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Abstract

Curriculum learning strategies are known
to improve the accuracy, robustness
and convergence rate for various lan-
guage learning tasks using deep archi-
tectures (Bengio et al., 2009). In this
work, we design and experiment with
several training curricula for two tasks
– word-level language detection and lan-
guage modeling – for code-switched text
data. Our study shows that irrespective of
the task or the underlying DNN architec-
ture, the best curriculum for training the
code-switched models is to first train a net-
work with monolingual training instances,
where each mini-batch has instances from
both languages, and then train the result-
ing network on code-switched data.

1 Introduction

Code-switching (CS) refers to the linguistic phe-
nomenon of fluid alternation between two or more
languages during a single conversation or even an
utterance (Myers-Scotton, 1993). It is observed in
all stable multilingual societies (Auer, 1995) and
recent studies have shown that social media posts
from such societies almost always contain small
to moderate amount of CS (Bali et al., 2014; Dor-
leijn, 2016; Molina et al., 2016; Rudra et al., 2016;
Rijhwani et al., 2017). For instance, Rijhwani et
al. (2017) shows that 2-12% (3.5% on average)
of the tweets from the cities around the world are
code-switched. It is therefore imperative to build
speech and text processing technologies that can
handle CS. Indeed, quite some amount of effort
is being invested towards technology for CS (see
Diab et al. (2014; 2016), Sharma et al. (2015), and
references therein).

It is of theoretical and practical interest to pon-
der on the question: whether for a particular NLP
task (say ASR, MT or POS Tagging), it is pos-
sible to build CS models only from pretrained
monolingual models or monolingual training data?
Indeed, several studies in the past (Solorio and
Liu, 2008; Vyas et al., 2014; Gadre et al., 2016;
Gonzalez-Dominguez et al., 2015) have proposed
techniques for combining monolingual models or
training data coupled with a little amount of CS
data to build models of CS text or speech. These
techniques have reported promising results. How-
ever, all these studies, except (Johnson et al., 2016;
Rijhwani et al., 2017; Chan et al., 2009), have tried
to combine the outputs of pre-trained monolingual
models in intelligent ways. On the other hand,
one might ask whether a single system trained on
monolingual data from both the languages would
be able to handle CS between these languages?
And, if we also had a little amount of CS data,
how best to use it during the training process?

In this paper, we explore various training strate-
gies, also known as Curriculum (Bengio et al.,
2009) for DNN-based architectures for code-
switching. In particular, we design a set of strate-
gies or curricula involving various ordering of the
monolingual and CS data. We experiment with
these curricula for Language Identification (LID)
and Language Modeling (LM) tasks. Our study
shows that the best curriculum across the tasks as
well as DNN architecture is the same one: first
train a network with monolingual instances alter-
nating between the languages, and then train the
resultant network with CS data, if available. The
models trained solely with monolingual data also
achieve reasonably high accuracies.

As far as we know, this is the first study on cur-
riculum design for CS. Our study has two impor-
tant implications: first, it shows that it is possible
to train models for CS using primarily monolin-



gual data; this obviates the need for creation of
large amount of CS datasets. Second, it also brings
out the fact that training curriculum is extremely
important while building CS models from mono-
lingual data, and there seems to be an ideal way
of ordering the training examples that works best
across tasks and network structures.

2 Background and Motivation

In this section, we present a typology of the
monolingual model combination strategies for CS,
through which we will motivate the central idea of
this work.

2.1 A Note on Terms

It is important to differentiate between inter-
sentential and intra-sentential CS. The former
refers to a situation where each sentence (or some-
times clause) is in a single language, but the lan-
guage might change across the sentences. On
the other hand, intra-sentential CS, which is also
sometimes called Code-mixing, refers to a situa-
tion where words in the same sentence/clause can
be drawn from multiple languages.

