

THEME ARTICLE: Hot Chips (PRE-PRINT)

Serving DNNs in Real

Time at Datacenter Scale

with Project Brainwave

To meet the computational demands required of deep

learning, cloud operators are turning toward

specialized hardware for improved efficiency and

performance. Project Brainwave, Microsoft's principal

infrastructure for AI serving in real time, accelerates

deep neural network (DNN) inferencing in major

services such as Bing’s intelligent search features

and Azure. Exploiting distributed model parallelism

and pinning over low-latency hardware microservices,

Project Brainwave serves state-of-the-art, pre-trained

DNN models with high efficiencies at low batch sizes.

A high-performance, precision-adaptable FPGA soft

processor is at the heart of the system, achieving up

to 39.5 TFLOPs of effective performance at Batch 1

on a state-of-the-art Intel Stratix 10 FPGA.

The recent successes of machine learning, enabled largely

by the rise of DNNs, have fueled a growing demand for

ubiquitous AI, ranging from conversational agents to ob-

ject recognition to intelligent search. While state-of-the-art

DNNs continue to deliver major breakthroughs in chal-

lenging AI domains such as computer vision and natural language processing, their computa-

tional demands have steadily outpaced the performance growth rate of standard CPUs. These

trends have spurred a Cambrian explosion of specialized hardware, as large companies, startups,

and research efforts shift en masse towards energy-efficient accelerators such as GPUs, FPGAs,

and neural processing units (NPUs)1-3 for AI workloads that demand performance beyond main-

stream processors.

Eric Chung, Jeremy Fowers,

Kalin Ovtcharov, Michael

Papamichael, Adrian

Caulfield, Todd Massengill,

Ming Liu, Daniel Lo, Shlomi

Alkalay, Michael Haselman,

Maleen Abeydeera, Logan

Adams, Hari Angepat,

Christian Boehn, Derek

Chiou, Oren Firestein,

Alessandro Forin, Kang Su

Gatlin, Mahdi Ghandi,

Stephen Heil, Kyle Holohan,

Ahmad El Husseini, Tamas

Juhasz, Kara Kagi, Ratna K.

Kovvuri, Sitaram Lanka,

Friedel van Megen, Dima

Mukhortov, Prerak Patel,

Brandon Perez, Amanda

Grace Rapsang, Steven K.

Reinhardt, Bita Darvish

Rouhani, Adam Sapek, Raja

Seera, Sangeetha Shekar,

Balaji Sridharan, Gabriel

Weisz, Lisa Woods, Phillip

Yi Xiao, Dan Zhang, Ritchie

Zhao, and Doug Burger

Microsoft Corporation

 IEEE MICRO PRE-PRINT

Solving the challenges of real-time AI is becoming increasingly important as cloud service pro-

viders deploy DNN-infused applications that ingest live data streams such as search queries, vid-

eos, sensor streams, and interactions with users. Bing’s intelligent search features, for example,

leverage state-of-the-art machine reading comprehension models to analyze and understand bil-

lions of documents from the web to provide more relevant answers faster and directly to users.

However, real-time latency constraints severely limit the size, complexity, and quality of such

models that can be deployed on conventional hardware at datacenter scale. While throughput-

oriented architectures such as GPGPUs and batch-oriented NPUs are popular for offline training

and serving, they are not efficient for online, low-latency serving of DNN models.

In this article, we describe Microsoft's principal platform for accelerated serving of DNNs,

codenamed Project Brainwave. Project Brainwave is designed for real-time AI, which means the

system can ingest a request as soon as it is received over the network at high throughput and at

ultra-low latency without batching. Project Brainwave leverages the massive Intel FPGA infra-

structure that Microsoft has been deploying over the last few years, which consists of a fabric of

high-performance FPGAs attached directly to the datacenter network.4-5 In this fabric, pools of

FPGAs can be allocated as a shared hardware microservice callable by any CPU software on the

shared network. Within a datacenter, up to O(100K) FPGAs can further communicate directly in

as little as ten microseconds (one-way), reducing the friction by which workloads can be scaled

across multiple FPGAs in a single microservice.

