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ABSTRACT
When building a classifier in interactive machine learning,
human knowledge about the target class can be a powerful ref-
erence to make the classifier robust to unseen items. The main
challenge lies in finding unlabeled items that can either help
discover or refine concepts for which the current classifier has
no corresponding features (i.e., it has feature blindness). Yet
it is unrealistic to ask humans to come up with an exhaustive
list of items, especially for rare concepts that are hard to recall.
This paper presents AnchorViz, an interactive visualization that
facilitates error discovery through semantic data exploration.
By creating example-based anchors, users create a topology
to spread data based on their similarity to the anchors and
examine the inconsistencies between data points that are se-
mantically related. The results from our user study show that
AnchorViz helps users discover more prediction errors than
stratified random and uncertainty sampling methods.
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INTRODUCTION
Interactive machine learning (iML) is a growing field in ma-
chine learning (ML) that emphasizes building models with
humans in the loop. Unlike traditional ML’s sequential de-
velopment workflows, model developers in iML iteratively
explore and label data, add features to fix errors, and modify
models to enhance performance. As models constantly get
feedback from humans, their evolving directions can align
with the model developers’ goals better. Since data are labeled
on the fly in iML, there is no way to tell how the current model
performs on the unlabeled set until these data points (hereafter,
we refer to a data point as an “item”) are labeled. As it is unde-
sirable to label the whole dataset in iML, it becomes critical to
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efficiently locate unlabeled items that the current model will
predict incorrectly (i.e., errors in unlabeled items).

One common approach in iML for selecting unlabeled items
is sampling based on uncertainty (e.g., items with prediction
scores near a decision boundary) or uniform distribution (i.e.,
items uniformly sampled based on the prediction score dis-
tribution). Although these sampling methods can help pull
out errors, often the selected items are ambiguous or random
errors. Errors with high prediction confidence are not likely
to be selected by these sampling algorithms. Hence, model
developers may not even be aware of such defects in their
models. Furthermore, these sampling methods do not fully
leverage the value of human-in-the-loop. They treat humans
as oracles and cause humans to feel annoyed, lose track of
teaching progress, or lose interest [2]. As the discovered er-
rors are mostly uncertain or random, it can be challenging for
humans to make sense of the errors to provide useful inputs.

Past discussions have pointed out the benefits of semantic mod-
els – models that have semantically meaningful feature repre-
sentations [11]. Semantic models are useful in helping humans
make sense of the model behaviors and ensure their predic-
tions are not based on problematic associations. Specifically
in classification problems, humans usually possess knowledge
about the target class; they can come up with hypotheses on
what underlying “concepts” (i.e., abstract notions that alto-
gether represent the target class) are challenging to the model,
and try to fix the errors by providing more labeled items or
adding features. However, it is costly and unrealistic to ask
humans to provide an exhaustive list of concepts and items,
especially for rare cases that are hard to recall. Therefore,
careful design is required to efficiently utilize human efforts
and maximize the value of each interaction.

In this work, we extend the idea of building semantic models
to include semantic exploration on unlabeled dataset for error
discovery and propose a polar-coordinate-based interactive
visualization, AnchorViz, to facilitate this semantic exploration
process. Through the visualization, users can create example-
based anchors to spread items based on pair-wise similarity.
Since users can understand the meaning of the chosen items,
they can associate and contrast items’ relations to the anchors.
Hence, they can tease apart concepts and find items whose
predictions do not align with the corresponding concepts.

We evaluated AnchorViz with 16 participants to examine the
users’ exploration strategies and the use of anchors in the
tool in building a binary classifier. Our results show that
items highlighted through anchors are more likely to be errors
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for which the current classifier has no corresponding features
(hereafter referred to as “feature blindness errors”). In addition,
our participants used a variety of strategies to explore the
dataset and distill positive and negative concepts of the target
class through creating anchors.

The contributions of this work are three-fold: First, we high-
light the opportunity for leveraging semantic data exploration
to locate classifier errors in unlabeled items. Second, we de-
sign and build AnchorViz to support such exploration through
interactive visualization. Third, we evaluate AnchorViz with
users and analyze users’ intentions and exploration strategies
to show that AnchorViz opens a new research space for se-
mantic interactions with an iML classifier.

Motivating Scenario
Discovering an error in a large dataset is like finding a needle
in a haystack, and in some cases, one cannot even tell whether
a needle is in the haystack. Sifting through the haystack hap-
hazardly is an inefficient method to find the needle. Using a
magnet to pull the needle would be a fine solution. However,
one needs many different magnets to find all kinds of needles,
each representing a missing concept in the model. In addi-
tion, as these needles are unknown, it can be tough to create
corresponding magnets to pull them out.

In this work, we leverage this magnet analogy, but instead of
creating magnets that aim to pull needles directly, we propose
to use semantic magnets, called “anchors” in this paper, to
decompose the dataset semantically and highlight prediction
inconsistency in items that are neighbors in the semantic space.
In other words, anchors are representations of concepts in the
dataset. An anchor can spread the dataset based on the items’
semantic similarity to different concepts. If one expects to see
items of a certain type of prediction near an anchor, any item
with a different prediction from its neighbors or the nearby
anchor can be an error or a seed to discover new concepts.

To illustrate how one can create and use anchors in a classifi-
cation task, we provide the following scenario: A food blog
writer wants to build a binary classifier for finding recipe web-
pages. The writer already considers restaurant menu pages as
negative, so the writer uses existing restaurant menu pages to
create a restaurant menu anchor to see other items similar to
the concept of restaurant menus. Among the items similar to
restaurant menu concept, the writer notices that some items
are being predicted as positive. Upon inspection of those pre-
dicted positive items, the writer discovers catering webpages.
The writer considers catering webpages as not belonging to
recipes, labels the discovered catering webpages as negative,
and creates a catering anchor. With both restaurant menu and
catering anchors, the writer can see if there are other similar
items being predicted incorrectly.

