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ABSTRACT 
In this study, we develop the keyword spotting (KWS) and acoustic 

model (AM) components in a far-field speaker system. Specifically, 

we use teacher-student (T/S) learning to adapt a close-talk well-

trained production AM to far-field by using parallel close-talk and 

simulated far-field data. We also use T/S learning to compress a 

large-size KWS model into a small-size one to fit the device 

computational cost. Without the need of transcription, T/S learning 

well utilizes untranscribed data to boost the model performance in 

both the AM adaptation and KWS model compression. We further 

optimize the models with sequence discriminative training and live 

data to reach the best performance of systems. The adapted AM 

improved from the baseline by 72.60% and 57.16% relative word 

error rate reduction on play-back and live test data, respectively. The 

final KWS model size was reduced by 27 times from a large-size 

KWS model without losing accuracy.  

 
Index Terms— far-field, teacher-student learning, acoustic 

model, keyword spotting 

1. INTRODUCTION 

Due to the successful application of deep learning to automatic 

speech recognition (ASR) [1][2],  current state-of-the-art ASR 

systems can achieve very good accuracy in most test scenarios. The 

research focus has been shifted toward more difficult scenarios such 

as recognizing speech in far-field noisy environments [3][4]. This 

trend is reflected by the recent CHiME challenges [5][6] and the 

industry deployment of far-field speaker systems such as Amazon 

Echo [7] and Google Home [8].  

 

In this paper, we focus on developing a far-field Cortana voice 

assistant system using a third-party speaker which produces an 

enhanced signal from the multi-microphone signals using 

beamforming. Because of this, we cannot do the end-to-end 

optimization as what Google Home and Amazon Echo have done 

(e.g., [8]). This constraint brings more challenges to the modeling 

work. In this paper, we will describe how we build the far-field 

speaker system with such a constraint, specifically we will detail the 

modeling of key word spotting (KWS) and acoustic model (AM) 

components which are most critical to the success of far-field 

speaker systems. We will show how we use teacher-student (T/S) 

learning to compress a large-size KWS model into a small-size one 

to fit the device footprint and adapt a well-trained close-talk AM to 

have high far-field ASR accuracy. 

 

The rest of the paper is organized as follows. In Section 2, we 

introduce T/S learning for model compression and domain 

adaptation, respectively. Then we present the development of KWS 

and AM components of our far-field speaker system in Section 3. 

Experimental evaluation of the system is provided in Section 4. We 

summarize our study and draw conclusions in Section 5. 

2. TEACHER-STUDENT LEARNING  

Teacher-student (T/S) learning was first proposed in [9] to compress 

a large-size deep model by minimizing the Kullback–Leibler (KL) 

divergence between the output distributions of the small-size and 

large-size models. The learning equals to the cross entropy (CE) 

training using the soft label generated by the teacher model as the 

target for learning the student model. The concept of T/S learning 

was extended as knowledge distillation  in [10] by combing the CE 

training using the soft label with the standard CE training using the 

1-hot vector as the target. Hence, the soft target in knowledge 

distillation is used as a regularization term to train a student model 

with conventional hard labels. There are plenty of works along this 

line [11][12].  

In [13], we extend T/S learning to perform domain adaptation 

without the use of transcriptions. In T/S learning for domain 

adaptation, the data from the source domain are processed by the 

source model (teacher) to generate posterior probabilities (soft 

labels), which are used to train the target model (student) with the 

parallel data from the target domain.  

Although knowledge distillation can also be used for model 

compression [10] and domain adaptation [14][15], the soft labels 

provided by the teacher network regularizes the conventional 

training of the student network using hard labels derived from 

transcriptions. Thus, the use of additional unlabeled training data 

was not possible. In contrast, T/S learning forgoes the need for hard 

labels from the data in the new domain entirely and relies solely on 

the soft labels provided by the teacher model. This allows the use of 

a significantly larger set of data, which has been proven more 

effective in improving accuracy for model compression and 

adaptation in [9] and [13]. We will also show the benefits of using 

large amount of unlabeled data in this study.  