The Brainwave system leverages hardware microservices to parallelize and pin pre-trained DNN

models across multiple FPGAs at scale. By pinning model parameters entirely in high-bandwidth

on-chip memories, the FPGAs achieve near-peak processing efficiencies at low batch sizes, a

critical requirement for real-time AI services. While many ASIC-based approaches developed by

startups and research efforts also explore pinning of models in on-chip memory,6 Brainwave’s

system architecture in an FPGA-rich datacenter-scale environment allows that capacity to scale

with state-of-the-art DNN models in production.

The heart of the Project Brainwave system is a highly efficient soft NPU hosted on each FPGA

that exposes an easy-to-use instruction set specialized for efficient serving of pre-trained DNN

models. The microarchitecture of the Brainwave NPU is adaptable in both numerical precision

and supported operators and scalable across three generations of Intel FPGAs. We show, for ex-

ample, that an extremely large gated recurrent unit (GRU) model with five times the cost of Res-

Net-50 can be served in just under 1 millisecond (39.5 TFLOPs effective) on a single Stratix 10

280 FPGA.

The rest of this paper describes the Project Brainwave system in detail. We provide background

on the system and tool chain that translates high-level models onto Brainwave NPUs. We then

describe the soft NPU architecture, its microarchitecture, and implementation. Finally, we de-

scribe how Brainwave is used within Bing.

BACKGROUND

The Brainwave system targets Microsoft's hyperscale datacenter architecture with Catapult-en-

hanced servers, shown in Figure 1 (right), where server-attached FPGAs operate as first-class

citizens on the datacenter network.4 Each FPGA operates in-line between the server’s network

interface card (NIC) and the top-of-rack (TOR) switch, enabling in-situ processing of network

packets and point-to-point connectivity between hundreds of thousands of FPGAs at low latency

(two microseconds per switch hop, one-way). Catapult-enhanced servers have been deployed

throughout Microsoft’s commercial datacenters at hyperscale and are used for critical services

such as accelerated software-defined networking and machine learning in Bing.4-5

While FPGAs are physically attached to Catapult-enhanced servers, their proximity to the net-

work allows them to be disaggregated logically into CPU-independent resource pools exposed as

hardware microservices (Figure 1, left). This disaggregation enables two critical capabilities: (1)

the ability to reclaim underutilized resources for other services by rebalancing the subscription

between CPUs and FPGAs, and (2) supporting workloads that cannot fit or run effectively on a

 IEEE MICRO PRE-PRINT

single FPGA. These capabilities are leveraged fundamentally in the deployment of Brainwave-

based hardware microservices.

Figure 1. The first generation of Catapult-enhanced servers in production (right) consists of dual
Xeon CPUs with a PCIe-attached FPGA. Each FPGA sits in-line between the 40Gbps server NIC
and the TOR, enabling in-situ processing of network packets and point-to-point connectivity with up
to hundreds of thousands of other FPGAs at datacenter scale. Multiple FPGAs can be allocated as
a single shared hardware microservice with no software in the loop (left), enabling scalable
workloads and better load balancing between CPUs and FPGAs.

BRAINWAVE ARCHITECTURE

The goal of Project Brainwave is to enable users without hardware expertise to automatically de-

ploy and accelerate the serving of state-of-the-art DNN models in real time and at low cost.

While convolutional neural networks (CNNs) have been studied widely and are relatively

straightforward to accelerate, the pervasiveness of text-driven scenarios at Microsoft (web

search, speech-to-text, neural machine translation, question-answer systems, etc.) has led to sig-

nificant demand for state-of-the-art DNNs dominated by memory-intensive recurrent neural net-

works (e.g., long short-term memory units (LSTMs) and GRUs), attention layers, highway

networks, 1D convolutions, and embeddings. These components of popular text-based models

are much more bandwidth-intensive and more difficult to serve than CNNs, sustaining low hun-

dreds to thousands of giga-ops per second at batch 1 on well-tuned CPU- and GPU-based imple-

mentations.

To meet real-time requirements on conventional hardware systems, such memory-intensive mod-

els must often be trimmed down in dimensionality and parameters, sacrificing quality and accu-

racy. To solve the challenges with serving memory-intensive DNNs, the Brainwave system

exploits model parallelism and on-chip pinning at scale to achieve ultra-low latency serving of

DNN models while preserving model accuracy. During offline compilation, the Brainwave tool

flow splits DNN models into sub-graphs, each of which can fit into on-chip FPGA memory or

run on the CPU. When sub-graphs are pinned to an FPGA, many terabytes/sec of memory band-

width can be delivered to a single DNN query execution, enabling the FPGA to achieve ultra-

low latency execution at near-peak efficiency—up to 90% utilization at batch 1.

