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Abstract

Partially observable Markov decision processes (POMDPs) are a powerful ab-
straction for tasks that require decision making under uncertainty, and capture a
wide range of real world tasks. Today, effective planning approaches exist that
generate effective strategies given black-box models of a POMDP task. Yet, an
open question is how to acquire accurate models for complex domains. In this
paper we propose DELIP, an approach to model learning for POMDPs that utilizes
structured, amortized variational inference. We empirically show that our model
leads to effective control strategies when coupled with state-of-the-art planners.
Intuitively, model-based approaches should be particularly beneficial in environ-
ments with changing reward structures, or where rewards are initially unknown.
Our experiments confirm that DELIP is particularly effective in this setting.

1 Introduction

Reinforcement learning (RL) is a form of machine learning where one or more agents learn by trial
and error from interactions with an environment. RL is a very general learning framework with
applications ranging from video and other game play (Tesauro, 1995; Mnih et al., 2015) to robotics
(Kober et al., 2013; Quillen et al., 2018), (visual) dialog (Singh et al., 2000; Das et al., 2017), health
(Edwards et al., 2013; Kidziński et al., 2018), and a host of other domains.

A key challenge in RL is data-efficient learning. State of the art approaches to, e.g., learning to play
Atari games, are trained on 10s to 100s of millions of samples to achieve competitive performance
(Machado et al., 2017; Van Seijen et al., 2017). Relying on vast amounts of data limits applicability of
these types of approaches to domains where data can be obtained relatively easily, e.g., in simulations
or video games. However, even when accurate simulations are available, the computational cost of
training these approaches is immense.

In this paper, we address the problem of data-efficient learning in partially observable Markov
decision processes (POMDPs). The POMDP setting is a problem formulation that is particularly
relevant for many real-world applications, where agents observe a local signal (e.g., a first-person view
of a 3D world, or a set of diagnostics in a health care application). To deal with partial observations,
agents need to explicitly or implicitly consider interaction history to reason about possible underlying
states of the world that may have generated current observations (Singh et al., 1994). This exacerbates
the data-efficiency problem: a learning agent now has to collect and learn from enough data to learn
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how its behavior should depend on, possibly long, interaction sequences, instead of just individual
state observations (as is the case in the fully observable MDP setting that is more commonly addressed
in RL and planning).

We propose to leverage recent advances in structured variational inference (Krishnan et al., 2015,
2017; Fraccaro et al., 2016) to learn generative models of POMDP dynamics and rewards. Recent
progress in this area has lead to effective learning algorithms that effectively capture complex
dynamics by parameterizing posterior distributions using deep neural networks. The result is a
versatile, data-driven approach to learning dynamics models in a wide range of environments —
without requiring domain expertise often required in previous approaches. We empirically show that
the learned models result in effective control strategies when coupled with state-of-the-art black-
box planning algorithms (Silver and Veness, 2010). We further compare to a a recent off-policy,
model-free algorithm designed for POMDPs (Hausknecht and Stone, 2015) that directly learns a
strategy from observations using recurrent networks, and demonstrates competitive performance.
Model-based approaches are hypothesized to be particularly advantageous in environments with
consistent dynamics but changing or initially unknown rewards structures — our experiments confirm
that our approach is particularly data-efficient in such a setting.

The remainder of the paper is structured as follows. In Section 2 we introduce our notation and
review relevant background on POMDPs and amortized variational inference. In Section 3 we
describe our proposed generative model of the POMDP environment, DELIP (Data Efficient model
Learning in POMDPs), and detail how we use it for planning. In our experiments in Section 4 we
investigate how well our model can be learned from data on an actual RL task and investigate its
sample efficiency relative to contemporary baseline models. Related work is reviewed in Section 5.
Finally, we conclude our paper with a discussion and an outlook on future work in Section 6.

2 Notation and Background

2.1 Partially Observable Markov Decision Processes (POMDPs)

POMDPs are defined as 7-tuples (S,A, T ,R,Ω,O, γ), where S is a set of states, A is a set of
actions, T is a set of state-conditional transition probabilities,R is a set of state-conditional reward
distributions, Ω is set of possible observations,O is a set of state-conditional observation probabilities
and γ ∈ (0, 1] is the discount factor. POMDPs can be considered as controlled hidden Markov
models, as visualized in Figure 1. They consist of time-dependent latent variables st ∈ S, (partial)
observations ot ∈ O of the state st, rewards rt ∈ R and actions at ∈ A. The actions are provided by
an agent interacting with the environment according to the POMDP. State transitions, observations and
rewards are generated as st ∼ T (st|st−1, at−1), ot ∼ O(ot|st) and rt = R(rt|st, at), respectively,
where, to simplify notation, we overload the notation of the state-dependent distributions.