Tasks that operate on sentence level context
(like POS tagging, ASR and MT) do not re-
quire any special technique for handling inter-
sentential CS, except LID and sentence bound-
ary detection. However, intra-sentential CS is
more challenging to handle, and will be our pri-
mary focus. In this paper, the terms monolin-
gual model and monolingual data will be used for
cases where the data was collected and the model
was built assuming that the input will be only in
a single language. Such datasets might also con-
tain some borrowed words and text in other lan-
guage(s). On the other hand, we will use the term
CS data to imply datasets where all instances con-
tain intra-sentential CS, even though most of the
datasets released in the past for training CS mod-
els, e.g., (Molina et al., 2016; Das, 2016; Sequiera
et al., 2015b), do contain fair amounts of monolin-
gual and inter-sentential CS. The term CS model
will be used for systems that can handle monolin-
gual, inter-sentential as well as intra-sentential CS.

2.2 A Taxonomy of CS Models

In order to succinctly represent the various types
of CS models proposed in the literature, we will
use the following notation. Let l1 and l2 be two
languages. Let x denote the input string, usually

a sentence, i.e., string of tokens, in l1, l2 or l12,
i.e., l1 ↔ l2 code-switched. Let y be the output
string of tokens in a target language (as in MT,
ASR or POS tagging). Let gi and fi denote mod-
els trained on data from li. Further, we describe a
special function lid(x) which returns the string of
language labels for each word; lid1(x) and lid2(x)
are projection functions which returns only those
tokens of x that are in l1 and l2 respectively.

CS models described in the literature can be
broadly categorized into the following four classes
(in descending order of amount of CS data re-
quired for training).

Purely Supervised Models: When a large
amount of annotated CS data is available, a super-
vised model can be learnt simply from the mono-
lingual and CS data. Thus,

y = g1∪2∪12(x) (1)

These models often use features or extra in-
formation specific to CS, but do not particularly
modify the training process or system architecture
for handling CS. This approach has been applied
to language identification, e.g., most submissions
in the LID shared task in the Computational Ap-
proaches to Code-Switching Workshops (Solorio
et al., 2014; Molina et al., 2016); to POS tagging,
e.g., most submissions in the ICON 2016 shared
task on CS POS tagging (Das, 2016) and also (Ja-
matia and Das, 2014; Jamatia et al., 2015); and to
ASR (Gebhardt, 2011).

Combining Monolingual Models: In this ap-
proach, the output of two monolingual systems
on x is used as features for a third model (f12 in
Eq. 2). This third model f is trained on a small
amount of CS data, and can use other features
which often includes LID output.

y = f12(g1(x), g2(x), lid(x)) (2)

Solorio and Liu (2008) proposed this architec-
ture for POS tagging of English-Spanish CS data,
and Lyu et al. (2006) proposed a similar model
for ASR. Both reported significant gain over the
monolingual models by using very little CS data.
Later works, such as (Sequiera et al., 2015a),
along this line also reported promising results.

Divide and Conquer: In this approach, the in-
put is first passed through a LID system and split
into parts according to the language of the tokens.
The token strings are then passed on to the respec-
tive monolingual systems and the outputs are com-
bined (shown as the operator ⊕ in Eq. 3)



y = g1(lid1(x))⊕ g2(x)(lid2(x)) (3)

This approach does not require any CS training
data, but it does not work well for intra-sentential
CS because splitting by language can lead to loss
of context especially at the code-switch points.
However, some benefits of this approach have
been shown for POS tagging (Vyas et al., 2014),
MT (Gadre et al., 2016) and ASR (Lyudovyk and
Pylypenko, 2014) respectively.

Zero Shot Learning: This is an extreme case,
where only monolingual data from two or more
languages is used to train a single system with the
hope that it will work for CS data as well.

y = g1∪2(x) (4)

A recent work (Rijhwani et al., 2017) uses this
technique very effectively for developing an LID
system for 7 languages. While no annotated CS
data is used for training, the system uses unlabeled
data that is expected to contain CS data, for unsu-
pervised training. Johnson et al. (2016) trains a
neural MT system with data from two pairs of lan-
guages, l1 ⇔ l2 and l1 ⇔ l3 and show that the
resultant model not only works for l2 ⇔ l3 (the so
called “zero shot learning” but also for CS input in
these languages, albeit to a limited extent.