There is an important synergy between on-chip pinning and the integration with hardware micro-

services. When a single FPGA’s on-chip memory is exhausted, the system user can allocate

more FPGAs for pinning the remaining parameters by scaling up a single hardware microservice

and leveraging the elasticity of cloud-scale resources. This contrasts to single-chip NPUs (with

no direct connectivity to other NPUs) designed to execute models stand-alone. Under these con-

straints, exploiting pinning would require scaling down models undesirably to fit into limited

single-device on-chip memory or would require spilling of models into off-chip DRAM, increas-

ing the single-batch serving latencies by an order of magnitude or more.

Web search
ranking

Traditional software (CPU) server plane

QPICPU

QSFP

40Gb/s ToR

FPGA

CPU

40Gb/s

QSFP QSFP

Hardware acceleration plane

Web search
ranking

Deep neural
networks

SDN offload

SQL

CPUs

FPGAs

Routers

 IEEE MICRO PRE-PRINT

Project Brainwave Stack

Figure 2 illustrates the three main layers built to implement the Brainwave system:

1. a tool flow and runtime for low-friction deployment of trained models,

2. a distributed system architecture mapped onto CPUs and hardware microservices, and

3. a high-performance soft DNN processing unit synthesized onto FPGAs.

Figure 2. The three major layers of the Brainwave system: (1) a tool flow that converts pre-trained
DNN models to a deployment package, (2) a scalable DNN hardware microservice with network-
attached FPGAs, and (3) the programmable Brainwave NPU hosted on FPGA.

Figure 3 illustrates the tool flow that converts DNN models into a deployable hardware micro-

service. A pre-trained DNN model developed in a framework of choice (e.g., Cognitive Toolkit

(CNTK)7 or TensorFlow) is first exported into a common graph intermediate representation (IR).

Nodes in the IR represent tensor operations (e.g., matrix multiplication), while edges delineate

the dataflow between operations.

Figure 3. The framework-neutral Brainwave tool flow accepts models from different DNN toolchains
and exports them into a common intermediate graph representation. Tool flow optimizes the
intermediate representation and partitions it into sub-graphs assigned to different CPUs and
FPGAs. Device-specific backends generate device assembly and are linked together by a
federated runtime that gets deployed into a live FPGA hardware microservice.

The tool flow enables the user to partition the graph IR into different sub-graphs based on the

constraints imposed by the target system, such as the type of layer (e.g. CNN vs. RNN), availa-

ble number of FPGAs in a hardware microservice, the supported set of operators that can be ac-

celerated on FPGA, and the available on-chip memory capacity per FPGA. Different approaches

F F F

L0

L1

F F F

L0

Pretrained DNN Model
in CNTK, etc.

Scalable DNN Hardware
Microservice

BrainWave
Soft NPU

Instr Decoder

& Control

Neural FU

Network switches

FPGAs

FPGA0 FPGA1

Add500

1000- dim Vect or

1000- dim Vect or

Split

500x500
M at r ix

M at M ul500

500x500
M at r ix

M at M ul500 M at M ul500 M at M ul500

500x500
M at r ix

Add500 Add500

Sigm oid500 Sigm oid500

Split

Add500

500 500

Concat

500 500

500x500
M at r ix

Target

compiler

FPGA

Target

compiler

CPU-CNTK

Frontends

Portable IR

Target

compiler

CPU-Caffe

Transformed IRs

Graph Splitter and Optimizer

Deployment Package

Caffe

Model

FPGA HW Microservice

CNTK

Model

Tensorflow

Model

 IEEE MICRO PRE-PRINT

are employed depending on layer type and degree of optimization. CNNs, due to their high com-

putational intensity, are typically mapped to single FPGAs, while matrix weights of bandwidth-

limited RNNs are pinned in a greedy fashion across multiple FPGAs during depth-first traversal

of the DNN graph. Large matrices that cannot fit in a single device are sub-divided into smaller

matrices. More sophisticated methods that factor in the cost of communication can be applied

during optimization but are less critical since the datacenter network latencies we observe are

small (a few microseconds) relative to compute times (a few milliseconds).