 

2.1 T/S learning for model compression 
The common practice to compress a deep network is to reduce the 

number of hidden layers and hidden nodes [16]. Although the 

network size is reduced, significant increase in word error rate 

(WER) is also observed [16]. In [9], we proposed T/S learning to 

minimize the KL divergence of the output distribution between the 

large-size (teacher) and small-size (student) networks. In this way, 

the likelihoods generated from the small-size and large-size 

networks are similar and hence the accuracy gap between these two 

networks is reduced when these two networks with similar 

likelihoods are used for decoding. Denote the posterior distributions 

for state 𝑠  and input feature 𝑥  of the large-size and small-size 

networks as 𝑃𝑇(𝑠|𝑥) and 𝑃𝑆(𝑠|𝑥), respectively. The KL divergence 

between these two distributions is 

∑ ∑ 𝑃𝑇(𝑠𝑖|𝑥𝑓)𝑙𝑜𝑔 (
𝑃𝑇(𝑠𝑖|𝑥𝑓)

𝑃𝑆(𝑠𝑖|𝑥𝑓)
)

𝑁

𝑖=1𝑓

 (1) 



 

 

where i is the tied hidden Markov model state index (i.e., senone), 
N is the total number of senones, and 𝑓 is the frame index for input 

feature 𝑥. 

To learn a small-size network that approximates the given 

large-size network, only the parameters of the small-size network 

needs to be optimized. Minimizing the above KL divergence is 

equivalent to minimizing the cross entropy with soft labels 

generated by the teacher network 𝑃𝑇(𝑠𝑖|𝑥𝑓) 

− ∑ ∑ 𝑃𝑇(𝑠𝑖|𝑥𝑓)𝑙𝑜𝑔𝑃𝑆(𝑠𝑖|𝑥𝑓)

𝑁

𝑖=1𝑓

 (2) 

because 𝑃𝑇(𝑠𝑖|𝑥𝑓)𝑙𝑜𝑔𝑃𝑇(𝑠𝑖|𝑥𝑓)  has no impact to the small-size 

network parameter optimization. 

 
2.2 T/S learning for domain adaptation 
To apply T/S learning to adapting a well-trained source-domain 

model to a new target domain, we minimize the KL divergence 

between the output distribution of the student network given the 

target domain data and the teacher network given the source domain 

data by leveraging large amounts of unlabeled parallel data  [13]. 

We denote the posterior distribution of the teacher and student 

networks as 𝑃𝑇(𝑠|𝑥𝑠𝑟𝑐) and 𝑃𝑆(𝑠|𝑥𝑡𝑔𝑡), respectively. 𝑥𝑠𝑟𝑐 and 𝑥𝑡𝑔𝑡 

are the source and target inputs to the teacher and student networks, 

respectively. The KL divergence between these two distributions is 

∑ ∑ 𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓)𝑙𝑜𝑔 (
𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓)

𝑃𝑆(𝑠𝑖|𝑥𝑡𝑔𝑡,𝑓)
)

𝑖𝑓

. (3) 

This formulation takes both the source data 𝑥𝑠𝑟𝑐 and the target data 

𝑥𝑡𝑔𝑡 , differing from the T/S formulation in Eq. (1) which takes the 

same data for teacher and student networks. Minimizing the above 

KL divergence is equivalent to minimizing  

− ∑ ∑ 𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓)𝑙𝑜𝑔𝑃𝑆(𝑠𝑖|𝑥𝑡𝑔𝑡,𝑓)

𝑖𝑓

 (4) 

because 𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓)𝑙𝑜𝑔𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓) has no impact to the student 

network parameter optimization. 

3. FAR-FIELD SPEAKER SYSTEM 

In this section, we describe how we build the far-field speaker 

system, with both KWS and ASR acoustic models.  

 

3.1 Far-field simulation 
To ensure the efficacy of T/S learning, we need the paired close-talk 

and far-field speech, i.e. the same speech under different acoustic 

environments. To generate such data, the data simulation was 

applied in the experiment. Two methods were applied in the 

experiments, i.e. the single channel simulation and the beamformed 

simulation. 

