
SandTrap: Tracking Information Flows On Demand with
Parallel Permissions

Ali Razeen
Duke University

Alvin R. Lebeck
Duke University

David H. Liu
Princeton University

Alexander Meijer
Duke University

Valentin Pistol
Duke University

Landon P. Cox
Duke University

ABSTRACT
The most promising way to improve the performance of dynamic
information-flow tracking (DIFT) for machine code is to only track
instructions when they process tainted data. Unfortunately, prior
approaches to on-demand DIFT are a poor match for modernmobile
platforms that rely heavily on parallelism to provide good inter-
activity in the face of computationally intensive tasks like image
processing. The main shortcoming of these prior efforts is that
they cannot support an arbitrary mix of parallel threads due to the
limitations of page protections.

In this paper, we identify parallel permissions as a key require-
ment for multithreaded, on-demand native DIFT, and we describe
the design and implementation of a system called SandTrap that
embodies this approach. Using our prototype implementation, we
demonstrate that SandTrap’s native DIFT overhead is proportional
to the amount of tainted data that native code processes. For exam-
ple, in the photo-sharing app Instagram, SandTrap’s performance
is close to baseline (1x) when the app does not access tainted data.
When it does, SandTrap imposes a slowdown comparable to prior
DIFT systems (∼8x).

CCS CONCEPTS
• Security andprivacy→ Informationflowcontrol; •Human-
centered computing→Mobile computing; • Software and its
engineering → Virtual memory;Multithreading;

KEYWORDS
parallel memory permissions, dynamic information-flow tracking,
native code

ACM Reference Format:
Ali Razeen, Alvin R. Lebeck, David H. Liu, Alexander Meijer, Valentin
Pistol, and Landon P. Cox. 2018. SandTrap: Tracking Information Flows
On Demand with Parallel Permissions. In MobiSys ’18: The 16th Annual
International Conference on Mobile Systems, Applications, and Services, June
10–15, 2018, Munich, Germany. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3210240.3210321

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys ’18, June 10–15, 2018, Munich, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5720-3/18/06. . . $15.00
https://doi.org/10.1145/3210240.3210321

1 INTRODUCTION
Dynamic information-flow tracking (DIFT or taint-tracking) is
an important building block for many experimental mobile ser-
vices [10, 16, 17, 31, 32, 34]. The most popular DIFT implementation
for mobile is TaintDroid [15], which does not precisely track flows
through native code despite apps’ increasing reliance on native
third-party libraries. Furthermore, extending DIFT to native code
is imperative for monitoring the growing class of apps that use
native libraries to process sensor data, perform computer vision,
and support augmented reality.

Tracking information flows through native code typically re-
quires instruction-level emulation. When a thread is tracked, the
system intercepts each instruction, updates its DIFT state using a
taint-propagation logic, and then executes the original instruction.
Unfortunately, tracking a thread can degrade its performance by a
factor of ten or more, which makes continuous native tracking im-
practical for most services. Prior work on on-demand DIFT [20, 27]
attempts to reduce the impact of tracking threads by only emu-
lating code when it handles tainted data. Under on-demand DIFT,
untracked threads that avoid accessing tainted data run at full speed.

On-demand DIFT relies on page protections to safely transition
a thread from untracked to tracked execution. Before an untracked
thread runs, the system places no-access permissions on pages
holding tainted data to trigger a fault if an untracked thread accesses
those pages. If an untracked thread accesses a tainted page, the
fault handler removes protections on tainted pages to avoid more
traps during emulation. However, this approach to on-demand DIFT
limits parallelism because tracked and untracked threads cannot
run at the same time under different virtual-memory protections.

This limitation is particularly painful for Android apps, which
often consist of a main UI thread running managed code and back-
ground threads that perform computationally intensive tasks using
native libraries. Background threads communicate with the main
UI thread through shared buffers, and the main thread’s managed
runtime (e.g., Dalvik) must access those buffers without triggering
a fault and launching emulation. Thus, under existing approaches
to on-demand DIFT, untracked background threads (i.e., the threads
that would most benefit from on-demand DIFT) cannot run in par-
allel with threads executing managed code (e.g., the main UI thread)
or with tracked background threads.