Operators that are unsupported or not profitable for offload are grouped into sub-graphs assigned

to CPUs. This heterogeneous approach preserves operator coverage by leveraging CPUs as a

catch-all for currently unsupported or rarely exercised operators (over time, however, nearly all

performance-critical operators will be served on FPGAs). Users of the tool flow can also pre-

cisely control selection of sub-graphs and their assignments to specific resources using annota-

tions in the model description. The second phase of the tool flow is shown in the bottom half of

Figure 3, where partitioned sub-graphs are passed down to device-specific backend tools. Each

backend may map sub-graphs into optimized libraries (e.g., AVX-tuned BLAS kernels on x86

CPUs) or compile optimized assembly automatically.

There are a multitude of ways to implement an FPGA backend. On one extreme, high-level syn-

thesis can be used to synthesize custom circuits from high-level descriptions, but with poor effi-

ciency. On the other extreme, hand-optimized RTL yields the most efficient implementations but

requires high developer effort. To bridge the gap between productivity and efficiency, the Brain-

wave system targets a soft ISA. Instead of synthesizing soft logic from a neural network descrip-

tion directly, the FPGA backend tool targets a custom-built soft processor exposing a specialized

instruction set for DNNs. The soft-processor architecture and microarchitecture are described

further in the next section.

A federated runtime and scheduler consumes the device-specific executables for deployment.

The federated runtime is responsible for integrating different runtime DLLs into a single execut-

able (e.g., TF, CNTK, and FPGA host runtime), and executing sub-graphs scheduled to run on a

specific runtime/device combination. The runtime also performs the marshalling of data between

CPU/FPGA devices. The federated runtime and the backend binaries are packaged together and

deployed to a live production service that allocates and deploys FPGAs to form a hardware mi-

croservice. The deployment process then publishes an access point to the hardware microservice

to subscribing CPU clients in the system. Note that throughout the entire workflow, users require

no FPGA knowledge or expertise to achieve accelerated serving.

When multiple FPGAs are allocated to host a single model, the aggregate FPGA capacity (e.g.,

sustainable queries per second) within a single hardware microservice tends to exceed the traffic

that a single CPU client can drive. In practice, many CPU clients can be assigned to share an in-

stance of a hardware microservice running on a set of FPGAs, better matching the compute ratio

between CPU-FPGAs and avoiding the stranding of FPGA capacity.

BRAINWAVE NPU

The Brainwave NPU is a parameterized soft vector processor at the heart of the Brainwave sys-

tem. Its salient features include:

(1) the use of compile-time narrow precision data types to extract higher performance than what

is possible using conventional float and integer types without losses in accuracy;

(2) a simple, single-threaded programming model with an extensible ISA that can adapt to fast-

changing DNN algorithms; and

(3) a scalable microarchitecture that maximizes hardware efficiency at low batch sizes.

These features enable the Brainwave NPU to close and exceed the gap between soft and hard

NPUs by achieving better effective utilization (at low batch) and selecting more DNN-optimized

data types beyond standard data types typical of GPGPUs and many hard NPUs.

The Brainwave NPU microarchitecture achieves high performance through “mega-SIMD’” exe-

cution, where a single issued instruction can produce over a million operations, sustaining up to

 IEEE MICRO PRE-PRINT

130,000 ops per cycle over 10 cycles (in the largest instantiation of the Brainwave NPU on an

Intel Stratix 10 FPGA). Despite the massive spatial resources on the FPGA, the Brainwave NPU

exposes a simple sequential programming model to users, employing dynamic control to extract

parallelism transparently at all levels. This is enabled by a decoupled access/execute architecture

with a sequential control processor that issues custom CISC instructions asynchronously to a de-

coupled neural functional unit (NFU), as shown in Figure 4.

Figure 4. The Brainwave NPU is a “mega-SIMD” vector processor architecture. A sequentially
programmed control processor asynchronously controls the neighboring neural functional unit
(NFU) optimized for fast DNN operations. The heart of the NFU is a dense matrix vector
multiplication unit (MVU) capable of processing single DNN requests at low batch with high
utilization. The MVU is joined to secondary multifunctional units (MFU) that perform element-wise
vector-vector operations and activation functions.