The single channel simulation mainly targets to model the room 

and noise acoustics, i.e. reverberation and ambient noise, following 

Eq. (5), where 𝑆, 𝑌 and 𝑁 refer to the close-talk, far-field and noise 

source, 𝑅𝑠 refers to the room impulse response, and ∗ refers to the 

convolution operation. In Eq. (5), the close-talk speech firstly 

convolves with the room impulse responses, and combines with 

various additive noise at different signal-to-noise-ratio (SNR) level.  

𝑌 = 𝑆 ∗ 𝑅𝑠 + 𝑁 (5) 

In beamformed simulation, in addition to the acoustic 

simulation, the device simulation was also included to model the 

additional interference from the processing pipeline on device, such 

as the beamforming, automatic gain normalization, echo 

cancellation etc. During the simulation, two noise categories were 

defined, namely the diffuse noise and directional noise. The former 

models the spatially coherent ambient noise, and the later targets the 

noise source that has directivity pattern such as TV. The simulation 

process is shown in Eq. (6), where 𝑅𝑠, 𝑅𝑓 and 𝑅𝑟 refer to the room 

impulse response for speech, diffuse noise and directional noise 

respectively, 𝑁𝑓 and 𝑁𝑟 represent the diffuse and directional noise 

source respectively. 

𝑌 = 𝑆 ∗ 𝑅𝑠 + ∑ 𝑁𝑓 ∗ 𝑅𝑓

𝑓

+ ∑ 𝑁𝑟 ∗ 𝑅𝑟

𝑟

 (6) 

In all simulation, the noise sources are collected from the real 

recording. And the room impulse responses are from both the real 

recording collection and the image method [17] simulation.  

 
3.2 ASR acoustic model 
The baseline close-talk AM is a Microsoft production ASR acoustic 

model for Cortana, the Microsoft’s voice assistant, trained with 3.4 

thousand (k) hours transcribed data. This model is first built as a 4 

layer long short-term memory (LSTM)- recurrent neural networks 

(RNN) [18][19]. The input feature is 80-dimension log Mel filter 

bank. Each LSTM layer has 1024 hidden units and the output size 

of each LSTM layer is reduced to 512 using a linear projection layer. 

The output layer has 9404 nodes, modeling the senone labels. There 

is no frame stacking, and the output senone label is delayed by 5 

frames as in [19]. We then applied singular value decomposition 

(SVD) [20] and frame skipping [21] to reduce the runtime cost. It is 

further optimized with sequence discriminative training [22] using 

the maximum mutual information (MMI) criterion with F-

smoothing [23].  

 

The T/S learning in Section 2.2 is used to adapt this close-talk 

AM to far-field. The source data 𝑥𝑠𝑟𝑐  in Eq. (4) is the close-talk 

Cortana data, while the target data 𝑥𝑡𝑔𝑡  is the simulated far-field 

Cortana data. As T/S learning doesn’t need any transcription, we are 

not restricted to only use the 3.4k hours transcribed data for the 

simulation. Instead, we use up to 25k hours close-talk data to 

simulate either single-channel or beamformed far-field data.  

As T/S learning essentially is still a frame-by-frame CE 

training with soft targets, we can further improve the student model 

after T/S training by using MMI training with the simulated far-field 

3.4k hours transcribed data. 

The third-party devices have been sent to large number of users 

for initial use so that live data can be collected. Among these live 

data, around 300 hours data are transcribed to further improve the 

far-field model. We will evaluate the impact of amount of simulated 

unlabeled data, single-channel vs. beamformed signal simulation, 

sequence discriminative training, and adding live data in the 

experiment Section 4.1. 

 

3.3 Key-word spotting model 
Compared to ASR tasks, the KWS task is much simpler – the device 

needs to detect whether the user has spoken “Hey Cortana”. If 

detected, the utterance will be sent to the server for recognition. 

Otherwise, the device will reject the incoming audio. We should 

keep false rejection rate as low as possible because false rejecting a 

valid voice query means 100% WER for this query. The KWS model 

also needs to be very small to run on the devices.  