BACKGROUND AND RELATED WORK
In a supervised iML setting, humans build models by pro-
viding training items and features in a quick, iterative and
continuous loop [9]. This model building approach has shown
its success in building a decent model using fewer features
[30]. In addition, it provides meaningful interactions to im-
prove the user’s trust and understanding of the system [27].

This interaction between humans and machines goes beyond
simply treating humans as label oracles and requires thought-
ful design and careful user studies [2]. However, like tradi-
tional supervised ML, supervised iML also needs to find items
to which the current model is blind for better generalization
performance in the real world, which is the focus of this paper.

Unknown Unknowns and Prediction Errors
Attenberg et al. [3] and Lakkaraju et al. [13] use a model’s
confidence score to categorize prediction errors into known
unknowns and unknown unknowns. Known unknowns are
errors for which the model has low confidence, and correcting
such errors are useful for fine-tuning the system. Unknown
unknowns are errors for which the model has high confidence,
and such errors can be potentially disastrous depending on the
problem domain.

Another approach is to characterize prediction errors as feature
blindness, ignorance, mislabeling, or learner errors [17]. Fea-
ture blindness errors arise because the model does not have the
appropriate feature representation to learn from the training
items. In contrast, ignorance errors will be correctly classi-
fied if they are added to the training set as the model already
has the appropriate feature representation. Mislabeling errors
come from mislabeled items, whereas learner errors refer to
issues caused by the configurations of the learning algorithms.
In our work, we focus on finding feature blindness errors since
these errors represents missing concepts in the current model.

Searching for Items to Label
There are two types of strategies for searching items to la-
bel: Machine-initiated and human-initiated approaches. The
machine-initiated or algorithmic approach uses learning algo-
rithms to suggest items for humans to label so that the model
needs fewer training items to perform better [22]. Uncertainty
sampling is one of the most commonly used active learning
strategies. In binary classification, this strategy samples items
whose confidence scores are near the decision boundary [16,
15]. Active learning strategies are not suitable for finding
unknown unknowns or feature blindness errors because they
often rely on the model’s current training results, which cannot
overcome the model’s blind spots [3, 13, 17].

Recently, Lakkaraju et al. introduced an algorithmic approach
to find unknown unknowns directly [13]. Their approach lever-
ages systematic biases that are concentrated on specific places
in the feature space. Their explore-exploit strategy partitions a
dataset based on similarities in feature space and confidence
scores, and searches for partitions with high concentration of
items with high confidence. The underlying assumption for
their system is that any unknown unknowns introduced to the
algorithm can be characterized by the automatically extracted
features (e.g., bag-of-words (BoW)), but using such features
for training can have undesired consequences of losing inter-
pretability [11]. In our work, we aim to preserve semantic
meanings during exploration to maximize interpretability.

The human-initiated approach allows the humans to find the
items that the model should learn. Attenberg et al. introduced
the notion of guided learning [4] and implemented Beat the
Machine (BTM), where crowd workers are tasked to find items



from the open world [3]. Their results showed that BTM found
more unknown unknowns compared to a stratified random
sampler. Guided learning puts a significant load on users
to find adversarial items since recalling is difficult, but when
combined with other active learning strategies, this method can
help the model learn quickly, especially on skewed datasets.
One unique characteristic of BTM is that it leverages the open
world as a search space, rather than a closed and biased sample
set used in traditional settings. However, this approach does
not keep the concepts or structures created and leveraged by
users during the search process, so it has limited support for
subsequent searches.

In AnchorViz, humans do not play a passive role as labelers of
items presented by algorithmic techniques, but take advantage
of algorithmic techniques. For example, AnchorViz uses hier-
archical clustering (HC) [25] to reduce the user’s search space,
but ultimately, it is the user that chooses to label the item. The
system also computes the similarity between sets of items in
the BoW feature space and presents the results for users to
take actions. In addition, we allow the users to externalize
their concepts or structures so that they can decompose the
target class, reuse previously defined concepts, or redefine and
evolve their search strategies as they explore the dataset.

Visualization for ML
Visualization is one key approach to facilitating model devel-
opment. Prior work that supports specific ML tasks usually
contains a form of interactive visualization. For example, Tal-
bot et al. designed EsembleMatrix for creating and tuning
ensemble classifiers [28]. Lee et al. visualized topic models
and allowed users to modify the models through their interface
[14]. Ren et al. used a parallel coordinate style of visualization
to help examine classification errors [21]. However, existing
work mostly focuses on discovering errors in the labeled set
with little attention to finding errors in unlabeled items.

In AnchorViz, we focus on locating errors in unlabeled items
by using visualization to spread out items in a semantic manner.
Our design is inspired by VIBE [19] and Dust and Magnet
(D&M) [26]. D&M uses magnet metaphor to attract similar
items using pre-defined dimensions of the data. However, the
existing dimensions in our iML scenario (i.e., features) may
not have any connections with unlabeled items to attract them.
Similar to Adaptive VIBE [1], we allow the users to create
and refine “anchors” as our version of magnets. We explain
the anchors in further details in the next section.

Semantic Memory and Concept Decomposition
In psychology, semantic memory is a type of human memory
that stores general knowledge, such as facts and concepts [29,
20]. Network models are commonly used to describe semantic
memory; the theory of hierarchical network models [5] points
out that a concept can be decomposed into smaller concepts to
store in memory. In ML, concept decomposition is a learning
method that leverages clustering [6, 7, 8]; the goal is to divide
a concept into smaller concepts so that the algorithm can learn
easily. Our work is inspired by these two similar ideas, and
we put focus on semantic exploration and decomposition of
the dataset through anchors.