In this paper we present the design, implementation, and eval-
uation of a native DIFT system for Android called SandTrap that
addresses the shortcomings of prior approaches to on-demand DIFT.
The key observation underlying the design of SandTrap is that
parallel permissions are a crucial requirement for multithreaded,

https://doi.org/10.1145/3210240.3210321
https://doi.org/10.1145/3210240.3210321
https://doi.org/10.1145/3210240.3210321

MobiSys ’18, June 10–15, 2018, Munich, Germany Ali Razeen et al.

on-demand native DIFT of mobile apps. Parallel permissions al-
low threads in the same address space to execute in parallel under
different page protections.

We developed two implementations of parallel permissions in
SandTrap: (i) by using a little-used feature of ARM processors called
memory domains, and (ii) by maintaining two page-tables per app.
The first implementation demonstrates how special hardware primi-
tives can be used to implement parallel permissions, and the second
implementation demonstrates the generality of SandTrap. In a previ-
ous position paper [30], we speculated that ARM memory domains
could be a useful mechanism for making native DIFT overhead pro-
portional to the amount of tainted data accessed by native code. In
this paper, we present the design and implementation of a complete
system that achieves our goal through memory domains and two
page-tables.

This paper makes the following contributions:
• We identify parallel permissions as a key requirement for
multithreaded, on-demand native DIFT for mobile apps. Par-
allel permissions allow native code that does not access
tainted data to run at full speed in parallel with managed
threads like the main UI thread and tracked background
threads.

• Using our SandTrap implementation to track microphone
data through an Instagram workload that accesses camera
data, we show that SandTrap’s native-code slowdown is
close to a baseline of stock Android. In addition, because
untracked threads run at full speed, Instagram under Sand-
Trap consumes only 10% more energy than stock Android.
The same Instagramworkload under continuous native DIFT
suffers a native-code slowdown of approximately 8x while
consuming 44% more energy compared to stock Android.

2 BACKGROUND
In this section, we provide background information on Android
and dynamic information-flow tracking (DIFT).

2.1 Android: threads, native code, and shared
buffers

The Android platform primarily consists of a Linux kernel, a run-
time environment and support libraries for Dex bytecodes, and
an inter-process communication system called Binder. Developers
write most app code in Java, which is compiled into Dex bytecodes
and distributed to users in .dex files. Apps can also include third-
party native libraries, typically written in C or C++, that interact
with bytecodes through the Java Native Interface (JNI). Android
launches each app by forking a common zygote process and uses
the managed runtime to load app-specific code instead of invoking
the execve system call. Each process runs under a per-app uid
assigned by the kernel. Prior to Android 4.4, Android executed
bytecodes in a Dalvik virtual machine and used just-in-time (JIT)
compilation to improve performance. Starting with Android 4.4,
Android introduced a new runtime environment called the Android
Runtime (ART). ART compiles most bytecodes ahead-of-time (AOT)
into a native ELF executable when an app is installed.

Nearly all Android apps are multithreaded, with one main UI
thread that is responsible for quickly responding to user inputs,

and background threads responsible for slow tasks such as network
communication and database queries. Android enforces this divi-
sion of responsibilities: attempts to access the network from the
main thread trigger an exception, and slow event processing on
the main thread causes an “App Not Responding” (ANR) dialog. In
addition to I/O requests, developers often offload computationally
intensive tasks such as image processing and machine-learning
classification to native libraries running on background threads.
The JNI manages transitions between managed code (i.e., Dalvik or
ART) and native code, and provides a set of methods for sharing
data between the two execution modes.