 

 

We had designed 2-stage KWS systems which worked very 

well previously on Microsoft Windows and xBox tasks. In the first 

stage, a LSTM-RNN model is used to generate confidence 

predictors [24], which are then passed to another feed-forward 

network to generate the confidence scores for “Hey Cortana”. 

However, such a design failed in the challenging far-field scenario 

as it is an implicit way for KWS without the end-to-end optimization. 

Given the recent success of end-to-end modeling, we used the 

connectionist temporal classification (CTC) approach [25][26] for 

KWS [27]. The proposed CTC KWS framework is illustrated in 

figure 1. First, the acoustic features are extracted for the input speech 

with frontend module, then the acoustic score is calculated with the 

CTC KWS model.  Then, a decoder is applied to derive the 

confidence score. Finally, the KWS decision is made based on the 

confidence score.  

 

Figure 1: A flowchart of the designed CTC KWS system. 

 

Eight frames of 80-dim log Mel-filter-bank features are stacked 

together as the acoustic feature, and the time step shift is three 

frames.  The KWS model is a LSTM-RNN model with the CTC 

training criterion. The output layer has 5 nodes, modeling “Hey”, 

“Cortana”, silence, garbage, and blank. The garbage output node 

absorbs all the words other than “Hey” and “Cortana”. Given the 

limited model size constraint on device, we use T/S learning in 

Section 2.1 to reduce the KWS model size while keeping similar 

performance. Different from T/S model adaptation in Section 2.2, 

the teacher and student models here have the same input feature but 

different structures.  

The confidence score 𝑆  is calculated with the posteriors of 

“Hey” and “Cortana” as:   

                    𝑆 = √ 𝑝(Hey|𝑥𝑓ℎ)𝑝(𝐶𝑜𝑟𝑡𝑎𝑛𝑎|𝑥𝑓𝑐)                    (7)     

                            𝑓ℎ = argmax
𝑓∈[𝑚,𝑛]

𝑝(𝐻𝑒𝑦|𝑥𝑓)                              (8) 

                          𝑓𝑐 = argmax
𝑓∈[𝑚,𝑛]

𝑝(𝐶𝑜𝑟𝑡𝑎𝑛𝑎|𝑥𝑓)                         (9) 

𝑝(Hey|𝑥𝑓)  and 𝑝(𝐶𝑜𝑟𝑡𝑎𝑛𝑎|𝑥𝑓)  are posteriors of “Hey” and 

“Cortana” for frame 𝑓 respectively. These posteriors are the softmax 

output of CTC KWS model, i.e. the acoustic score in Figure 1.  

[𝑚, 𝑛] is the segment where the posterior of “Hey Cortana” get the 

highest value within the whole utterance, which is located by 

decoder with the Viterbi search algorithm.  

Compared with the previous 2-stage design, the proposed KWS 

CTC system has below advantages:  

1. We can leverage unlabeled data to better compress the 

model, as shown in [9].   

2. The word posteriors are taken as the confidence. Hence, a 

confidence classifier is not needed, which frees us from 

the tedious and tricky confidence classifier training and 

tuning (e.g., in [24]).  

3. The processing step is 30ms instead of 10ms in the 

traditional system. This enables devices’ fast response.   

4. EXPERIMENTS 

In this section, we evaluated the developed system with the ASR and 

KWS tasks.  

 

4.1 Speech recognition 
 

We evaluated several AMs with two types of far-field test sets. The 

first one is a 38k-words play-back set obtained by replaying the 

close-talk live Cortana data from an artificial mouth through the air. 

The play-back and the training simulation environments are 

different. The second set is the collected live data from pre-release 

users, containing 109k words. The LM is a 5-gram with totally 

around 100 million (M) ngrams. We exclude “Hey Cortana” when 

calculating WERs.  

In Table 1, we showed WERs of different AMs. All these AMs 

have the same model topology which was described in Section 3.2. 

The close-talk AM got 47.34% WER on play-back data and 23.81% 

WER on live data, respectively. The initial WER of play-back data 

is much larger than the WER of live data because the live data is 

much easier without too many difficult voice search items as in the 

source Cortana data.  

 

Table 1: WERs of different AMs. There is only one highlighted 

factor changed between models in two adjacent rows. T/S learning 

uses parallel data for training: close-talk data as the source data and 

simulated far-field data as the target data. 