Hardware Organization

The control processor (shown in Figure 4 on the upper right) is implemented with an off-the-

shelf Nios embedded processor. The Nios is initialized with offline-compiled firmware (devel-

oped in C or C++) and is responsible for issuing CISC instructions dynamically to the decoupled

NFU through an asynchronous instruction queue. The NFU consists of specialized functional

units for accelerating common-case DNN operations, such as dense matrix multiplication or acti-

vations. Nearby multi-ported vector register files provide temporary storage between operations.

The Matrix-Vector Unit (MVU), the largest functional unit in the Brainwave NPU, receives en-

coded micro-ops from a distributed decoder that specifies op behavior (e.g., matrix size) and

their dependences (e.g., source and target vector register). The MVU is further attached to sec-

ondary Multifunction Units (MFU) that implement activations and element-wise vector-vector

operations on intermediate vectors.

The MVU consists of tens of thousands of parallel multiply accumulators (MAC) organized into

parallel multi-lane vector dot product units (Figure 5). A salient feature of the MVU is the ability

to maintain high utilization of all MAC resources when evaluating individual matrix-vector mul-

tiplication operations at a batch size of 1. Common implementations of DNNs rely heavily on

dense matrix multiplication, where weight matrix columns encode the pre-trained synaptic

Neural Functional Unit

VRF

Instruction
Decoder

TA

TA

TA

TA

TA

Matrix-Vector Unit Convert to msft-fp

Convert to float16

Multifunction
Unit

xbar x

A

+ VRF

VRF

Multifunction
Unit

xbar x

+ VRF

VRF

Tensor Manager

Matrix Memory
Manager

Vector Memory
Manager

DRAM

x

A

+

Activation

Multiply

Add/Sub

Legend

Memory

Tensor data

Instructions

Commands

TA Tensor Arbiter

Input Message
Processor

Control
Processor

Output Message
Processor

A

Kernel

Matrix Vector
Multiply

VRFMatrix RF

+

Kernel

Matrix Vector
Multiply

VRFMatrix RF

Kernel

Matrix Vector
Multiply

VRFMatrix RF

N
et

w
o

rk
 IF

C

...

x

A

+

Vector Activation Functions

Vector-Vector Multiply

Vector-Vector Add/Sub

VRF Vector Register File

Vector data

Instructions

Commands

VA Tensor Arbiter

Matrix
RF Matrix Register File

 IEEE MICRO PRE-PRINT

weights of neurons, while rows of the activation matrix represent independent inputs to the neu-

ral layer.

Figure 5. An independent SRAM memory port is dedicated to every lane of a multi-lane vector dot
product unit within the MVU, allowing up to 80,000 MACs on a Stratix 10 280 to be fed with
independent weights. As a result, FPGA can achieve near peak utilization on batch 1-oriented
matrix-vector multiplication.

In the case of batch-1 serving for real-time processing, the activation matrix is sized to a single

row, limiting weight reuse to 1. This operation is inherently memory-bandwidth limited, making

it difficult for parallel architectures to extract full utilization of spatial compute resources. Resiz-

ing the activation matrix to multiple rows increases the batch size and drives up hardware utiliza-

tion (a common tactic used to achieve higher flops in GPUs and batch-oriented NPUs), but does

not improve the performance and, hence, latency of a single DNN request.

Applying the system-level strategy of on-chip pinning discussed previously, the Brainwave NPU

leverages the abundant independent on-chip memory resources of FPGAs to pin and serve DNN

weight parameters to MAC units (without reload between independent DNN requests to the

NPU). A contemporary Intel Stratix 10 280 FPGA, for example, has 11,721 independently ad-

dressable 512x40b SRAMs, and, in aggregate, provides 30 MB of on-chip storage and 35 tera-

bytes/sec of bandwidth at 600 MHz. Typical instances of Brainwave NPUs on Stratix 10 allocate

storage for tens of millions of parameters and hundreds of thousands of vector elements. While

pinning is the default strategy for most NNs, DRAM can also be used for buffering activations

and weights.

As shown in Figure 5, multi-lane vector dot product units form the bulk of the MVU. Locally

attached SRAMs feed each MAC with unique weight values, enabling full-chip utilization of

memory-intensive matrix-vector multiplication operations. Although the MACs operate in lower

precision, their internal data types are transparent to the overall NPU and software (via in-situ

hardware converters), which operate in float16 for I/O and non-dot product operations.