Factors such as lack of large-scale CS datasets,
possibility of CS between any pair (or even triplet)
of languages (which in turn implies the need for
nearly a quadratic number of such datasets) and
the difficulty in creation of CS datasets owing
to the requirement of skilled multilingual annota-
tors make Zero Shot Learning a very lucrative ap-
proach CS. However, we do not know of any work
that systematically explores the various training
strategies and effective use of CS data in the con-
text of Zero Shot Learning.

3 Training Curricula for CS

Originally proposed by (Elman, 1993), Curricu-
lum learning refers to a sequence of weight distri-
butions over the training example, such that during
the training process certain examples are used with
higher weight at the initial stages of the training
and other examples are used later (Bengio et al.,
2009). In general, it is believed that for complex
non-convex optimization problems, training with
simpler examples first and introducing the com-
plex examples at later stage has distinctive bene-
fits. Empirically, it has shown promising results
for several NLP tasks like parsing (Spitkovsky

et al., 2009) and language modeling (Bengio et al.,
2009; Graves et al., 2017). Shi et al. (2015)
describe curricula for domain adaptation of Lan-
guage Models, in which they order the data such
that general data is presented to the RNN first, fol-
lowed by in-domain data.

In principle, the purely supervised (Eq. 1)
and the zero shot learning approaches (Eq. 4)
should benefit from curriculum based training. It
is well known that proficient bilingual children
learn to code-switch without any exposure to CS
data (Cantone, 2007). This leads us to explore var-
ious curricula for training with monolingual and
CS data. While complexity of training instances
can be defined across various dimensions, in this
study we will restrict ourselves to only one aspect
of the curriculum design - the language(s).

Let T1, T2 and T12 be respectively the set of
training examples in l1, l2 and intra-sentential CS
between l1 and l2. We will use the notation Ti;Tj

to indicate a basic curriculum where the system is
trained with all instances from Ti first, and then
with instances from Tj . Similarly, {Ti, Tj} will be
used to indicate the curiculum where the system is
trained with instances from Ti and Tj simultane-
ously; in the context of deep learning, this means
each mini-batch contains samples from Ti and Tj

(ideally, but not necessarily, in a ratio |Ti| : |Tj |).
Based on the ordering of the training in-

stances, we define 7 different curricula: (C1)
T1;T2 (C2) T12;T1;T2 (C3) T1;T2;T12 (C4)
{T1, T2} (C5) T12; {T1, T2} (C6) {T1, T2};T12

(C7) {T1, T2, T12}. We consider the curricula (C0)
T12 (i.e., training with only CS data) and C7 (i.e.,
all instances randomized1) as the two baselines.

In the next two sections, we will describe ex-
periments with these curricula for deep learning
models applied to two tasks – Language Identifi-
cation (LID) and Language Modeling (LM), both
for English (En) and Spanish (Es) CS.

4 Language Identification

Along the lines of (Rijhwani et al., 2017), we de-
fine word-level LID as a sequence labeling prob-
lem, where each token in the input sentence is la-
beled with one of the three tags: l1, l2 and X
(meaning “none of the languges”, such as num-
bers, punctuations, urls and hashtags). In the

1Strictly speaking, in C7 we ensure that in each mini-
batch there are training instances from T1, T2 and T12 in cer-
tain fixed ratio.



Language Train Dev Test
En 1240k 1006 13542
Es 1240k 1119 4874
En-Es 17.5k 750 8678

Table 1: Datasets for LID (in number of words).

following subsections, we describe the datasets,
DNN architecture, and experimental results.

4.1 Datasets
All our experiments are done on En and Es tweets,
which are primarily drawn from two existing
datasets: (Rijhwani et al., 2017) for monolingual
training data, and (Solorio et al., 2014) for CS
training data, and all dev and test datasets. Since
we define LID as a classification problem, we con-
sider each word with its context as an instance
(instead of each tweet as an instance). Further,
we differentiate between CS and monolingual in-
stances as those where the context (a window of 2k
words around the target word) has or does not have
a code-switch point, respectively. Table 1 summa-
rizes the size of the datasets. There are total 1328
switching points in the CS test data.

4.2 DNN Architecture
Fig. 1 shows the architecture of the DNN for
LID. The model takes 2k + 1 word window in-
put with target word at the center, and predicts the
language of the target word. In this word-context
block, all the input words are projected into a
dw dimensional word-embedding space. The em-
bedding vectors of the k words in the left and
right contexts are averaged separately. These left-
average, right-average and the current word em-
bedding are merged into one 3dw dimensional vec-
tor. This vector is passed to an intermediate Dense
layer (with ReLu activation) of dim dimension. To
speed up the convergence of the network, we add
a batch normalization layer. Also, a dropout layer
with 0.3 probability is introduced to prevent over-
fitting. Finally, a softmax layer with two nodes,
one for each language, l1 and l2, is used for pre-
dicting the output.

We define another architecture - the Char-LID
model where this basic LID model is augmented
with a character-context block (as shown in the
dashed box in the Fig. 1). We embed charac-
ter tri-grams into a dc dimensional space; an av-
erage of all the character tri-grams of the target
word is then concatenated with the embeddings of

Figure 1: DNN achitecture for LID

the first and last trigrams to generate a 3dc dimen-
sional character-representation vector of the target
word. In the Char-LID model, this vector is con-
catenated to the aforementioned 3dw dimensional
word vector, and is fed as the input to the interme-
diate dense layer. Rest of the network is identical
to the LID model. We expect the Char-LID model
to work better for out-of-vocabulary words.

4.3 Experiments

The networks were implemented, trained and
tested using the Microsoft’s Cognitive Toolkit
(CNTK)(Yu et al., 2014). For all our experiments,
we set2 k = 3, dw = 100, dc = 40, dim = 140,
and dropout rate = 0.3. The networks are trained
using mean square error loss and Adadelta SGD
under default parameter settings of CNTK. The
word and character vectors were initialized uni-
formly randomly.

Note that we do not use the DNN to predict the
X labels, as these are identified through regular
expressions during the pre-processing of the data
and are never used as target words during training
or testing. Details of how we handle the special
and boundary cases (e.g., out-of-vocabulary words
and contexts for target words in the beginning and
end of a sentence) are discussed in the supplemen-
tary material.

For each curriculum, we train the models for 20
epochs and choose the model that has maximum
overall accuracy on the dev set. For curricula in-
volving interleaving of instances of different types
(e.g., C4 to C7), we presented the training data

2Experiments with different values of these parameters
led us to these numbers which seem to work well.



Curriculum All En-Es En Es
LID Model

C0: T12 89.1 86.6 89.1 93.4
C1: T1;T2 37.0 48.3 17.8 70.3
C2: T12;T1;T2 35.4 54.2 0.1 100
C3: T1;T2;T12 84.1 78.0 95.5 63.6
C4: {T1, T2} 94.7 87.0 99.6 96.3
C5: T12; {T1, T2} 94.8 86.7 99.3 96.7
C6: {T1, T2};T12 95.1 89.1 98.8 95.8
C7: {T1, T2, T12} 94.4 87.7 97.5 97.4

Char-LID Model
C4: {T1, T2} 95.5 87.6 99.7 97.7
C5: T12; {T1, T2} 95.5 87.3 99.7 98.4
C6: {T1, T2};T12 97.1 93.7 98.7 98.3
C7: {T1, T2, T12} 96.2 89.6 99.7 98.2

Table 2: Curriculum training accuracies (in %) for
LID and Char-LID models. The maximum accu-
racy for the models are in bold and are statistically
significantly higher (p < 0.001) than all other val-
ues in the column for that model.

to the network in randomized order. Thus, every
minibatch is expected to contain the instances in
ratio |T1| : |T2|. Since the |T12| training data is
significantly low compared to |T1| and |T2|, we
oversample T12 by replicating the data 10 times
for curriculum C7. For curricula that involves or-
dering of inputs by blocks (all except C4 and C7),
we first train on the first block of instances for 20
epochs and choose the best model which is trained
on the next block of instances for 20 epochs.