Model WER (%) 

Playback Live 

Close-talk 47.34 23.81 

CE (3.4k hours single channel simulation) 21.22 14.30 

T/S (3.4k hours single channel simulation) 18.79 14.19 

T/S (25k hours single channel simulation) 16.61 12.98 

T/S (25k hours beamformed simulation) 15.26 11.96 

T/S (25k hours beamformed simulation) + 

3.4k hours sequence training 

12.97 11.20 

T/S (25k hours beamformed simulation) + 

3.4k hours sequence training + 300 hours 

live data 

13.38 10.20 

 

The overwhelming adaptation methods are designed for using 

limited amount of adaptation data (e.g., [28 - 35]). When large 

amount of simulated domain data is available, a common practice is 

to directly train the new domain model with the simulated data [8]. 

Here, we first trained a CE model with the 3.4k hours simulated data 

in the single channel far-field condition as the domain adaptation 

baseline. We observed significant WER reduction on both test sets, 

showing the effectiveness of the training simulation for improving 

real test data. Then, we changed the training criterion from CE to 

T/S learning using the same amount of 3.4k hours data with the 

close-talk/simulated pair, reducing the WER of play-back data from 

21.22% to 18.79% and the WER of live data from 14.30% to 14.19%, 

respectively.  

Next, we extended the amount of data to 25k hours with the 

close-talk/simulated far-field pair as no transcription is needed for 

T/S learning. The much larger amount of close-talk data covers 

larger source acoustic space, which makes the student model on far-

field data get much closer to the teacher model on close-talk data. 

As a result, the student model with 25k hours simulated single 

channel data improves its counterpart with 3.4k hours simulated data 

significantly, with 11.60% and 8.53% relative WER reduction on 

play-back and live data, respectively.  

Frontend Features 
CTC KWS 

model 

Acoustic 

Scores 
Decoder Confidence 

Keyword 

Detection 



 

 

As the test data is beamformed signal, we changed simulation 

from single channel to beamformed simulation with the 25k hours 

data, we further reduced the WER from 16.61% to 15.26% on play-

back data and 12.98% to 11.96% on live data, respectively. Becasue 

the T/S learning essentially is still CE training with soft targets, we 

then refined the model with sequence discriminative training using 

the MMI criterion which gave us additional 15.01% and 6.35% 

relative WER reduction on play-back and live data, respectively.  

Finally, we added around 300 hours live data into the sequence 

training together with the 3.4k hours simulated beamformed 

transcribed data. It is interesting to see although the addition of live 

data further reduced relative 8.93% WER on live data, it somehow 

slightly degraded the WER on play-back data, indicating some 

mismatch between the live and play-back data.  

With all the step-by-step improvements in Table 1, the far-field 

AM can improve the close-talk AM by as large as relative 72.60% 

and 57.16% WER reduction on play-back and live test sets, 

respectively.  

Later, on top of the model in the last row of Table 1, other 

factors such as subsequent signal processing, beam-forming 

improvement, and adding more live data have further reduced the 

production WER to below 6% on the most recent live test sets. 

 

4.2 Key word spotting 
 

To measure the accuracy of the KWS system, we use correct accept 

(CA) rate and false accept (FA) rate as the metrics. CA rate is the 

ratio between the number of correctly accepted utterances and the 

total number of utterances containing the key words. FA rate is the 

ratio between the number of falsely accepted utterances and the total 

number of utterances not containing the key words. As CA/FA 

values vary with the choice of operation point, we evaluate all the 

KWS models by choosing the threshold which gives about 96% CA 

for better user experience and comparing the FAs of these models. 

The testing data is the third-party speaker live data containing 

totally about 32k utterances: 8.7k of them contain “Hey Cortana” 

and the rest does not.  

 

There are only 380 hours utterances with “Hey Cortana” in the 

aforementioned 3.4k hours utterances. We used all of them and then 

randomly picked 380 hours utterances without “Hey Cortana” to 

form a 760-hour source data set and then simulated the beamformed 

far-field data. We first trained the large-size and small-size KWS 

CTC model with standard CTC criterion using this 760-hour 

beamformed simulation data.  