The goal of an agent interacting with the environment is to learn and execute a policy π that maximizes
the expected cumulative discounted reward E[R(π)] = E[

∑∞
t=1 γ

t−1rt], where the expectation is
over the randomness of the environment and randomness of the policy π. The expected future
performance of a policy can also be quantified from a given state — as expressed by the value
function V π(st) = E[

∑∞
k=1 γ

k−1rt+k−1|st].
Approaches for learning the policy π can be broadly categorized into model-free approaches and
model-based approaches. Both types of approaches have long research traditions, but much of the
work has been pursued in parallel, with little connection between these strands. Model-free approaches
directly learn to maximize rewards without modeling the underlying environment, making them
versatile and effective with little prior knowledge (Singh et al., 1994; Hausknecht and Stone, 2015).
Model-based approaches derive effective policies when accurate dynamics models are available, yet
assuming accurately specified models of complex real-world tasks is often unrealistic (Silver and
Veness, 2010; Katt et al., 2017).

We are interested in data-efficiency and therefore focus on model-based approaches. We address the
key question of how models can be learned effectively with minimal assumptions about the problem
domain (to avoid model mis-specification). Our approach draws on potential solutions from several
current strands of research. In particular, the combination of variational inference, which provides a
theoretical foundation for inferring latent variable models, and deep learning, which uses powerful
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function approximators, allows us to learn models that can be applied to POMDP problems with very
high levels of partial observability.

S1 S2 S3

O1 O2 O3

R1 R2 R3

a1 a2 a3

. . .. . .

Figure 1: POMDP. At each timestep t, the state st depends stochastically on the previous state st−1
and an external action at−1 chosen by an agent. The agent receives a stochastic observation ot as
well as a deterministic reward rt. Finally, the agent will decide on its next action at. In traditional RL
algorithms for POMDPs, a belief is held over the current state, based on the previous actions, belief,
rewards and observations (Kaelbling et al., 1998).

2.2 Variational Inference

Variational inference can be used to learn latent variable models by maximizing a lower bound of the
marginal probability density p(o) =

∫
p(o|s)p(s)ds, where s are latent variables and o are observed

variables. The term p(o|s) is the likelihood of the data given the latent variables s and, in the case of
neural networks, can take the form of a parameterized model.

Instead of dealing with the prior p(s) directly, variational autoencoders (VAEs) infer p(s) using the
posterior p(s|o) (Kingma and Welling, 2013; Rezende et al., 2014). As the true form of the posterior
distribution p(s|o) is unknown, variational inference turns the problem of inferring latent variables
into an optimisation problem by approximating the true posterior distribution with a variational
distribution q(s|o), which takes the form of a simpler distribution such as a fully factorized Gaussian,
and then minimising the Kullback-Leibler (KL) divergence between q(s|o) and p(s). As the KL
divergence is nonnegative and minimised when p is the same as q, the training objective for VAEs is
known as the variational or evidence lower bound (ELBO):

L(q;x) = Es∼q(s)[log p(o|s)]−DKL[q(s|o)‖p(s)]. (1)

VAEs also utilize amortized inference (Gershman and Goodman, 2014), reparameterized variables,
and stochastic gradient variational Bayes (Kingma and Welling, 2013; Rezende et al., 2014). VAEs
consist of a generative model p(o|s; θ) with parameters θ and an inference model q(s|o;ψ) with
variational parameters ψ that can be trained using stochastic gradient descent.

2.2.1 Structured Variational Inference

For a POMDP, the joint probability of states s, observations o, and rewards r conditioned on the
actions at from the initial timestep t = 1 to the end of a trajectory of length T is:

p(o1:T , r1:T , s1:T | a1:T ) = p(o1|s1)p(r1|s1, a1)p(s1)

T∏
t=2

p(ot|st)p(rt|st, at)p(st|st−1, at−1).
(2)

For this factorisation, the true posterior for a single latent variable st depends on all future ob-
servations, future rewards and actions, i.e. p(st | s1:T , o1:T , r1:T , a1:T ) = p(st | ot:T , rt:T , at:T )
(Krishnan et al., 2015, 2017; Fraccaro et al., 2016). Consequently, one can assume a corresponding
factorization for the variational posterior and use recurrent neural networks (RNNs) for summarizing
future observations, rewards and actions, cf. Section 3.1.
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3 Model & Planning

3.1 Model

We consider models for POMDPs in which all distributions, i.e. the prior state distribution, the state
transitions, the observation probabilities and the reward probabilities, are parameterized by neural
networks. That is, our model takes the form of Equation (2), where:

p(s1) = N (µ0, σ0),

p(st | st−1) = N (st | µs(st−1), σs(st−1)),

p(ot | st) = N (ot | µo(st), σo(st)),
p(rt | st) = N (ot | µr(st), σr(st)),

with µ0, σ0 as parameters and where µs(·), σs(·), µo(·), σo(·), µr(·) and σr(·) are parame-
terized neural networks. We learn these parameters from data in the form of N trajectories
D = {(o(1)1:T , r

(1)
1:T , a

(1)
1:T ), . . . , (o

(N)
1:T , r

(N)
1:T , a

(N)
1:T )} using structured, amortized variational inference.

We use a variational posterior of the form q(s1:T |o1:T , r1:T , a1:T ) =
∏T
t=1 q(st | st−1, ot:T , rt:T , at:T ),

where each q(st | · · · ) is parameterized by an RNN summarizing the varying length future observa-
tions, rewards and actions from time t to T and a neural network mapping the summary of the RNN
together with the state st−1 to the parameters of a 4-state Gaussian mixture model over states st.

For training we jointly optimize the ELBO in Equation (1) over the variational posterior q(s| · · · )
and the generative model given by p(s1), p(st | st−1), p(ot | st), p(rt | st). We make use of the
reparametrization trick to reduce the variance of gradient estimates (Kingma and Welling, 2013;
Rezende et al., 2014).

3.2 Planning

Here we describe the algorithm we use for planning, using our learned model of the POMDP. We
base our planner on partially observable Monte-Carlo planning (POMCP), a form of Monte-Carlo
tree search (MCTS) with upper confidence bounds (Kocsis and Szepesvári, 2006) that uses the full
history instead of individual states in order to apply MCTS to POMDPs (Silver and Veness, 2010).
The use of Monte-Carlo methods is important in the context of data-efficient learning in POMDPs, as
their sample complexity is independent of the state or observation spaces, and only on the underlying
difficulty of the POMDP (Kearns et al., 2000). We describe POMCP in Algorithm 1. In contrast to
the original POMCP algorithm, we do not rely on a potentially prohibitive simulator, but instead use
our learned model for rollouts.

The POMCP planner is invoked by SEARCH(P (S)), where P (S) is the current belief about the true
state of the POMDP (initially, we assume a uniform distribution over states). The planner builds up a
search tree X , in which each node corresponds to a hypothetical state of the environment. For each
node, the algorithm keeps track of N(s′, a), i.e. the number of times action a was taken in state s′,
an estimate V (s′, a) of the value of taking action a in state s′ and a list of successor states. During
execution, the planner traverses the search tree if and expands it at its leaf nodes. Rollouts with a
random policy πrollout are used to initially estimate the value of states. While traversing the search
tree, the algorithm balances exploration and exploitation to decide on whether to execute an action
that looks promising or an action that has been executed only infrequently (Kocsis and Szepesvári,
2006).

In POMCP, the term QUERY-MODEL(s, a) stands for invoking the simulator to replicate the execution
of action a in state s. In contrast, we sample the next state s′, observation o and reward r for taking
action a in state s from our trained model. After having decided on taking a particular action, i.e.
after SEARCH(P (S)) has terminated, we receive an actual observation and reward information from
the environment and use these to update the distribution P (s) over states s using Bayesian filtering
(again using the model).
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Algorithm 1 POMCP with a simulator

Require: Parameter c for balancing exploration and exploitation, number of simulations Tsim for
chosing next action, discount factor γ
procedure SEARCH(P (S))

for t = 1, . . . , Tsim do
s ∼ P (s)
SIMULATE(s, 0)

end for
return arg maxa V (s, a)

end procedure

procedure ROLLOUT((s, depth))
if γdepth ≤ ε then

return 0
end if
a ∼ πrollout(s)
(s′, o, r) ∼ QUERY-MODEL(s, a)
return r + γROLLOUT(s′, depth+ 1)

end procedure

procedure SIMULATE((s, depth))
if γdepth ≤ ε then

return 0
end if
if s ∈ X then

for a ∈ A do
T (s, a)← (Ninit(s, a), Vinit(s, a), ∅)
ROLLOUT(s, depth)

end for
end if
a← arg maxb V (s, b) + c

√
logN(s)
N(s,a)