4.4 Results

In Table 2 we report the l1 and l2 labeling accuracy
on the En, Es and En-Es CS test sets, as well as
the combined accuracy (column 1) on all the test
instances. Due to the significantly poorer perfor-
mance of C1, C2 and C3 for the LID model, these
experiments were not conducted for the char-LID
model. For C0, overall accuracy for the Char-LID
model is 94.5% (Table 3).

The key observations from Table 2 are: (a) cur-
riculum C6 is most effective across the models; the
performance on CS set increases significantly with
only a marginal drop in accuracy on the monolin-
gual data; (b) C6 achieves an 11% (55%) and 23%
(47%) error reduction over the baseline curriculum
C7 (C0) for the LID and Char-LID models respec-
tively; (c) The improvements are highly significant
at p < 0.001 for a paired t-test, which implies that

C6 is able to correct labeling errors made by C7
and other curricula, and hardly makes new label-
ing errors; (d) Providing the CS training data as the
last block is much more effective than providing it
in the beginning or distributing it over the entire
training curriculum; (e) On the other hand, mixing
of monolingual data is more effective than provid-
ing them in block; (f) Finally, it is also interest-
ing to note that curriculum C4, where only mono-
lingual training data is used, achieves reasonably
high accuracies.

We manually inspected around 100 erroneously
labeled words by the best C6 model. There are
three noticeable error patterns: (a) errors around
an X tag (approx. 15%), (b) errors at or near the
interjections such as ”haha”, ”jaja”, ”lmao” etc.
(approx. 15%), and (c) errors near the code-switch
point and sentence boundaries (approx. 25%).
Rest of the errors didn’t have any noticeable pat-
tern, though we also discovered that some of the
system labels classified as errors were actually
correct and rather the gold standard label was in-
correct (approx. 5%).

We also conduct two auxiliary sets of exper-
iments to understand the effect of the ratio of
monolingual training instances (|T1| : |T2|) and
that of the CS data to monolingual data (|T12| :
|T1 ∪ T2|). In the first experiment, we train the
LID model where we vary the percentage of train-
ing instances used from the En and Es monolin-
gual datasets. The results are shown in Fig. 2. In
the x-axis, we plot the percentage of training in-
stances used from the En and Es training sets dur-
ing each experiment, where En fractions (the first
value in the tuple) increases from right to left, Es
fractions (the second value) from left to right. It is
evident from the plot that the system performance
is not strongly sensitive to the ratio of |T1| : |T2|.
Rather, it is more sensitive to the absolute amount
of data available for training; when the data for
either T1 or T2 drops significantly (less than 1%
of the training set here, as in the extremes of the
plot), the accuracy is affected significantly.

In the second set of experiments, we train the
Char-LID model with curriculum C7. We vary the
monolingual and CS training data independently
and report the accuracies on the entire test set for
each setup in Table 3. The trends, as expected,
shows diminishing marginal utility for both mono-
lingual and CS datasets. Nevertheless, we note
that the marginal utility of monolingual data is



Figure 2: en-es Skew experiment using Curricu-
lum C4 in LID model

% of % of |T1| and |T2|
|T12| 0 0.1 1 10
20 89.5 93.3 94.4 95.8
50 92.5 93.6 95.4 95.9
100 94.5 93.3 95.1 96.1

Table 3: Overall accuracy of the Char-LID model
for C7 with varying amounts of training data.

much more pronounced (i.e., systematic increase
of accuracy in each row from left to right) than that
of CS data. This could be because of much higher
sizes of the monolingual training sets as compared
to the CS dataset.

We have also conducted some of these experi-
ments with English-French CS data, which shows
similar trends. Reader may refer to the supple-
mentary material for more details.

4.5 Related Work on LID

There have been many works on LID for CS.
See (Solorio et al., 2014; Molina et al., 2016; Rijh-
wani et al., 2017) and references therein. Two sys-
tems (Samih et al., 2016; Jaech et al., 2016) sub-
mitted in the shared task on language detection in
EMNLP 2016 use deep learning based techniques.
Samih et al. (2016) uses LSTMs on top of word
and character context with a CRF classifier and
achieves an accuracy of 96.3% on the same En-Es
test set. Jaech et al. (2016) uses only the character
sequence data with stacked CNNs to create a word
embedding. Then it creates a global context by
adding a bi-directional LSTM on top of it. Their
system achieves 94.6 average F1 score for En-Es.
Chang and Lin (2014 describes an RNN based sys-
tem which is trained and tested on the EMNLP

2014 shared task dataset. This system outperforms
all the submitted systems in that shared task.

The EMNLP shared task dataset had 6 labels in-
cluding named entities and mixed language words
which we did not consider in this work. Therefore,
even though we evaluate on the same dataset, the
accuracies are not directly comparable. However,
since majority of the tokens are labeled En and Es,
our results are certainly comparable to these state-
of-the-art systems. Rijhwani et al. (2017) uses
HMM model initialized by monolingual data and
retrained it on unlabeled data using Baum-Welch
algorithm. It achieves an average F-1 score of
97.8% for En and Es labels, which is only slightly
better than our best performing system. However,
the models described here do not use the unlabeled
data, incorporating which could be an interesting
future direction for this research.

5 Language Modeling

Statistical Language Models estimate the prob-
ability of a word sequence given a large train-
ing corpus. Language Modeling has applica-
tions in various NLP and Speech processing tasks,
most notably in MT and ASR. In this section,
we describe experiments on building En-Es code-
switched LM.

5.1 Datasets

Similar to our LID experiment datasets described
in Table 1, we use the En and Es monolingual
tweets from (Rijhwani et al., 2017) (described as
the weakly-labeled data in the paper), and the
language-labeled CS data from (Solorio et al.,
2014) for training. However, unlike the LID ex-
periments, here a tweet, rather than a word, is con-
sidered as an instance; any tweet with CS is a part
of the CS training instance. Since we do not need
the language labels for the LM training experi-
ments, the tweets were stripped off those labels.
We used 212k En tweets, 92k Es tweets and 798
En-Es CS tweets as training data. The amount of
CS data used is a very small fraction (0.2%) of the
size of the monolingual data and the amount of En
data is more than double the Es data.

We also created a held-out test set for the LM
experiments, which consists of 2200 En-Es tweets
that were automatically tagged as code-switched
by our best En-Es LID system described in the
previous section. We use the standard evaluation
metric − perplexity (PPL) on the held-out test set



− to compare the LMs (lower the better).

5.2 Models
We train both RNNLMs and ngram language mod-
els on the same data to compare their perfor-
mances on various training data curricula.

We use the RNNLM toolkit (Mikolov et al.,
2011) to train and test all our RNNLM models.
The ngram models are also built with the same
toolkit, which invokes the SRILM toolkit (Stolcke
et al., 2002). During our initial experiments on
finding the appropriate curriculum for training CS
LMs, we use the single iteration recipe provided
in the RNNLM toolkit. In this setting, the learn-
ing rate is manually set to decrease after 4 epochs
and no validation data is used.