ANCHORVIZ
In this section, we introduce the design of AnchorViz, an inter-
active visualization to help model developers locate classifier
errors. Our design is based on the following design objectives
that we came up with based on the motivating scenario:

DO1. Let users define concepts of the target class and unre-
lated classes

DO2. Spread the dataset based on concepts

DO3. Show how user-defined concepts impact the positions
of items

DO4. Provide information about the model’s current predic-
tion along the user’s labels

DO5. Optimize for efficient reviewing process

Interface and System Design
The interface for AnchorViz (Figure 1) contains a RadViz-
based visualization that shows both labeled and unlabeled
items (Figure 1C) as well as anchors that represent concepts
(Figure 1D). When users click an item, the thumbnail view
(1B) will switch to show its content, and users can inspect the
item to provide a label. This gives users a quick way to check
if the item is an error and provide correct label (DO5).

Define Concepts with Example-Based Anchors
In this work, we let users define a concept via examples (DO1),
which is a common view of how a concept is stored in brain
[18]. Thus, these anchors are “example-based” anchors. We
leave exploring other types of anchors as future work. To
create an anchor, users can drag an item to the outer circle
(Figure 1D). Users can also drag an item to an existing anchor
to modify the corresponding concept. When a user clicks on
an anchor to reveal the anchor detail view, users can provide
a meaningful name for the anchor, view the list of items that
belong to the anchor, and remove items that no longer belong
to the anchor. In addition, users can hide an anchor from
the visualization. The hidden anchors sit inside the “Anchor
Repository” at the bottom drawer of the left pane (Figure 1F)
where users can restore the anchors to the visualization.

Manipulate Topology and Layout
Once a concept is defined, the user should be able to see the
correlation between the concept and the items (DO2; e.g., this
webpage is more like “catering”) as well as the relationship
between several concepts with respect to the items (DO3; e.g.,
this webpage is more like “catering” and less like “restaurant
menu” while that webpage is unrelated to both concepts). We
map the relative similarity of the items to the concepts to the
position of items in a non-orthogonal coordinate system in a
circle; the center point of the outer circle to each anchor forms
a set of axes on a 2D surface. Namely, an axis k is a vector
with the length of the outer circle’s radius r and an angle θ to
the corresponding anchor (Eq 1).

~Vk = (r · cosθ ,r · sinθ) (1)

An item along an axis forms a vector with an angle identical
to that of the axis and a magnitude of the cosine similarity in
the BoW space between the item and the items in the anchor.



Figure 1. Overview of AnchorViz interface. The interface has Explore pane (A) that includes the visualization and Items pane (B) which shows a
paginated grid of thumbnails of all currently visible items in the left pane. The visualization shows data points (C) within the outer circle (D) where
anchors are positioned. The legend for data points (E) also acts as filters. Anchor repository (F) contains unused anchors. The navigator (G) shows
which cluster the visualization is displaying in the current navigation stack. Clusters are represented as treemap-style squares (H).

The final position of an item in the visualization is the sum of
the vectors to each anchor (Eq 2).

Position(i) = (xi,yi) = ∑
k

valuek(i)
∑ j value j(i)

·~Vk (2)

Thus, the items that are closer to an anchor are more similar
to the items in the anchor. The items that are affected by
moving the anchor will move along with it, whereas items
that do not share any similarity will remain still (DO3). In
addition, since we want to ensure all items sit within the outer
circle, an item’s value on an axis is normalized by the sum of
all its values on all the axes. This normalization follows the
typical normalization used in RadViz [10]. In this way, the
users are effectively creating a topology in the semantic space
defined by the anchors. We have considered multiple visual-
ization techniques for defining this topology, but ultimately
chose RadViz because of its support for arbitrary number of
axes and its flexibility in positioning of axes while preserving
the relative independence of the axes [23]; we leave other
visualization options for future work.

Contrast Model Predictions with Concepts
Semantic data exploration alone does not address our goal of
finding errors of a classifier if the model is not involved in the
exploration process. By surfacing the model predictions and
the labels on the semantic topology created by anchors, the
user should be able to contrast the predictions with concepts
(DO4) to look for potential inconsistencies in two different
ways. First, the user can look for items that are predicted to
be in the opposite class as the class expected to be close to

an anchor. For example, restaurant menus should be treated
as a negative concept for the recipe class. If an item near
a restaurant menu anchor is predicted as positive, then the
item is a potential prediction error. Second, if an item is
predicted or labeled as positive in a sea of negatively predicted
or labeled items, that item is an outlier worth inspecting. We
encode model predictions and user labels into color and shape
of items as illustrated in Figure 1E. Users can also click on the
categories in the legend to filter items based on their types.

Inspect Groups of Items
Manipulation of the concept topology defined by anchors and
efficient visual encoding of model predictions still leaves the
user with hundreds of items to inspect in order to arrive at
an error worth labeling and adding to the training set. We
pre-process the dataset by grouping similar items using HC
algorithm; this helps reduce the search space by limiting the
number of visible data points and allowing users to review
groups of similar items rather than individual items. Note that
the clusters do not change when anchors vary since the goal
is to group similar semantic items, not merely visually close
points.

In our clustering algorithm, the distance between any two
items is their cosine similarity in the BoW space. The distance
between clusters (Ca and Cb), including single point clusters, is
the average distance between pairs among two clusters (Eq 3).

distance(Ca,Cb) =
∑i ∑ j distance(Cai,Cb j)

|Ca||Cb|
(3)



In each step of HC, the algorithm selects a pair with the short-
est distance and merges the two as a new cluster. The step is
repeated until there is only one cluster left. We reorganize the
result of HC, which is a binary tree, into a n-ary tree from the
top tree node and expand the tree in a breath-first order. At any
given node of the n-ary tree, it can contain leaves (items) or
sub-trees (clusters) which can further divide into sub-trees and
leaves. For our user study, we used n = 500 which is neither
too cluttered nor sparse. We leave choosing an optimal value
of n for future work.

These pre-processed groups of similar items (hereafter, we
refer to a group of similar items as a cluster), are displayed
as treemap-style squares (Figure 1H) in the visualization, and
the size of the square is a function of the number of items
inside the cluster. Namely, each square is also a single-level
treemap [24] representing the composition of items in four cat-
egories (labeled positive, labeled negative, predicted positive
and predicted negative). With treemaps, we aim to provide an
at-a-glance understanding of the distribution of items within
so that users can make a quick decision to navigate into the
cluster. For example, if the cluster contains predicted nega-
tive items and labeled positive items, there may be potential
inconsistencies between the clustering, the classifier, or the
labels that need to be investigated and resolved. We display
the same treemap for each anchor as a way to visualize their
item composition as well as their class association along with
the descriptive name.

Each square representing a cluster is positioned in the visu-
alization based on the average similarity of all the leaf items
inside the cluster. Clusters move along with the anchors that
they are most similar to just like any individual items. When
users click on a cluster, they can navigate into the cluster and
the visualization will update to show the items and clusters
belonging to the cluster. The navigator on the top right (Figure
1F) shows which cluster the visualization is displaying in the
current navigation stack. The “root” cluster at the top of the
stack represents the entire dataset. Users can navigate back to
a previous level through the navigator or double click on the
white space in the Explore pane.

Implementation
Our system has two components – a self-hosted web service
and a web application. We implemented the web service
using .NET, ASP.NET Core and the Nancy framework; we
implemented the web application using Typescript, React,
and D3. All relevant data, including the exploration dataset,
training data, client states, and classifier configurations, are
persisted to disk on the web server to support browser refreshes
and for evaluation of the study results.

EVALUATION
We conducted a user study to evaluate our visualization and
its effectiveness in helping users discover classifier errors. To
the best of our knowledge, AnchorViz is the only visualization
tool for error discovery that allows interactive exploration
with the users’ explicit semantic formulations, so there is no
baseline to compare purely on its contribution to facilitating
data exploration. Thus, the focus of our study is to understand
the different strategies people use to explore the dataset and

observe people’s interactions with the anchors while all other
conditions (e.g., features, distribution of positives) are fixed.
This section describes the design of the user study and data
collection, and we introduce definitions of several metrics that
can be used for analysis and comparison in the future.

User Study
Participants
We recruited 20 participants from a large software company.
Initially, we designed a controlled experiment comparing the
visualization to an uncertainty sampler for effectiveness in
discovering errors. However, the pilot study with the first four
participants revealed that learning the tool and the target class
took significant amount of time. Since our goal is not to test
the ease of learning of the tool, we changed our study design
to evaluate the visualization in depth. Our analysis is only
based on the remaining 16 participants (7 females/9 males,
ages 25-55) who completed the study.

We categorized our participants into four groups according
to their ML background. Four participants have taken some
courses in ML (P1-4), four occasionally build ML models in
practice (P5-8), three frequently build ML models (P9-11),
and five have a doctoral degree in ML-related fields (P12-16).
Our participants’ professional roles in the company are that
of applied data scientist (9), program manager (2), researcher
(1), financial manager (1), and software engineer (3). Six
participants have a doctoral or professional degree, nine have
a master’s degree, and one has a bachelor’s degree.

Background Scenario and Tasks
To evaluate the visualization, we provided the participants with
a specific scenario. The premise for the user study is that the
participant is developing a binary classifier using an iML tool
(i.e., iteratively sampling for items, labeling the items, adding
features, and debugging the target classifier). Through this
iterative process, the participant has achieved almost 100%
accuracy on the training set. Despite high training accuracy,
the classifier performs poorly on a held-out test set, and the
participant cannot recall any items or features where the clas-
sifier could be making a mistake. Therefore, the participant
switches to explore a large unlabeled dataset to find potential
sources of errors.

Based on the above scenario, we asked participants to (1) find
items where the classifier is making a mistake, (2) find a set of
items that are diverse from each other, and (3) try to understand
the dataset and classifier performance in the process.

Dataset, Classifier, and Setup
To set up the user study according to the scenario above, we
built a binary classifier whose training accuracy is 100% in
an iML tool. The binary classifier outputs prediction scores
from 0 to 1 and uses 0.5 to be the decision threshold. For our
dataset, we took webpages and categories from the Open Direc-
tory Project (http://www.dmoz.org/) where the webpages were
voluntarily organized into hierarchical categories by the com-
munity editors. After rendering the webpages, we discarded
the webpage markup and retained only rendered and visible
text tokens for each webpage. Following the categorization de-
scriptions provided by the dataset, we built binary classifiers
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for several hours in an iterative model-building loop using
logistic regression as the learning algorithm, text search and
uncertainty sampling for item selection, and human-generated
dictionaries (single weight for a group of n-grams) as fea-
tures. Out of nine binary classifiers, we picked a classifier for
predicting cooking-related webpages which had the highest
train accuracy (97.5%) with 674 labeled items and 37 human-
generated features. The choice of the learning algorithm is
independent of the problem of discovering errors and is out of
scope for this paper.

To control for the ratio between the labeled set and the un-
labeled set, we uniformly sampled for 4000 items from the
full dataset (50% positive for cooking) and 400 items in the
labeled items such that approximately 8-10% of the dataset
was labeled. To simulate blindness to concepts within positive
and negative classes of cooking, we removed 25 features re-
lated to cooking (e.g., appliances, seasoning), and we left only
one n-gram in each feature to degrade its test accuracy further.
After training the classifier, we subsequently removed incor-
rect items in order to achieve 100% training accuracy. The
final cooking classifier had 309 labeled items (130 positive),
12 features, 100% train accuracy and 75.8% test accuracy. For
participants to practice, we also picked a travel-related binary
classifier to use throughout the tutorial. This classifier only
appeared during the practice round.

A limitation of the current interface design is that the visu-
alization requires at least one anchor to be present to begin
the exploration process. In an ideal case, we would provide
the users with ways to bootstrap the visualization such as se-
lecting items based on keyword search or choosing a set of
labeled items to seed an example-based anchor. Evaluating the
cold-start scenario is out of scope for this study, and therefore,
we bootstrapped the visualization with one pre-defined anchor
containing a positively labeled item and another containing a
negatively labeled item.

Procedure
We conducted our study through video conferencing where
participants shared their screens and thought aloud during the
study, and we audio and screen-recorded the entire session.
The user study consisted of four parts: The first part (20 min-
utes) involved an introduction to basic ML knowledge such
as classification, errors, precision and recall, description of
the data set, overview of the study interface, and introduction
of the “travel” class (webpages about traveling and tourism).
The second part (10-20 minutes) was a practice round using
the travel class as a reference to get familiar with the interface,
followed by an introduction of the “cooking” class (webpages
about home cooking) which is used for the actual task. The
third part was the actual task (20 minutes) where we asked the
participants to use AnchorViz to find and label a diverse set
of items where the participants disagree with the classifier’s
predictions. At the end of the study (5+ minutes), we asked
participants to complete a quick survey to assess their satis-
faction and collect open-ended feedback. Each study was a
70-90 minute session with a $30 gift card compensation.

Quantitative and Qualitative Data Analysis
We focused our analysis on the items that the participants dis-
covered and the circumstances and the behaviors surrounding
their discovery. These items should represent concepts which
the model is blind to and the users could not think about in
isolation. We captured the participants’ interaction and be-
havior through recordings of their conversation and usage of
the tools, and we instrumented the web application for user
behavior to replay their interactions with anchors or items.

Qualitative Coding
We used the recordings in depth to understand the behavior
of the participants. Since the participants followed the think
aloud protocol, we were able to replay the recording to inter-
pret the context of their actions. We coded their actions (e.g.,
click cluster, move anchor), the motivations for their actions
(e.g., inspect prediction inconsistencies, see how items move),
and the reactions to the actions they performed (e.g., whole
cluster is positive, anchor is not very good). We used the re-
sults of the qualitative analysis to catalog different exploration
strategies used by the participants and insights they obtained.

Error Categorization and Generalization
We evaluated the effectiveness of our visualization on discov-
ering prediction errors in two ways. First, we computed the
number of prediction errors that the participants discovered.
Then we examined whether these errors are feature blindness
errors by individually retraining the classifier with every item
and see if that item is still a prediction error. Second, we
looked at the score distribution of the discovered items to see
how many high confidence errors the participants were able
to find. We computed the magnitude of error as the absolute
difference between the prediction score and 0.5. For compari-
son, we computed the same metrics with other samplers (e.g.,
uncertainty, stratified random samplers) given a fixed number
of items comparable to that of the participants.

We also measured the quality of items by evaluating a classi-
fier trained with the discovered items against a held-out test
set. There are several challenges here. One is in simulating
a human’s featuring ability which is required in an iML loop
that we operate in. Another is that the test set may not include
a representative item for a concept that the participant discov-
ered. For example, there is not a single item with reference
to “insect recipes” in the test set which can be found during
exploration of the unlabeled set. Fully acknowledging the
challenges in evaluating the classifier’s generalization perfor-
mance, we computed the classifier’s accuracy on the held-out
test set using the original feature set (37 features). Our justi-
fication is that comparing two classifiers with or without the
discovered items on a fixed feature set would provide us with
a glimpse into the quality of the items added.

Anchor Effectiveness
To measure the effective of anchors on discovering errors, we
define two metrics: anchor error precision (AEP) and anchor
error recall (AER). The two metrics have similar concepts as
the common precision and recall metrics in ML, but instead
of measuring based on the target classes (positive/negative),
AEP and AER look at whether items are errors or not.



Figure 2. Distribution of errors across participants and algorithmic sam-
plers. Text in each bar shows the percentage of errors in different cat-
egories. All participants except for P10 discovered feature blindness er-
rors at a rate higher than any algorithmic samplers.

Before further defining AEP and AER, we first define “con-
trasted items”. Contrasted items aim to capture items that be-
come salient through anchors. The steps to determine whether
an item is a contrasted item are:

1. Collect neighbor anchors: Given an item, take up to three
of its nearest neighbor anchors. Note that an anchor must
be within r/2 range of an item to be its neighbor.

2. Determine the class label for each neighbor anchor: For
every neighbor anchor, we determine its label based on
majority voting from its items’ ground truth labels. That is,
if an anchor has three items, with two of their ground truth
labels are positive and the other is negative, then the label
of this anchor is positive.

3. Determine the contrasted base label: The contrasted base
label is determined by majority voting from all the neighbor
anchors’ labels. The contrasted base label is unsure in a tie.

4. Determine if the item is a contrasted item: If the item’s
predicted label is opposite to the contrasted base label (not
including unsure), then the item is a contrasted item.

Then we can define AEP and AER as follows:

AEP =
# true errors in contrasted items

# contrasted items
(4)

AER =
# true errors in contrasted items

total # true errors
(5)

An intuitive explanation of these two metrics is that they help
examine how many error items a setup of anchors can bring
into attention. Note that we calculated these two metrics
based on all the contrasted items given the whole layout of
anchors and points at a time, not merely a single anchor. We
also consider all items by their spread-out positions, not their
clusters’ positions, as our goal of the two metrics is to measure
the anchors’ effectiveness, not the clustering algorithm.

We calculated AEP and AER for all active anchor settings
of each participant over time. By active anchor settings, we
refer to the layout of anchors and items when participants

Figure 3. Distribution of discovered items (top) and the magnitude of er-
rors (bottom) across participants and algorithmic samplers. The items
are skewed towards high magnitude errors, but items discovered by par-
ticipants and contrasted items higher chance of getting high magnitude
items than algorithmic samplers.

actively interact with items, which include: creating an an-
chor, adding/removing items in an anchor, navigating into a
cluster, viewing an item, and labeling an item. Thus, if a par-
ticipant interacts with 10 items, the participant will have 10
measurements for AEP and AER.

RESULTS

Discovered Items
For the analysis of the items discovered by the participants, we
used the ground truth labels provided by the original dataset
as well as 4000 exploration candidate items (50% positive)
and 1600 test items (50% positive).

Error Analysis
On average, participants discovered 40.9 errors (SD=19.6).
We looked at the percentage, instead of the count, of errors in
the total number of discovered items because of high variabil-
ity in the number of discovered items. We also looked at the
first 50 (mean number of items for PhD in ML group) items
returned from algorithmic samplers. Of the unlabeled items
(3691 items), the initial cooking classifier made prediction
errors on 943 or 25.5% of the items and feature blindness
errors on 886 or 24.0% of the items. Except for P10 who
discovered errors at a rate of 24%, all participants discovered
errors at a higher rate than the total error distribution, random,
stratified random, or uncertainty sampler. The uncertainty
sampler selected errors at 47.8% but only 8.7% of the sampled
items were feature blindness errors. Again, except for P10, all
participants discovered feature blindness errors at a rate higher
than any algorithmic samplers. Figure 2 shows the distribution
of errors among discovered items across participants.

Figure 3 shows the distribution of the magnitude of errors
across different samplers. Here, we looked at all the unique
items discovered by the participants (n=493) and contrasted
items among the discovered (n=111), and we selected the first
493 items from each of the algorithmic samplers. According
to the distribution of discovered items, the dataset is skewed
towards high confidence scores and high magnitude of error.
However, the percentage of errors indicates that the partici-
pants and contrasted group had a higher chance of discovering



Figure 4. Test accuracy improvements across participants and algorith-
mic samplers. All participants built better performing classifiers than
uncertainty sampler, and three participants built better performing clas-
sifiers than random samplers. While random samplers performed well
on the test set, they discover less feature blindness errors as indicated by
Figure 3

errors than algorithmic samplers. As expected, the uncertainty
sampler selects more ignorance errors than any other samplers.

Test Accuracy
Assuming that the features were fixed to the original set of 37
features, we compared the classifier accuracy on the held-out
test set before and after the discovered items were added to
the training set. As before, we selected first 50 items from
algorithmic samplers for comparison. Figure 4 shows that all
participants made test accuracy improvements, and their clas-
sifiers performed better than the uncertainty sampler. Because
the dataset is skewed towards high confidence scores, random
samplers were able to select high magnitude error items and
improved test accuracy. However, random samplers discov-
ered less feature blindness errors as indicated by Figure 3, and
three of our participants (P9, P13, P16) had classifiers with
higher test accuracy than the ones created by random samplers.

Anchor Effectiveness
Figure 5 shows the average AEP and AER of each participant.
The reference line “Random” of AEP shows the baseline for
AEP to be 0.255, the error rate in the dataset. This baseline is
how likely an item is an error if randomly selected by a user.
As the figure shows, 12 out of 16 participants had an average
AEP greater than random. This indicates that contrasted items
are likely to pull errors to attention.

For AER, we plotted the average across participants as a refer-
ence line since the same analogy in random is 1 (all the errors
are in the dataset). The average AER (= 0.1321) indicates
that only about 13% of the errors are the contrasted items.
However, the goal of our tool is not to find all errors, but to
find errors that are critical. We further analyzed the types of
errors in contrasted items and found most errors in contrasted
items have a higher chance to find feature blindness errors
than other approaches, including the algorithmic samplers, as
we described in the error analysis section.

Figure 5. Average anchor effectiveness metrics (AEP/AER) for each par-
ticipant. Most participants have better AEP than random.

User Behavior
In this section, we outline different exploration strategies that
the participants used when interacting with the visualization
tool from qualitative analysis. We focus on three key aspects
of the participants’ use: (1) their reasons for creating anchors,
(2) their exploration strategies, and (3) their understanding of
classifier performance.

Reasons for Creating Anchors
All participants created anchors when they discovered a con-
cept that could be useful for defining positive or negative
classes (e.g., desserts, biography, Turkish cuisine). Anchors
were also used to capture items that could potentially be con-
fusing to the classifier. For example, P16 found a webpage
containing a recipe, but a majority of the webpage was ded-
icated to explaining the benefits of a certain ingredient. P3
found a personal blog webpage of someone who enjoys eating
food, but the webpage was not about cooking. One partic-
ipant (P8) created anchors to group the items based on the
confusion categories (i.e., false positive, false negative, true
positive, true negative). P14 created an anchor from an entire
cluster of items from a single recipe site to create a good recipe
anchor. One participant (P1) tried to create anchors to differ-
entiate webpages with recipes that did not have typical recipe
headers (e.g., ingredients, instructions, prep time) from web-
pages with prototypical recipe structures. Some participants
(P11, P13, P14) created anchors to capture or filter potential
issues with the dataset. For example, there were webpages
with recipes translated into two languages, webpages written
only in one foreign language and are still cooking related, and
webpages written in foreign languages and are not cooking
related. Some participants created anchors to validate their
hypothesis formed from exploration. For example, P9 discov-
ered that the classifier was making a mistake on a webpage
with lists of recipes and suspected that a lot of webpages with
lists of recipes would be errors. He created an anchor to look
at similar items around the anchor and said, “basically pages
that index a lot of recipes is not [correct].”

Exploration Strategies
Participants used various aspects of the visualization to explore
the dataset, and different strategies were used to meet their
needs and at different points in time. Below, we enumerate an
exhaustive list of how the participants explored the dataset.

Participants leveraged the visual encoding (i.e., position, color)
to look for discrepancies or items that stood out. All partici-
pants looked at outliers in color (e.g., labeled positive in the
sea of predicted negatives) or outliers in position (e.g., an item
positioned away from the cloud of items in the middle. One
participant (P1) looked at discrepancies between the global
distribution and the local cluster distribution. Some partici-
pants used the cluster treemap to search for a specific cluster
distribution (e.g., cluster with mixed predictions).

All participants, at some point, used the placement of anchors
to define and modify the exploration topology. Most partic-
ipants placed positively associated anchors on one side and
negatively associated anchors on the other side of the visual-
ization. P13 spread out the anchors to see items better. Some
participants overlaid anchors on top of each other to combine



concepts or to strengthen their effects (P7, P11, P12, P16). One
participant (P3) removed anchors because he was not making
any forward progress, and another participant (P16) removed
anchors because he did not understand their meanings. One
participant with a good understanding of BoW similarity (P9)
inspected words in items both close to the anchors and far
away from the anchors.

Participants used the anchors to pull or push items of specific
prediction class, label class, or concept from the cloud of items.
As mentioned earlier, some participants used the anchors to
validate that there were a lot of non-English webpages in the
dataset. Some participants used the labeled items as a way
to validate that the anchors were pulling correct items. Some
participants moved the anchors to create a parallax effect to
see which items were impacted by the anchor or to determine
the effectiveness of anchors they created. Most of the time,
the participants were using the anchors to look for items near
the anchors that were predicted in the opposite class from the
labels of the items in the anchors.

As participants are interacting with anchors, they refined the
anchors to make them more effective. P11 added similar items
to an existing anchor to make the anchor stronger. P9 and
P11 removed items from an anchor because the definition of
the anchor had deviated from its initial intent P4 renamed the
anchor from “cucumber” to “vegetables” because the anchor’s
representative concept evolved over time. Most participants
added items of a similar concept to existing anchors. When the
participants discovered an item and they could not decide on
its label, they added the item to an anchor as a way to collect
similar items and to defer the decision until a later point (P12
- “Cook book can be negative in my opinion, but I’m not sure.
It’s about cooking and maybe it’s related to cooking. Let’s
treat it as positive for now.”).

All the participants navigated into a cluster at some point, but
the intentions varied across participants and contexts. Some
participants (P7, P13) went into clusters of a specific prediction
or label class to look for good items for creating anchors.
Some participants (P1) looked for clusters with discrepancies
between different sources of truths (clusters, the classifier,
and labels). Others (P5, P9) used the clusters to reduce the
search space or to evaluate items in bulk. Once anchors were
created, some others (P3, P15) navigated up and down the
cluster hierarchy to see the anchor’s effects at various levels.

Some participants developed a repeatable process for explo-
ration. The process for P11 was to find negatives around
positive anchors, look at the clusters of mixed predictions near
positive anchors, create appropriate anchors and to repeat the
steps. When the participants reached a saturation point for ex-
ploration in the current view, P9 went back to the root cluster
to start over, and P3 removed anchors to reset the topology.

Classifier Performance
Throughout the process of exploration, some participants were
able to comment on the classifier’s performance. In general,
participants could discover an error or a concept, explore
similar items using anchors, find a whole group of errors (P9 -
“Most of the same webpage [in this cluster]. This whole cluster

seems to be false negative.”), or make general statements about
the concept (P2 - “I guess we’re doing nice for sushi”). P9
said, “I looked first at predicted positives. They all looked to
be reasonable. There’s no pattern there. I concluded there’s
mostly likely not bad precision problem. Most likely recall
problem. Looking at the negatives, indeed, it seems to be a
lot of missed use cases. I found two main categories of false
negatives, mostly the lists of recipes and the more instructional
pages that has a lot of words in them.”

Although our visualization did not provide any debugging sup-
port, participants were able to come up with some explanations
for the classifier’s mistakes. For example, P14 commented that
“cooking blogs are easy to mis-predict” because they share a
lot of words with non-cooking blogs. P10 found an item with
“poems and other mixed things” about cooking and called it a
“grayish area.” P4 found webpages that contain words with
multiple meanings, such as “squash” (a food and a sport),
could be confused with cooking. Some understandings about
how the classifier is learning from tokens was also used. For
example, P11 said, “I think there are few words. That’s why
it’s not able to classify it as recipe.”

DISCUSSION AND FUTURE WORK

Concept Evolution and Feature Discovery
Our evaluation reveals that AnchorViz not only helps users
to find prediction errors, but also supports them in perform-
ing other necessary classifier building tasks. In particular, we
observed that the participants used the anchors to facilitate
concept evolution, which is “the labeler’s process of defining
and refining a concept in their minds [12].” Several partici-
pants used the anchors to collect items that they were unsure
about (e.g., cookbooks, recipe links), deferred the decision for
class assignment, and bulked label the items at a later point.
P13 said the interface is “great for concept discovery and dy-
namic labeling.” This interface can also be used for managing
discovered concepts and “creat[ing] new concepts that can
be shared across people (P12),” and for “hierarchically ex-
pressible classification tasks (P16).” In contrast to previous
approaches to find unknown unknowns, our visualization also
facilitates feature blindness discovery, as P2 commented that
this interface is useful for “finding features I didn’t know about
and finding instance that can represent some useful concepts.”
P13 said, “it was also really useful for discovering items that
were out of scope (e.g., foreign language).”

Anchor Types and Manipulation
In our current design, we explore the use of example items and
determine their similarity in the BoW space. However, creat-
ing an anchor with example items is only one way to define
its corresponding concept. We envision to use other types of
anchors and distance metrics in AnchorViz. For example, in-
stead of creating anchors based on items that users encounter,
the tool can support search to enable direct access to specific
items, and create an anchor based on all items with the given
search terms. This is similar to P10’s suggestion: “keyword
search through the data to find tougher items from intuition
and see where they lie on the interface.” In addition, the tool
can let users specify a set of keywords to compute prevalence



of the keywords or allow defining any arbitrary function that
outputs a normalized score given any item. Furthermore, the
current design treats all anchors equally. It is possible to add
weights to anchors so that users can express their levels of
interests on different concepts. We leave all these directions
for future research.

Integration into Interactive Model Building Loop
A typical iML loop involves selection and labeling of items,
featuring, and training the model in an iterative loop. The eval-
uation in this paper is focused on the selection step of finding
errors that are worth labeling because selecting right examples
is critical to efficient model building process. Though we leave
the evaluation of AnchorViz in iterative iML loop for future
works, we discuss below how such a tool can be incorporated
into all stages of iML.

Once an error is discovered through the tool, labeled and added
to the training set, a new model reclassifies the dataset; the
user could continue to select the next item if there are no
additional training errors or address new training errors by
modifying features or adding new labeled items. For example,
a positive label on a webpage about an edible flower recipe
could be classified as negative even after retraining a model if
the model does not have the appropriate feature representation
for it (i.e., feature blindness error). The system would prompt
the user to provide a feature to fix the error, and upon adding
an “edible flower” feature, the model is finally retrained to
correctly classify the webpage as positive. In addition, the tool
could be useful for bulk labeling of items within an anchor or
items co-located in a topology created by many anchors. Since
the tool supports capturing concepts in the form of anchors,
another use of the tool is for the evaluation of the model
performance at the concept level by looking at the error rate
within the anchor or around the anchor.

Some participants also wanted support for feature debugging.
During the study, participants were making best guesses as
to why the classifier was making a mistake (P16 - “I think
there are few words. That’s why it’s not able to classify it
as recipe.”). Providing feedback about the model’s current
feature set and additional anchor types could remedy this issue.
For example, the user could create an anchor representing the
number of tokens in an item to see if it is indeed true that low
token count correlates with negative prediction.

Furthermore, the anchors contain rich information that could
be used for suggesting useful features or highlighting the dis-
crepancies among an anchor’s items in the current model’s
feature space. After any model-changing action (featuring or
labeling), a new model is trained to reclassify the entire dataset
for the user to evaluate whether the action led to an expected
outcome (e.g., better performance, discovery of new errors).

Interface Improvements
When we asked the participants what they liked about the
interface, participants commented that the interface supported
exploration in an intuitive and fun way. P4 said, “visual in-
spection of outliers is intuitive,” and P6 said that the interface
is “very intuitive when the anchors are meaningful.” P13 liked

the “visualization and self-organization of item space.” P14
commented during the study, “I play too happily with it!”

However, many improvements could be made: P7 wanted to
see a “succinct summary” of the items instead of thumbnails
when she was looking at items around the anchor to see if
there were any obvious errors. Several participants wanted
the ability to select multiple items for bulk labeling or adding
to anchors. Several participants wanted to overlay additional
data into the visualization. For example, a user would search
for keywords and see the highlighted search results against the
current anchor configuration. Instead of using the predicted la-
bel, actual prediction score could be used as color. In addition
to the current filters, participants wanted to filter based on a
range of scores such that they could focus on items around the
decision boundary or with high prediction confidence.

Further Evaluation
So far, we have evaluated the interface for a binary classi-
fication scenario and a fixed dataset. Further investigation
into how the visualization will be used in different contexts
is necessary. While we observed that the visualization can be
useful for general data exploration, it would be helpful to un-
derstand when to promote the interface to people who are less
familiar with ML through evaluating the visualization at dif-
ferent model building stages (i.e., cold start, ready to deploy)
and with models of different performance characteristics (i.e.,
recall, precision, error distribution). Varying the distribution
of positive items or labeled items in the exploration set could
also potentially change the effectiveness of the visualization.
One participant suggested that this tool could be useful for
exploring an image dataset with model features as anchors;
another wished to extend the visualization for multiclass sce-
narios. There is an opportunity to extend the application of
the visualization to different ML problems or data types.

Finding a baseline tool to compare against is a challenge due
to many confounding and complex variables such as choice
of samplers, choice of workflow, and variability in the user’s
abilities (e.g., the ability to feature and debug the model).
Nevertheless, further investigation into comparing the visual-
ization against a baseline is necessary to quantify the benefits
of tool.

CONCLUSION
This paper presents AnchorViz, an interactive visualization
tool for semantic data exploration and error discovery in iML.
Our user study shows that AnchorViz helps users discover
more prediction errors than stratified random sampling and
uncertainty sampling. We have enumerated various explo-
ration strategies used by the participants and discovered that
the participants used AnchorViz beyond its intended usage
with potentials for facilitating concept evolution and feature
discovery. AnchorViz can be extended to support features,
models, and active learning algorithms which opens several
possibilities for future research.
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