The large-size CTC model has 5 LSTM layers, each layer has 

1024 nodes which are linearly projected to 512 nodes. The small-

size CTC model has 3 LSTM layers, each layer has 256 nodes which 

are linearly projected to 128 nodes. SVD is also applied to reduce 

the model size further. The large-size CTC model has 24.16M 

parameters while the small-size CTC model with SVD has only 

0.89M parameters, which is about 1/27 of the large-size model.  

 

Table 2 shows the FA rate when KWS models operate at the 

96% CA rate. With only simulation data, the large-size CTC model 

could get reasonable low FA rate (5.39%), but the FA rate of the 

small-size CTC model is much worse (11.28%).  

Then the small-size CTC model is trained with T/S learning by 

using the large-size CTC model as the teacher and the 760 hours 

simulated beamformed data. The soft-target learning is very 

effective for CTC models, the FA rate of the small-size CTC model 

is reduced to 7.61%. 

Table 2: The FA rates (%) of different KWS models, operating at 

the 96% CA rate. The simulation data comes from 760 hours 

utterances, half with “Hey Cortana” and half without. 

Model Training data 

 simulation simulation + 

600-hour live 

transcribed 

simulation + 

940-hour live  

untranscribed  

large-size CTC 5.39 1.60 - 

small-size CTC 11.28 1.94 - 

small-size CTC 

with T/S 

7.61 1.73 1.59 

 

We then added 600 hours live data into the training. Note that 

the amount of live data used for KWS training is higher than the 

amount of live data used for ASR training because we don’t need 

word-by-word transcriptions for the negative utterances which do 

not contain “Hey Cortana” in KWS training. Although the live data 

is not very critical to ASR as shown in Table 1, it benefits KWS 

hugely, especially for the small-size CTC model by reducing the FA 

rate from 11.28% to 1.94%. But there is still 21.25% relative gap 

between the small-size and large-size model’s FA rates (1.94% vs. 

1.60%).  

T/S learning was then used to learn the small-size CTC model 

by using the large-size CTC model with 1.60% FA as the teacher. 

The training data is 760 hours simulated beamformed data together 

with the 600 hours live data. The small-size CTC models could 

obtain 1.73% FA rate. Last, we added more untranscribed live data 

(340 hours) to the T/S learning. The FA rate was finally reduced to 

1.59%, which is as good as what the large-size CTC model can get.    

Note that the testing data all comes from live speech utterances. 

If the model is presented with real-life background such as TV and 

home environment noise etc., the FA is about 1.49 per 24 hours.   

5. CONCLUSIONS AND FUTURE WORKS 

In this paper, we have presented how we developed a far-filed 

speaker system by optimizing both the KWS and AM components. 

We used T/S learning to adapt a close-talk production AM to far-

field with the parallel data coming from close-talk and simulated far-

field data. We showed that simulating far-field data, especially the 

beamformed one, is very helpful to improving the accuracy of real 

test data. T/S learning effectively used 25k hours unlabeled data to 

improve the student model as T/S learning doesn’t require any 

transcription. Together with sequence discriminative training and 

adding live data, the final AM can improve the baseline by 72.60% 

and 57.16% relative WER reduction on play-back and live data, 

respectively.  

Our KWS model is built with the CTC modeling which directly 

targets on the key words.  T/S learning was applied to compress a 

large-size CTC KWS model into a small-size one. The small-size 

CTC KWS model trained with unlabeled data using T/S learning has 

the same performance as the large-size CTC KWS model, but with 

only 1/27 foot-print. 

Note that both the teacher models for AM and KWS were 

trained with sequence-level criterions, either MMI or CTC. 

Although we have got very good performance with the frame-level 

T/S learning criterion, we may investigate whether sequence-level 

T/S criterions (e.g., [36][37]) can further improve the performance. 

We recently advanced CTC modeling with attention mechanism [38] 

and obtained very good accuracy improvement for large-scale ASR 

task [39]. We will apply this model to improve the current far-field 

KWS system. 
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