(s′, o, r) ∼ QUERY-MODEL(s, a)
R← r + γSIMULATE(s′, depth+ 1)
N(s)← N(s) + 1
N(s, a)← N(s, a) + 1

V (s, a)← V (s, a) + R−V (s,a)
N(s,a)

return R
end procedure

(a) Task illustration
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Figure 2: Robot navigation task. (a) Illustration of the task—a robot with limited observation
capabilities can gather positive rewards by opening the second but rightmost door. (b) The robot
does not observe its actual location, but only signals indicating whether it is at a boundary of the
environment or in front of a door. (c) The robot receives a positive reward if it opens the correct door.
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4 Experiments

4.1 Experimental Setup

In our experiments we consider an autonomous navigation task in which a robot has to find and open
a door given limited observation capabilities. This navigation task is inspired by Porta et al. (2005)
and illustrated in Figure 2a and described below.

Navigation task. In each episode, the robot is randomly placed in the space according to the Gaussian
distribution with zero mean and a standard deviation of 5. If the robot is placed outside the boundaries
of the world (−15 and 15), its position is clipped to the boundary. In any position, the robot can
take any action in A = {left, right, open}. The goal of the robot is to find and open the second but
last door from the right. Opening the correct door yields a reward of +1, trying to move outside of
the boundaries of the world results in negative rewards. Taking the action “left” moves the agent to
the left by unit and taking the action “right” moves the agent to the right by unit. The robot cannot
observe its actual position but is only provided signals indicating whether it is at the left or right
limits of the space and whether it is in the front of a door (but there is no signal indicating in front of
which door it is). For successfully solving this task, the robot has to identify its position in space,
navigate to the correct door and open it. The observations and rewards of the robot are shown in
Figures 2b and 2c, respectively. It is important to note that any approach using only information from
the current observation (or a short sequence of observations) will not be effective for this task, as
the information that can be gathered from multiple observations has to be combined to identify the
robot’s position from the observations.

4.2 Learning Environment Models

Before turning to evaluating the generative models learned via variational inference as described in
Section 3.1 for reward maximization, we showcase success and failure cases that frequently occurred
when learning the model, cf. Figure 3. For the transition model we used a linear model; the observation
probabilities and the reward probabilities are parameterized by three layer neural networks with
ReLU activation functions and 100 neurons each. The prior distribution is a normal distribution with
learned mean and variance. For the approximate posterior model, we use a bidirectional LSTM with
10 hidden units. For learning we used Adam (Kingma and Ba, 2014) with a batch size of 100, and
trained the models for up to 10000 epochs, i.e. 10000 passes through the dataset, or until convergence.
To stabilize learning, we initially clamped the variance of all distributions2. In addition, we used
the following non-uniform sampling strategy to correct for the class imbalance caused by having
sparse positive rewards. For each trajectory in the dataset we computed the cumulative reward. We
uniformly quantized the cumulative rewards of all trajectories into 5 bins. Finally, when sampling
a mini-batch, we selected an equal number of trajectories from each bin, thereby ensuring that we
observe positive and negative reward accumulation behaviour in each mini-batch.

These results are all for the same model architecture, and only hyper-parameters like learning rate used
for optimization, weight decay or whether gradient clipping was used, were varied.3 A successfully
learned environment model is visualized in Figure 3a. The predictions of the model are very close
to the ground-truth, cf. Figure 2. In Figure 3b, we show a common issue arising when learning the
environment, i.e. a missing door. An agent using this model for planning typically achieves poor
performance as it infers its position incorrectly.

4.3 Planning

We now turn to evaluating the learned environment models for planning. We are interested in (a)
validating that we can use recent advances in variational inference for learning a generative model of
the environment that is useful for planning, and (b) comparing our approach with other contemporary
classical approaches for learning and planning in POMDPs in terms of data efficiency.

Learning POMDPs. We consider learning of POMDPs in two different variants:

2We clamped the log-variance to −3 for the first 1,000 epochs. After these 1,000 epochs, the variance was
not constrained.

3We also observed large variance of the obtained results for different random seeds.

6



−20 −10 0 10 20

0

1

o
b

se
rv

a
ti

o
n

left right door

−20 −10 0 10 20

latent state

−1

0

1

re
w

a
rd

left right open

(a) Successful learning
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Figure 3: Success and failure cases for learning the full environment model. (a) Successfully learned
environment model. The observations and rewards predicted from the model closely resemble the
ground-truth. (b) Unsuccessfully learned model. The observation model cannot predict all four doors
correctly. This manifests in high variance of the predictions.

1. Learning the full environment (FULL-ENV). Here we want to learn a full environment model, i.e.
the model for transitions, observations and rewards.

2. Learning rewards only (REWARDS-ONLY). Here we are interested in learning only the reward
function, given a pretrained model of the environment4 without a reward model. Such settings arise
naturally in scenarios in which agents have to solve different tasks in the same basic environment.

For both variants we collect data from the environment by executing a random policy which chooses
between all possible actions uniformly, for 100 steps (i.e. episodes of length 100). The collected
trajectories consist of observations and rewards for the first variant, and rewards only for the second
variant. We learn the POMDPs from different numbers of collected episodes and and evaluate
the learned models when used for planning. For the second variant, we pretrain an model for the
environment without observing the reward, using a dataset consisting of 8,000 episodes.

Models and Baselines. We compare the following approaches:

• DELIP. This implements POMCP using our trained model as a simulator for the environment, cf.
Section 3.2. To keep track of the state distribution with particles, we discretize the state-space into
intervals of size 0.1 For each planning step, we perform 2,000 simulations, rolling out simulations
for 30 steps.

• DRQN (Hausknecht and Stone, 2015). This can be considered as a variant of deep Q-networks
Mnih et al. (2015) in which the last layer of hidden units in the deep Q-network is connected with an
RNN (we use an LSTM (Hochreiter and Schmidhuber, 1997) in our experiments). This enables the
deep recurrent Q-network (DRQN) to introduce temporal dependencies on previous observations
and Q-values. As an off-policy algorithm, the DRQN is naturally more sample-efficient than
competitive on-policy algorithms that utilise RNNs Mnih et al. (2016). In addition, the DRQN’s
use of experience replay (Lin, 1992) can be seen as placing it between model-free and model-based
methods (Van Seijen and Sutton, 2015). For our DRQNs, we use two fully connected layers with
50 neurons each and ReLU activation functions, to process the input. The output of the second
layer is connected over time via LSTM cells with 50 neurons each. Finally, the output of the hidden
units of the LSTM cells is further processed by a a fully connected layer with 50 neurons and ReLU
activations and fed through a final linear layer predicting Q-values for each action. We trained the
DRQNs for 10,000 epochs using Adam, using a mini-batch size of 100 trajectories, a learning rate
of 0.001 and updating the target Q-network every 100 epochs. For the REWARDS-ONLY scenario,
we pretrain the DRQN by training it on 3 auxillary tasks, namely maximizing the observation of
the signal “left”, maximizing the observation of the signal “right” and maximizing the observation
of the signal “door”.

4We did not use the sampling strategy described in the previous section for pretraining.
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Figure 4: Performance over number of training samples for learning the reward distribution on top of
a pre-trained environment model. DELIP outperforms the pre-trained model-free baseline for all but
very small sample sizes. For these small sample sizes, DELIP does not reliably learn that opening a
door can lead to a positive rewards. In contrast, DRQN, due to its pre-training with auxiliary tasks,
typically learns policies that invoke the “open” action upon observing that the robot is in front of a
door.

• ORACLE. This baseline implements POMCP (Silver and Veness, 2010). It has access to a perfect
simulator of the environment but does not have access to the true state of the environment the agent
is actually interacting with, i.e. ORACLE can perform simulations in the environment which follow
the true transition and observation probabilities. As with DELIP, we use particles to model the state
distribution and discretize the state-space intro intervals of size 0.1. Given infinite simulation time
per planning step (with a sufficiently fine-grained quantization of the state-space), this baseline
provides an upper bound on the achievable performance. For each planning step, we perform 2,000
simulations, rolling out simulations for 30 steps.

Results. We compare the average performance in terms of cumulative regret achieved by DELIP,
DRQNs and ORACLE on 100 episodes of interaction with the environment, each consisting of
100 time steps and using γ = 1. Our main results on data-efficiency of DELIP is that if the full
environment model is learned, DELIP and DRQNs perform on par (plot omitted due lack of space).
For the case in which only the reward distribution on top of a pre-trained environment model is
learned, DELIP performs favorably, as shown in Figures 4. We observe that DELIP outperforms the
DRQN for most dataset sizes. Thus, there is a regime in which using the model-based approach is
advantageous compared to the model-free approach, even when the latter is pre-trained on relevant
auxiliary tasks.

5 Related Work

Learning and planning in POMDPs are key research challenges with a long tradition of theoretical
and empirical work. Here we summarize a selection of works that are most closely related to the
present paper. In addition, we build on research in deep state space models, which we also review,
especially where these have been applied in an RL context.

Model-free learning in POMDPs is a main focus of RL, where a behavior policy is learned without
explicitly modeling environment dynamics. Pioneering work by Singh et al. (1994) established that
learning optimal deterministic memoryless policies could perform arbitrarily worse than either optimal
stochastic policies or policies with memory. Recently, Hausknecht and Stone (2015) demonstrated
competitive performance of model-free reinforcement learning approaches in high-dimensional,
partially observable settings, with recurrent models capable of maintaining memory. Here we
compare to their approach, DRQN. Promising extensions of this work consider explicit forms of
memory together with attention mechanisms that learn to access these (Oh et al., 2015) - understanding
data efficiency compared to these is an important direction for future work.

Research on POMDPs originated in operations research, and initially focused on deriving optimal
policies from given models, e.g., using variants of dynamic programming (Sondik, 1978; Kaelbling
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et al., 1998). An insightful survey of early work is by Aberdeen (2003). A strong focus is on finding
scalable solutions. Scalability is key because even POMDPs with few latent states can induce a very
high-dimensional belief states that render exact methods intractable. A breakthrough in scalable
planning for POMDPs was achieved by Silver and Veness (2010), who demonstrated scalability to
problems with 1056 belief states. Here, we use their approach, POMCP, as a black-box planner.

Work on planning in POMDPs was able to progress while abstracting from the problem of model
acquisition. Assuming an accurate domain model is given before the start of interaction between
agent and environment is unrealistic in most practical applications. One line of work investigates
how to relax assumptions on model accuracy, e.g., by assuming a parametric model which allows for
online updates as new experience is collected. This setting is captured in the BA-POMDP framework
(Ross et al., 2008; Katt et al., 2017). Compared to the present work, significantly more domain
knowledge would be required to instantiate the parametric models used in this line of work. In
contrast we demonstrate flexible model learning with minimal assumptions.

Our work builds on recent progress in variational inference for learning deep state space models
(Krishnan et al., 2015, 2017; Fraccaro et al., 2016). Our model is most closely related to the Deep
Kalman Filter (DKF) proposed by Krishnan et al. The DKF has strong representational power and
can model rich partially observable environments while at the same time enabling an easy integration
with POMCP, as all information about the environment is represented in the latent state variables. In
other state-space models, e.g. those additionally including RNNs, the integration with POMCP poses
additional challenges as the RNN state and the state of the latent variables have to be considered
jointly.

To the best of our knowledge, our work is the first to demonstrate that models learned through modern
variational inference techniques coupled with state-of-the-art black-box planning approaches can
result in competitive behavior policies in POMDP settings. Previous work demonstrated variational
inference to learn models for POMDP settings (Moerland et al., 2017; Fraccaro et al., 2018) but with-
out closing the loop to learn or derive behavior policies. The use of (deterministic) transition models
was proposed for augmenting data (Kalweit and Boedecker, 2017) and observations (Racanière et al.,
2017; Buesing et al., 2018) for learning model-free policies.

6 Conclusion

We addressed the problem of data-efficient learning in POMDP settings. Our proposed approach
draws from several recent advances and can flexibly learn dynamics and reward models that, as we
demonstrate, lead to effective control strategies. This result opens up exciting research directions
towards more flexible and data-efficient learning in POMDPs with minimal prior assumptions. Future
work will seek to understand advantages and trade-offs between modern approaches to model learning,
e.g., comparing to recently proposed autoregressive models (van den Oord et al., 2017). Moving
beyond black-box planning approaches, recent progress in “learning to plan” (Henaff et al., 2017)
could enable principled and scalable model-based approaches that are learned end-to-end.
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