We then use the regular LM training recipe in
the RNNLM toolkit that makes use of a validation
data set. We adjust the values of various hyper-
parameters in our experiments. One crucial pa-
rameter we adjust is the number of classes (700),
according to a rule of thumb saying that the num-
ber of classes should be approximately the square
root of the vocabulary size. By doing this, we sac-
rifice accuracy for speed of training our models;
since the aim here is to analyze the trends rather
than look at the absolute values, we believe this is
a reasonable policy. Our models have a very large
vocabulary size owing to the presence of two lan-
guages and also due to large amount of spelling
variations found in tweets. For the experiments
with a single iteration, our models have 150 hid-
den layers. Other hyper parameters are kept at
their default values in the corresponding recipes
in the RNNLM toolkit. In our final experiments
with the full iteration recipe, we used CS data as
validation and 100 hidden layers.

5.3 Experiments
We experiment with all the training curricula de-
scribed in Sec. 3, except C5 because from our ex-
periments with C2 and C3, we find that adding CS
data at the beginning produces worse results. For
experiments involving {T1, T2} (i.e., curricula C4
and C6), we provide the input by interleaving the
tweets from T1 and T2. Since En has almost twice
as many tweets as Es, the extra En tweets that re-
main after interleaving all the Es tweets, are sim-
ply appended to the training set. Finally, since we
have very little CS data as compared to the mono-
lingual data, for curriculum C7 we replicate the
entire T12 dataset after every 10k instances from

{T1, T2}. Thus, we use 30 replicas of {T12} in
this curriculum. In addition to these curricula, we
also build a baseline using only CS data (C0).

We build all the six models using the RNNLM
single iteration setting first. Then, we build mod-
els for the best performing curriculum using the
multiple iteration recipe. In addition, we build 5-
gram models for all the 6 curricula and the C0
baseline. However, since ngram models do not de-
pend on the ordering, there are only four unique
corpora for training them: (1) with only monolin-
gual data: T1 ∪ T2, which is comparable to the
models for curricula C1 and C4; (2) with monolin-
gual and CS data without replication: T1∪T2∪T12,
which is comparable to RNNLMs built using cur-
ricula C2, C3 and C6; and (3) monolingual data
and with replicated CS data3: T1 ∪ T2 ∪ 30 · T12,
which is comparable to the RNNLM trained using
curriculum C7 (4) only code-switched data T12,
which is comparable to the RNNLM trained using
only CS data (comparable to C0).

5.4 Results
Table 4 shows the results of the LM experiments in
terms of perplexity on the held-out test set. As we
see from the numbers in first column, the best per-
forming RNNLMs are those that are trained ini-
tially with monolingual data and then trained with
CS data (C3 and C6). The model that is trained
initially with CS data and then with monolingual
data (C2) performs as badly as the model that was
trained with only monolingual data in blocks (C1).
In addition, training models with alternate mono-
lingual sentences gives better performance (C4,
C5) than training it with large chunks of mono-
lingual text (C1, C2). Training with monolingual
and CS data using curricula C3, C6 and C7 out-
performs the CS-data only baseline (C0). Also,
C4, that uses alternate sentences of monolingual
data outperforms this baseline, probably due to the
large difference in data size between the monolin-
gual and CS data.

Although the PPL values for the RNNLM are
very high, one must note that the test set consists
entirely of CS sentences, whereas the amount of
”in-domain” (i.e., CS) data used in training is very
low (0.2%). To improve our models, we build the
best performing model, the one corresponding to
C6, with multiple iterations; the PPL value for it is

3Since ngrams models strongly depend on frequency of
occurrence, we represent this using a slight abuse of notation
to indicate 30 replications of the T12 set



Curriculum RNNLM Intpl.
C0: T12 27443 477
C1: T1;T2 46628 1120
C2: T12;T1;T2 44516 609
C3: T1;T2;T12 7987 358
C4: {T1, T2} 9749 771
C6: {T1, T2};T12 6533 (4544) 320 (298)
C7: {T1, T2, T12} 23384 673

Table 4: Perplexity results for RNNLM and inter-
polated RNNLM+ngram LM. Values in parenthe-
sis are for the multiple iteration model.