While native code indirectly accesses most Java object state
through JNI methods, it may obtain pointers to the raw memory
backing some Java objects. First, for each native Java type, such as
int and char, native code can directly access the backing memory
for a Java array of that type using the GetArrayElements fam-
ily of methods. The JNI will either return a pointer to the back-
ing memory of the Java array object or a copy of the object’s
backing memory, depending on the state of the garbage collec-
tor. A call to GetArrayElements must be accompanied by a call to
ReleaseArrayElements so that data can be copied back (if neces-
sary) and to notify the garbage collector that native code no longer
needs the object. Second, direct ByteBuffers allow native and
managed code to share access to large, long-lived regions of mem-
ory, such as buffers holding image data. Finally, native code can
access a Java string’s backing memory using the GetStringChars
family of methods. These calls must be accompanied by calls to
ReleaseStringChars. For many apps, shared buffers are critical
for good native performance since they reduce the number of JNI
method calls needed to access a Java object, and they eliminate
copying between multiple representations of the same object.

To illustrate the interplay of background threads, native code,
and shared buffers on Android, we will briefly describe how the
built-in camera app saves a JPEG image.When a user takes a picture,
the app receives camera data in YCbCr format. To convert the image
from YCbCr to JPEG format, the camera app calls into a native
library and passes references to four direct ByteBuffers: three for
the input image (Y channel, Cb channel, and Cr channel) and one
for the output JPEG image. Native code compresses the input image,
stores the result in the output buffer, and then returns to managed
code, which can display the resulting JPEG image or save it to a
file.

While this is one example of how background threads, native
code, and shared buffers can be used, we have observed similar
patterns in apps that process audio and image data, perform en-
cryption and decryption, perform machine-learning classification,
and render game content.

2.2 Dynamic Information-flow Tracking
Performance andprecision. Dynamic information-flow track-

ing (DIFT or taint-tracking) records data dependencies as a process
executes. DIFT systems maintain a label, often a bit vector, for each
information-holding object, such as a file or program variable. At
any moment, an object’s label reflects whether it contains infor-
mation derived from a set of taint sources, such as a file, network
socket, or sensor. As processes perform operations on data objects

SandTrap: Tracking Information Flows On Demand with Parallel Permissions MobiSys ’18, June 10–15, 2018, Munich, Germany

they transfer information between objects, and DIFT systems dy-
namically update destinations’ labels according to a propagation
logic.

DIFT systems can track information flows at many granular-
ities, and system designers must trade off tracking precision for
overhead and developer burden. Precise tracking requires expen-
sive hardware emulation, typically by interposing on individual
machine instructions. Greater precision also requires more label
storage, often one label for every machine register and 32-bit range
of valid memory. However, because precise DIFT maintains more
detailed information about the locations of tainted data, it can be
transparently applied to unmodified executables without inducing
high false-positive rates.

Imprecise DIFT is faster and requires less label storage than
precise DIFT, but requires a set of trusted declassifiers to avoid
false positives [13, 23, 38]. Declassifiers are trusted to clear bits
from objects’ labels, but integrating declassifiers into existing code
bases requires developers to refactor applications into trusted and
untrusted components. Declassifiers can also be difficult to write
and reason about because of the limited information available to
them when making declassification decisions.

TaintDroid. TaintDroid [15] is a widely used DIFT system for
Android that provides a good balance of performance and preci-
sion by tracking information through program variables within the
Dalvik runtime. On microbenchmarks, TaintDroid DIFT imposes
only 14% overhead. TaintDroid’s appealing combination of perfor-
mance and precision has made it a core building block of numer-
ous higher-level services, including trustworthy sensing [17], data
deletion [32], cache eviction [34], energy conservation [31], and
password management [10]. TaintDroid has also been instrumental
for studying how mobile apps handle sensitive information [15, 16].

Despite its widespread use, TaintDroid does not precisely track
flows through native code. TaintDroid does not even allow apps to
load native third-party libraries, and it provides imprecise, method-
level tracking for native platform libraries. Disallowing native third-
party libraries is an increasingly problematic limitation. We col-
lected information about 86,000 apps from the Google Play Store in
March of 2016, each with more than 100,000 downloads, and found
that over 43% used at least one native third-party library. This is a
substantial increase from the 5% reported in the TaintDroid paper
from 2010. Furthermore, we have observed many flows through
native third-party code that might be useful to track. For exam-
ple, Instagram stores image thumbnails using native libraries, and
Sony’s TrackID app identifies songs by forwarding audio-stream
fingerprints to a remote server using native libraries.