Narrow Precision

State-of-the-art deep neural networks are tolerant to noise and can maintain acceptable levels of

accuracy even when weights and activations are expressed in low numerical precisions. While

Matrix
Row 1

Matrix
Row 2

Matrix
Row N

Float16

Input
Tensor

Float16

Output
Tensor

W
e
ig

h
ts

A
ct

iv
a
ti
o
n

s

 IEEE MICRO PRE-PRINT

modern GPUs and hard NPUs for inference offer reduced precisions as low as 8-bit integer, re-

ducing numerical precision even further is possible without losses in accuracy. Based on accu-

racy-sensitivity studies of internal production and public DNN models (e.g., ResNet), we have

developed proprietary “neural”-optimized data formats based on 8- and 9-bit floating point,

where mantissas are trimmed to 2 or 3 bits. These formats, referred to as ms-fp8 and ms-fp9, ex-

ploit efficient packing into reconfigurable resources and are comparable in FPGA area to low

bit-width integer operations but can achieve higher dynamic range and accuracy than pure fixed-

point implementations. We have found that the versatility of these formats simplifies the quanti-

zation process of neural networks considerably relative to conventional 8-bit fixed point, where

significant fine-tuning in the radix point is needed to preserve accuracy.

Figure 6. The impact to accuracy of various DNN production models is negligible with post-trained
quantization into narrow precision ms-fp. With re-training, accuracy can be fully recovered.

Figure 7. NPU Peak performance of the Brainwave DPU across three generations of Intel FPGAs.
The use of ms-fp8 narrow precision improves performance by 3.2X-7.8X over a conventional 16-bit
fixed point.

Figure 6 shows three internal production models that quantize effectively to ms-fp9. A non-re-

trained conversion results in a minimal degradation in accuracy (1-3%), which can be fully re-

covered with just 1-3 epochs of quantized retraining. When optimized for ms-fp8 and ms-fp9

arithmetic, the Brainwave NPU can achieve high levels of MAC density and peak performance.

Figure 7 compares peak TFLOPs when precision is varied, showing up to 90 TFLOPs of peak

0.50

0.60

0.70

0.80

0.90

1.00

Model 1
(GRU-based)

Model 2
(LSTM-based)

Model 3
(LSTM-based)

A
cc

u
ra

cy
 R

el
at

iv
e

to
 F

lo
at

float32 ms-fp9 ms-fp9 retrain

1.4
2.0

2.7
4.5

1.8

5.2

15.0 18.6
11.5

30.7

65.0
90.0

0.5

5.0

50.0

500.0

16-bit int 8-bit int ms-fp9 ms-fp8

TE
R

A
-O

P/
SE

C

Stratix V D5 @ 225MHz

Arria 10 1150 @ 300MHz

Stratix 10 280 @ 500MHz

 IEEE MICRO PRE-PRINT

performance on a Stratix 10 280 at ms-fp8. Note that these levels of performance are comparable

to high-end hard NPUs and contemporary GPUs implemented with higher-precision fixed-point

arithmetic.

RESULTS

Accelerating Bing Intelligent Search

As an early pioneer of FPGAs in the datacenter, Bing now routinely utilizes FPGAs for acceler-

ated feature extraction, serving of DNN models, and other expensive computations. The Bing

environment is particularly challenging, with real-time latency requirements that can thwart the

practical deployment of unconstrained state-of-the-art DNNs on CPUs. Furthermore, the algo-

rithms and models used within Bing evolve at a rapid pace with new models experimented in

production each day. In response, Microsoft engineers regularly adapt the Brainwave NPU ISA

and microarchitecture to new requirements, pushing modified FPGA images into production en-

vironments at a cadence from days to weeks.

Bing’s intelligent search features leverage the Turing Prototype 1 (TP1) and DeepScan DNN

models to identify a relevant set of passages for a given query from billions of documents, from

which the best answer for the query can be derived. Bing uses these DNNs to process data from

multiple reputable sources, enabling multiple perspectives or collective knowledge in cases when

the search question has more than one answer. If different authoritative perspectives from reputa-

ble sources exist for a given topic (for instance, benefits versus drawbacks), Bing will aggregate

the two viewpoints and surface them toward the top of the search page, saving time for the user.

Table 1 compares the end-to-end latencies of TP1 and DeepScan deployed in Bing’s production

datacenters using CPU vs. CPU+Brainwave (including software overheads). To meet end-to-end

latency requirements, the CPU-only versions are scaled down in both parameters and ops by an

order of magnitude relative to Brainwave-accelerated versions. The scaled down TP1 incurs 9

ms (95th percentile) on Bing’s CPU-only infrastructure. Brainwave, on the other hand, enables

serving of a larger, more accurate bidirectional LSTM variant of the model, with hidden states

increased from 128 to 500. The model is > 10X the size of the CPU-only model and > 10X lower

latency at 0.85 ms (95th percentile). Thus, the space-time speedup Brainwave provides is more

than 100X. The CPU-only DeepScan further omits RNN computation entirely while still incur-

ring 3X the tail latency of Brainwave.

Table 1. Comparison of CPU-only vs. Brainwave-accelerated

TP1 and DeepScan DNN models in Bing production.

Bing TP1

 CPU-only Brainwave-accelerated Improvement

Model details
GRU 128x200 (x2)

+ W2Vec

LSTM 500x200 (x8)

+ W2Vec Brainwave-accelerated

model is > 10X larger

and > 10X lower latency End-to-end latency per

Batch 1 request at 95%
9 ms 0.850 ms

Bing DeepScan

 CPU-only Brainwave-accelerated Improvement

Model details
1D CNN + W2Vec

(RNNs removed)

1D CNN + W2Vec

+ GRU 500x500 (x4) Brainwave-accelerated

model is > 10X larger

and 3X lower latency End-to-end latency per

Batch 1 request at 95%
15 ms 5 ms

 IEEE MICRO PRE-PRINT

Brainwave NPU on Pre-production Stratix 10 280

The Brainwave NPU on a more contemporary FPGA substantially increases the size of models

that can be served in real time at datacenter scale. In this section, we report on an instance of the

Brainwave NPU scaled up to run on a pre-production Intel Stratix 10 280 FPGA. The Stratix 10

architecture incorporates significant improvements over previous FPGA generations, including

pipelined interconnect registers that enable improved clock speeds (600 MHz or higher), higher

density of DSPs and memories, and improved power and delay from Intel’s 14-nm process.

Compared to the Stratix V D5 FPGA, the Stratix 10 280 has 3X higher clock speed, 5.4X more

soft logic resources, 3.6X more DSPs, and 5.8X additional on-chip memory.

These resources enabled instantiation of a Brainwave NPU with 80,000 ms-fp8 MACs operating

at 300 MHz on pre-production silicon (48 TFLOPs peak). In end-to-end measurements, includ-

ing host overheads, this engine can serve a Batch-1 high-dimensional 3,200x2,400 GRU with

480 timesteps in under 1 ms. To put this measurement in perspective, the 39 billion operations in

this benchmark is 5X that of ResNet-50 and about 25X that of AlexNet. The effective throughput

measured was 39.5 TFLOPs out of 48 TFLOPs peak, operating at 82% efficiency at batch 1.

With production tools and silicon, the design should comfortably reach 550 MHz, for an addi-

tional 83% gain. In terms of energy efficiency and power, the Stratix 10 consumes 125 W when

measured with a fully loaded power virus. On production silicon, the expected energy efficiency

at peak throughput is 720 GOPs/watt.

CONCLUSION

Hastened by the escalating demand for deep learning, the march toward ubiquitous specialized

hardware for AI is well underway. There are many approaches being pioneered by companies,

startups, and research efforts—spanning GPGPUs to NPUs. Project Brainwave, Microsoft’s

principal infrastructure for accelerated AI serving in the cloud, successfully exploits FPGAs on a

datacenter-scale fabric for real-time serving of state-of-the-art DNNs.

The key learnings of Project Brainwave are: (1) designing a scalable, end-to-end system archi-

tecture for deep learning is as critical as optimizing for single chip performance—in Brainwave,

the system and the soft NPU are co-architected in mind for each other, exploiting datacenter-

scale pinning of models in on-chip memories that scale elastically beyond single-chip solutions,

(2) narrow precision quantization is a viable approach for production DNN models, enabling the

Project Brainwave system to achieve competitive levels of performance and energy efficiency

(720 GOPs/W on an Intel Stratix 10 280) to hard NPUs with standard precisions without degrad-

ing accuracy, and (3) using configurable hardware at scale, a system can be designed without an

adversarial tradeoff between latency and throughput (batching)—Brainwave is able to serve

models at ultra-low latency at Batch 1 without compromising on throughput and efficiency.

In the future, real-time AI will become increasingly adaptive to live data, necessitating con-

verged architectures for both low-latency inferencing and high-throughput training. State-of-the-

art deep-learning algorithms are also evolving at a blinding pace, requiring continuous innova-

tion of the Brainwave architecture. Today, Project Brainwave serves DNNs in real time for pro-

duction services such as Bing and Azure and will become available to customers in 2018.

ACKNOWLEDGEMENTS
Many collaborators and partners contributed to the research, support, deployment, and uses

of Project Brainwave. We thank Mike Andrewartha, Anthony Aue, Gregg Baeckler, Jing

Bai, Jeff Baxter, Sebastian Blohm, Ted Briggs, Luis Castillo, Qingzheng Chen, Steve Clay-

ton, Jacob Devlin, Yuanyuan Ding, Pavel Dournov, Mario Drumond, Alexander Gaunt,

Atul Gupta, Daniel Hartl, Matt Humphrey, Alok Jain, Matthew Johnson, Max Kalinin, Qifa

Ke, Caleb Kierum, Aaron Landy, Martin Langhammer, Jack Lavier, Zhuowei Li, David

Liu, Robert Kirchgessner, Michael Lazos, Jingwen Lu, Rangan Majumder, Arul Menezes,

 IEEE MICRO PRE-PRINT

Oana Nicolov, James Olson, Kaan Ozel, Jongse Park, Maharshi Patel, Anjana Parthasara-

thy, Alex Prodan, Andrew Putnam, Saravanakumar Rajmohan, Ransom Richardson, Sri-

kanth Shoroff, Ashvin Supekar, Mir Rosenberg, Victor Rühle, Guenther Schmuelling,

David Shih, Jamie Shotton, Xia Song, Shawn Swilley, Daniel Tarlow, Blaise Tine, Saurabh

Tiwary, Ryota Tomioka, Raja Venugopal, Colin Versteeg, Anya Vinogradsky, Dimitrios

Vytiniotis, Tong Wang, Yestin Wang, Weihu Wang, Ted Way, Sam Webster, Alex

Wetmore, Yiping Zhou, and many others. We are especially grateful for the strong execu-

tive support from David Ku, Peter Lee, Richard Qian, Jordi Ribas, Harry Shum, and Joseph

Sirosh. We thank Intel for their excellent partnership and support for Project Brainwave.

REFERENCES
1. J. Ouyang et al., “SDA: Software-defined accelerator for large-scale DNN systems,”

IEEE Hot Chips 26 Symposium (HCS), 2014;

http://ieeexplore.ieee.org/document/7478821/.

2. K. Guo et al., “From model to FPGA: Software-hardware co-design for efficient neural

network acceleration,” IEEE Hot Chips 28 Symposium (HCS), 2016;

http://ieeexplore.ieee.org/document/7936208/.

3. N. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit,”

Proceedings of the 44th Annual International Symposium on Computer Architecture

(ISCA), 2017; www.computer.org/csdl/proceedings/isca/2017/4892/00/08192463-

abs.html.

4. Bing Intelligent Search. https://www.bing.com/explore/intelligentsearch.

5. A. Putnam et al., “A reconfigurable fabric for accelerating large-scale datacenter

services,” Proceeding of the 41st Annual International Symposium on Computer

Architecture (ISCA), 2014; http://ieeexplore.ieee.org/document/6853195/.

6. A. Caulfield et al., “A Cloud-Scale Acceleration Architecture,” 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016;

www.computer.org/csdl/proceedings/micro/2016/3508/00/07783710-abs.html.

7. Y. Chen et al., “DaDianNao: A Machine-Learning Supercomputer,” 47th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2014;

http://ieeexplore.ieee.org/document/7011421/.

8. F. Seide and A. Agarwal, “CNTK: Microsoft’s Open-Source Deep-Learning Toolkit,”

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), 2016;

https://dl.acm.org/citation.cfm?id=2945397.

9. M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2016;

https://dl.acm.org/citation.cfm?id=3026899.

http://www.computer.org/csdl/proceedings/isca/2017/4892/00/08192463-abs.html
http://www.computer.org/csdl/proceedings/isca/2017/4892/00/08192463-abs.html