shown within parenthesis.
Table 4 (column 2) also shows the PPL for

models obtained by interpolating the probabilities
given by RNNLM and the 5-gram LM. The in-
terpolation coefficient is kept fixed at 0.5. In all
cases, the PPL of the ngram model is significantly
lower than the RNNLM. For C1/C4, the 5-gram
PPL is 915, for C2/C3/C6 it is 778 and for C7
it is 574. However, in all cases, interpolating the
ngram model with the RNNLM gives the best re-
sults. Experimenting with the interpolation coeffi-
cient could potentially give better results.

5.5 Related Work on LM
Language Models for CS have been studied in the
context of three main approaches: (a) Bilingual
models that combine data from both languages, (b)
Factored models that take into account strong in-
dicators of CS like POS and LID, and (c) Mod-
els that incorporate linguistic constraints for CS.
Bilingual language models are typically trained
using pooled text data (Weng et al., 1997). Geb-
hardt (2011) describes a framework to use Fac-
tored Language Models for rescoring n-best lists
during decoding. The factors used include POS
tags, CS point probability and LID.

In Adel et al.(2014b; 2014a; 2013) recurrent
language models built on the same corpus are
combined with n-gram based models, or converted
to backoff models, giving improvements in per-
plexity and mixed error rate. Li and Fung (2014)
integrates Functional Head constraints for code-
switching into the Language Model for decoding a
Mandarin-English corpus. Li and Fung (2013) use
inversion constraints to predict CS points and in-
tegrates this prediction into the decoding process.

Our work is similar to the bilingual model ap-
proach in that we pool data from both languages.
However, we also add a very small amount of CS

data to our models in some of the experiments.
In addition, we also focus on the ordering of the
monolingual and CS data, which to our knowl-
edge, none of the previous approaches do.

6 Discussion and Conclusion

The experiments presented here on the two tasks
and three different DNN architectures show that
across all these cases, C6: {T1, T2};T12 is the
most effective curriculum for training CS mod-
els. C7: {T1, T2, T12} also performs quite well,
and in absence of CS data, C4: {T1, T2} seems to
be the most effective curriculum. Presenting the
monolingual training instances in blocks produce
the worst models, and neither is training with the
CS data in the beginning any more effective than
not using CS data at all.

This is similar to the findings reported in (Shi
et al., 2015) in the context of RNNLM adaptation
to specific domains. In general, empirical results
on transfer learning of DNNs show that training
with in-domain data at the end leads to better mod-
els. This explains why training first with one lan-
guage and then another is not ideal; in such cases
the model adapts to the second language, as ob-
served for C1, C2 and C3 in Table 2. For sim-
ilar reasons, training with T12 at the beginning
provides no benefit. One could possibly argue
that during training with {T1, T2} the upper lay-
ers (closer to input) of the networks learns the low
level features of the languages. Then during the
last phase of training with T12, the lower layers of
the network learns when to switch from one lan-
guage to another, i.e., the CS specific features.

An interesting cognitive metaphor (albeit not an
explanation) is as follows: an ideal bilingual is
exposed to both the languages almost simultane-
ously; such a user is able to code-switch even if
never exposed to CS (as in C4); however, with
exposure to CS, the frequency and perceived-
naturalness of CS increases in his/her language use
(as in C6). Of course, in multilingual communi-
ties children grow up with both languages as well
as CS between them (similar to C7). Thus, it is
tempting to predict that with large amount of CS
training data, i.e., when |T12| ≈ |T1| ≈ |T2|, C6
and C7 should perform equally well.

Here, we have explored the ordering of the
training instances based on the language. There
are other dimensions of complexity, for exam-
ple the number of code-switch points, syntactic



structure, etc., which could as well be harnessed
for more effective curricula. Going forward, we
would also like to explore techniques such as Self-
paced learning (Kumar et al., 2010; Jiang et al.,
2015; Graves et al., 2017).
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