Native DIFT. The main barrier to precisely tracking native
third-party libraries is poor performance. Precise DIFT for ma-
chine code like native libraries is slow because the ratio of tracking-
instructions to application-instructions is much higher than in a
managed runtime like ART or Dalvik. For TaintDroid, executing a
typical Dex bytecode requires executing tens of machine instruc-
tions to parse the bytecode source and destination registers, perform
basic sanity checks, set the values of the destination registers, and
then move on to the next bytecode. Performing DIFT on a bytecode
requires just a few additional instructions: loads for the source
objects’ labels, an OR for the propagation logic, and stores to the

destination objects’ labels. As with TaintDroid, DIFT for ART can be
fast and precise. TaintART’s integration of DIFT into ART exhibits
a runtime overhead of only 14% [33].

The low overhead of performing DIFT in ART and Dalvik is
in stark contrast to the high overhead of performing DIFT on na-
tive code. Droidscope [37] and NDroid [26] both provide DIFT for
Android across managed and native code through an x86-QEMU
virtual machine, and exhibit slowdowns of between 12x and 34x
compared to an x86-QEMU baseline. These systems cannot run on
typical mobile hardware, and their performance results are consis-
tent with earlier work showing native DIFT overheads between 10x
and 30x [9, 25].

Over the last ten years, many projects have proposed techniques
for improving native DIFT performance, but none are a good match
for Android. First, static analysis can improve tracking performance,
but this approach is prone to false positives due to aliasing and
context sensitivity [14, 22]. These issues are particularly challenging
with native code, and the popular static information-flow tracking
tool FlowDroid [4] does not support native code.

Minemu [7] achieves 1.5x to 3x slowdowns on x86 in part by
repurposing unused SSE registers for label storage and using SIMD
instructions for propagation. However, ARM’s SIMD/NEON exten-
sions are critical to many native libraries for Android. It is worth
noting that to the best of our knowledge no prior DIFT system sup-
ports SIMD/NEON instructions, including Droidscope and NDroid.
More recently, JetStream [28] accelerated DIFT for replayed pro-
cesses by parallelizing the work across a compute cluster, but this
approach is limited to replayed processes. Finally, recent work
on optimistic hybrid analysis [11] uses a combination of unsound
static analysis and speculative invariant checks at runtime to reduce
the amount of DIFT emulation that must be performed. While a
promising way to reduce DIFT overhead, optimistic hybrid analysis
requires access to library source code whereas native third-party
libraries are shipped as binaries.

On-demand native DIFT. The most promising approach to im-
proving native DIFT performance on Android is to track on-demand
by only emulating code when it accesses tainted data [20, 27, 30].
This approach can lead to substantial performance gains when ac-
cessing tainted data is rare. For example, if a system tracks location
or microphone data, native image-processing libraries should run
at full speed. However, in the worst case an app may spend all of
its time handling tainted data and its performance will be the same
as continuous DIFT.

Xen [20] uses page protections to track on-demand by setting
no-access permissions on pages holding tainted data. As long as
a virtual machine (VM) avoids tainted data, it runs at full speed.
Accessing a protected page triggers a page fault that forces the VM
to enter emulation. Only one set of protections can be active at
any moment, and the hypervisor removes DIFT-related protections
from tainted pages during emulation so that instrumented code can
access tainted data and label storage without faulting. If a tracked
VM runs long enough without tainted data in its registers, the
hypervisor can stop tracking the VM by restoring protections on
tainted pages and running the VM at full speed.

LIFT [27] avoids unnecessary emulation by performing live-in
and live-out analysis of code segments to identify when a segment

MobiSys ’18, June 10–15, 2018, Munich, Germany Ali Razeen et al.

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Time (seconds)

F
P

S

Execution Parallel Permissions−driven

Figure 1: The frame rate recorded from a dual-core Android
smartphone when loading a PDF file in eBooka, an ebook
reader app, with parallel and permissions-driven schedul-
ing.

can run at full speed. Segments with untainted inputs and outputs
do not need to be emulated, and any code segments that could read
or overwrite tainted data must be emulated. