
Actor-Oriented Database Systems

Philip Bernstein
Microsoft

ICDE 2018
April 19, 2018

Preview

 Most new services are written as stateful middle-tier applications

 These apps do a lot of data management

 But they are poorly served by data management technology

 There are technical reasons for this

 This is a research opportunity!

2

What’s a Middle Tier?

Frontends
Storage

Middle Tier

3

Clients

Stateful Object-Oriented Applications

 Interactive services are built as a stateful, object-oriented middle tier

 Multi-player games, IoT, social networking, mobile, telemetry

 They comprise a large fraction of new app development

 Naturally object-oriented, modeling real-world objects

 Examples of objects

 Gaming: players, games, grid positions, lobbies, player profiles,
leaderboards, in-game money, and weapon caches

 Social: chat rooms, messages, photos, and news items

 IoT: sensors, virtual sensors (flood, break-in), buildings, vehicles, locations

4

Scenario

 Player logs into game console

 Console connects to cloud service, creating Player object

 Player object connects to a Game-Lobby object

 Game-Lobby runs an algorithm to group players into a Game

 Returns a reference to the Game object to all players

5

Stateful Micro-Services

 Many micro-services are stateful middle-tier apps
 Data ingestion – event streams, real-time analytics

 Workflow – manage long-running jobs, e.g., ETL, resource allocation

 Smart contracts – workflows on blockchains

 Example – merge event streams from 100K servers
 Index them, store them in batches, run standing queries

 To scale out, they’re partitioned by keys or key-range
 Stream ID, workflow ID, contract ID

 A partition is identified by a key = object

6

Application Properties

 Objects are active for minutes to days, sometimes forever

 App manages millions of objects, streams, images, and videos, and
huge knowledge graphs.

 App does heavy computation: complex actions, render images,
standing queries, compute over graphs, …

 App does heavy communication: high-bandwidth message streams

7

System Properties

 Service is highly available

 Scale out to large number of servers

 Compute servers must scale out independently of storage servers

 . . . and independently of communication servers

 Geo-distributed for worldwide low-latency access

8

Middle-tier Objects Comprise a Distributed DB

 Many (but not all) objects are persistent

 Player is persistent, Lobby is not

 Active objects are in-memory for fast response

 Latest state is in main memory. Storage might be stale

 Sensor object persists state periodically

9

Actor Systems

 Many of these apps are implemented using actor systems

 Simplifies distributed programming

 Actors are objects that …

 Communicate only via asynchronous message-passing

 Messages are queued in the recipient's mailbox

 No shared-memory state between actors

 Process one message at a time

 No multi-threaded execution inside an actor
10

Orleans Actor Programming Framework

 Orleans is an open-source actor framework in C#
 https://dotnet.github.io/orleans/

 Invented the Virtual Actor model

 Like virtual memory, actors are loaded and activated on demand

 Deactivated after an idle period

 Supports scalability by load-balancing objects across servers

 Supports fault-tolerance by automatically reactivating failed objects

11

Orleans Programming Model

 Actor is fully-encapsulated and single-threaded

 Each class has a key, whose values identify instances

 Game, player, phone, device, scoreboard, input stream, workflow, etc.

 Asynchronous RPC

 Key.Method(params) returns a “task” (i.e., a promise)

 Await Task - blocks the caller until the task completes

 .NET has language support for this (Async-Await)

12

Calling an Actor’s Method

13

Client PlayerA Storage
PlayerKeyA.Move()

Orleans Runtime

Lookup PlayerA’s location
If (PlayerA is active)

{ invoke PlayerA.Move }
Placement

Strategy
else { activate PlayerA on some server S;

invoke PlayerA’s constructor;
invoke PlayerA.Move at S }

Fault Tolerance

 Actor can save state at any
time, e.g., to storage

 Runtime automates
fault-tolerance

 Orleans magic:
A fault-tolerant DHT that
maps actor-ID to server-ID

14

public class Account
{
int balance;

Task Withdraw(int x);
{ if (balance >= x)

{ balance = balance – x;
Save State;
return (1);

else return (0);
}

}

Good news / Bad news

 Good news

 The virtual actor model automates scalability and fault tolerance

 Bad news

 App is responsible for managing its state

 Let’s help them out!

15

Actor-Oriented Database System (AODB)

 Indexes

 Transactions

 Queries

 Streams

 Views

 Triggers

 Replication

 Geo-distribution

16

Frontend
Clients

Transactions

Persistence

Geo-
distribution

Indexing

Actor
Middle-Tier

AODB
Plug-ins

Cloud
Storage

Examples

 Index – Get all players in Paris

 Transaction – Player X buys a kryptonite shield

 Query – Get all players in Paris who are playing Halo with 8 other players

 Stream – Watch player actions, looking for players who might be cheating

 View – the number of active instances of each game

 Trigger – notify a chess player when the other player made a move

17

AODB’s Distinguishing Features

 Developer friendly - Compatible with actor framework’s programming model

 Elastically scales out to hundreds of servers

 Data is in-memory and on cloud storage

 Works with any cloud storage system

 Files, BLOBs, KV store, document (JSON) store, SQL DBMS

18

Been There, Done that

 Object-oriented database

 Persistent programming language

 Object-to-relational mapper

 Application server

 Main memory database

 Graph database

19

Object-Oriented Database

 C++ objects are mapped to persistent storage

 Gemstone, Vbase, ObjectStore, O2, Objectivity,
ONTOS, Versant, …

 ODMG standard

 Target markets: CAD, telecom, scientific apps

 Like AODB, it’s compatible with the OO
programming language

 Unlike AODB, it’s targeted at workstation apps,
all shared state is in a custom storage system

20

Persistent Programming Language

 Annotate some program variables as persistent

 Variation: Persistence by reachability

 Very similar to OODB’s, but driven from a PL viewpoint

 Typically, the app runs in one OS process

 Negligible commercial market

 Examples – PS Algol, Galileo, Argus

21

Object-to-Relational Mapper

 Map OO classes to relational tables

 Translate queries and updates on classes into SQL on tables

 They’re popular, but only target SQL databases, no distributed transactions, …

 Examples – Hibernate, .NET Entity Framework

22

Application Server

 Middle-tier objects communicate with DB’s

 OLTP monitors (1970s & 80s) -> .NET transactions, J2EE (1990s)

 Each class executes as an OS process (not actor-oriented)

 multi-threaded

 synchronous RPC

 Static mapping of classes to servers

 Offers distributed transactions over DBMS’s that support XA interface

 Offers dynamic SQL or an object-to-relational mapper

23

Main Memory Database

 Like AODB, state is in main memory

 Unlike AODB . . .

 Manages records, not objects

 Not integrated with OO programming language

 Doesn’t scale to large number of servers

24

Graph Database

 Nodes are passive data, not active objects

 Could be a storage target for actors

25

Why do it again?

 Different combination of requirements …

 Scalable to large number of servers

 Highly available

 Uses cloud storage

 Storage independence

 Geo-distributed for worldwide low-latency access

26

Scalability Implies …

 Limited ability to co-locate functionality

 Functionality must be parallelizable

 Scale-out is more important than a fast path

27

High Availability Implies …

 Tolerates server failures

 Fast recovery from failure

 Add or remove servers without shutting down

 Best effort to tolerate storage unavailability

28

Storage Independence Implies …

 Works with any cloud storage system

 Works for persisted and non-persisted objects

 Doesn’t require DB-feature-support by the storage system

 Should benefit from DB-feature-support by the storage system

 Copes with latency of cloud storage

29

It’s a Tall Order

 Elastically scale out to hundreds of servers

 Data is in-memory and on cloud storage

 Works with any cloud storage system

 Works for persisted & non-persisted objects

 Limited ability to co-locate functionality

 Tolerates server failures

 Fast recovery from failure

 Functionality is parallelizable

 Scale-out is more important than a fast path

 Add/remove servers without shutting down

 Tolerates storage unavailability

 Doesn’t need built-in storage system support

 Benefits from a storage system’s built-in support

 Copes with latency of cloud storage

30

Let’s Explore Features

 Transactions

 Geo-distribution

 Indexing

 Queries

31

Transactions

 Programming model

 App server model is fine

 Performance challenges

 No shared log

 Cloud storage latency

 Object migrate between servers

 Many/most transactions are distributed

32

public interface IAccountActor
{

[TransactionOption.Required]
Task Withdraw(uint amount);

[TransactionOption.Required]
Task Deposit(uint amount);

[Transaction(TransactionOption.Required)]
Task<uint> GetBalance();

}

Transaction Implementation

33

Transaction
Root Object

Object Object Object

Transaction
Manager

 TM coordinates 2PC

 Objects are participants

Early Lock Release

 Problem: object remains locked until it receives Commit

 When object o receives Prepare, it releases T1’s lock

 If T2 reads/writes o, it takes a “commit dependency” on T1

 TM commits transactions in dependency order

 When T2 terminates, it releases locks, allowing T3 to read/write o. Etc.

 Cascading abort is possible only due to server failure

 When T1 commits, [T2, T3, …] prepare in a batch (= group-commit).

34

Early Lock Release (cont’d)

 Benefits

 Conflicting transactions execute in parallel with 2PC

 Enables group commit without a shared log

 Up to 20x throughput improvement

 Single-object transaction must ask TM to validate its dependency

35

Solution: One TM per Object

 Single-object transactions resolve dependencies locally

 Other benefits

 No central TM bottleneck or single point-of-failure

 Less configuration complexity

 TM’s are naturally geo-distributed, with the objects

36

Geo-Distribution [OOPSLA 2017]

 Extend single-instance invariant world-wide

 Requires a global mutual-exclusion protocol on actor activation

 Multi-master replication

 Programming model – eventually linearizable

37

Versioned Actor

38

Confirmed

State

Tentative State

Update

Global

State

Actual

State

R
e

m
o

te
Lo

ca
l

Application Code

Update

Update

 Updates are specified as functions and
queued locally

 App sees a local state and global state
of each actor

 Can read confirmed state

 Optionally with local updates applied

 Can read global state with local
updates applied (slow)

Versioned Actor

39

Confirmed

State

Update

Global

State

Actual

State

R
e

m
o

te
Lo

ca
l

Application Code

Update

Update

 Updates are applied asynchronously
to the global state

Versioned Actor

40

Confirmed

State

Global

State

Actual

State

R
e

m
o

te
Lo

ca
l

Application Code
 All changes to global state are pushed

to confirmed state

 Updates are removed from queue when
confirmed

Indexing [CIDR 2017]

 Each Orleans class has a
unique key

 Support indexing of other
members

41

public class PlayerProperties
{

public int Rank { get; set; }

[Index]
public string Location { get; set; }

}

public interface IPlayer :
IndexableActor<PlayerProperties>

{
Task Move(Direction d);

Task<string> GetLocation();
}

Indexing Examples

 Ensure every player has a unique email address

 Offer an ad hoc tournament to all Halo players who are on-line

 Identify all players with weapons stashes in a given location

 Survey all players who logged in after 3PM today

42

Index Requirements

 Can index persistent and non-persistent actors

 Leverage actor storage that supports indexing

 Works if storage does not support indexing

 Can index active actors only

 Both hashed and B-tree indexes must scale out

 Plus unique indexes, transactional consistency, fault tolerance, …

43

Queries over Actors

 Extent – all actors of a class, all active actors, explicit collection, and index

 Split execution between active and inactive actors

 Joins and aggregates

 Reward the player with the best score in the last 15 minutes of a Microsoft game

 Materialized views – can use mid-tier caching technology

 Streams – Dynamically reconfigure distributed operators

 Triggers – for reactive applications

44

Summary

 Developers of mid-tier stateful applications need our help

 Whatever database topic interests you, there’s an opportunity to help

45

Bibliography Acknowledgments

 P.A. Bernstein, M. Dashti, T. Kiefer, D. Maier:
Indexing in an Actor-Oriented Database.
CIDR 2017

 P.A. Bernstein, et al.: Geo-distribution of
actor-based services. PACMPL 1 (OOPSLA
2017)

 T. Eldeeb, P. Bernstein, “Transactions for
Distributed Actors in the Cloud”, MSR-TR

 P.A. Bernstein, S Bykov, A. Geller, G. Kliot, J.
Thelin: Orleans: Distributed Virtual Actors
for Programmability and Scalability, MSR-TR

 Sebastian
Burckhardt

 Sergey Bykov

 Natacha Crooks

 Mohammad Dashti

 Tamer Eldeeb

 Jose Faleiro

 Alan Geller

 Tim Kiefer

 Alok Kumbhare

46

 Gabriel Kliot

 David Maier

 Christopher
Meiklejohn

 Muntasir Rahman

 Vivek Shah

 Adrienne Szekeres

 Jorgen Thelin

 Alejandro Tomsic

47

