lawrence Lo, and Khaled Elmeleegy.
2016. Kodiak: Leveraging Materialized Views For Very Low-Latency Analytics
Over High-Dimensional Web-Scale Data. PVLDB 9, 13 (2016).

[31] Guy Lohman. 2014. http://wp.sigmod.org/?p=1075. (2014).
[32] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Donald Kossmann.

2016. MQJoin: Efficient Shared Execution of Main-Memory Joins. PVLDB 9, 6
(2016).

[33] Imene Mami and Zohra Bellahsene. 2012. A survey of view selection methods.
SIGMOD Record 41, 1 (2012), 20–29.

[34] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, and
Hamid Pirahesh. 2004. Robust Query Processing through Progressive Optimiza-
tion. In SIGMOD. 659–670.

[35] Ruslan Mavlyutov, Carlo Curino, Boris Asipov, and Philippe Cudré-Mauroux.
2017. Dependency-Driven Analytics: A Compass for Uncharted Data Oceans.
In CIDR 2017, 8th Biennial Conference on Innovative Data Systems Research,
Chaminade, CA, USA, January 8-11, 2017, Online Proceedings.

[36] Fabian Nagel, Peter A. Boncz, and Stratis Viglas. 2013. Recycling in pipelined
query evaluation. In ICDE.

[37] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick
Koudas. 2010. MRShare: Sharing Across Multiple Queries in MapReduce.
PVLDB 3, 1 (2010).

[38] Luis Leopoldo Perez and Christopher M. Jermaine. 2014. History-aware query
optimization with materialized intermediate views. In ICDE.

[39] Power BI 2018. https://powerbi.microsoft.com. (2018).
[40] Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter J. Haas, and Guy M.

Lohman. 2008. Main-memory scan sharing for multi-core CPUs. PVLDB 1,
1 (2008).

[41] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. 2000. Efficient and
Extensible Algorithms for Multi Query Optimization. In SIGMOD.

[42] Timos K. Sellis. 1988. Multiple-Query Optimization. ACM Trans. Database Syst.
13, 1 (1988), 23–52.

[43] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Y. Tsai,
and Jeannette M. Wing. 2014. Bootstrapping Privacy Compliance in Big Data
Systems. In IEEE Symposium on Security and Privacy. 327–342.

[44] Yasin N. Silva, Per-Åke Larson, and Jingren Zhou. 2012. Exploiting Common
Subexpressions for Cloud Query Processing. In ICDE.

[45] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO
- DB2’s LEarning Optimizer. In VLDB.

[46] Dimitri Theodoratos and Timos K. Sellis. 1997. Data Warehouse Configuration.
In VLDB.

[47] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a
warehousing solution over a map-reduce framework. PVLDB 2, 2 (2009).

[48] TPC-DS Benchmark 2018. http://www.tpc.org/tpcds. (2018).
[49] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric

Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In EuroSys.

[50] Guoping Wang and Chee-Yong Chan. 2013. Multi-Query Optimization in MapRe-
duce Framework. PVLDB 7, 3 (2013).

[51] Xiaodan Wang, Christopher Olston, Anish Das Sarma, and Randal Burns. 2011.
CoScan: Cooperative Scan Sharing in the Cloud. In SOCC. 11:1–11:12.

[52] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Åke Larson, Ronnie Chaiken,
and Darren Shakib. 2012. SCOPE: parallel databases meet MapReduce. VLDB J.
21, 5 (2012), 611–636.

[53] Jingren Zhou, Per-Åke Larson, Johann Christoph Freytag, and Wolfgang Lehner.
2007. Efficient exploitation of similar subexpressions for query processing. In
ACM SIGMOD. 533–544.

[54] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. 2007. Coopera-
tive Scans: Dynamic Bandwidth Sharing in a DBMS. In VLDB.

	Abstract
	1 Introduction
	1.1 Background
	1.2 Problem
	1.3 Challenges
	1.4 Contributions

	2 The Reuse Opportunity
	2.1 Overlap within a Cluster
	2.2 Overlap within a Business Unit
	2.3 Operator-wise Overlap
	2.4 Impact of Overlap

	3 Reuse Over Recurring Workloads
	4 CloudViews Overview
	5 CloudViews Analyzer
	5.1 The Feedback Loop
	5.2 Selecting Subgraphs to Materialize
	5.3 Physical Design
	5.4 Expiry and Purging
	5.5 User Interfaces

	6 CloudViews Runtime
	6.1 Metadata Service
	6.2 Online Materialization
	6.3 Query Rewriting
	6.4 Synchronization
	6.5 Job Coordination

	7 Evaluation
	7.1 Impact on Production Jobs
	7.2 TPC-DS Experiments
	7.3 Overheads

	8 Lessons Learned
	9 Related Work
	10 Conclusion
	References

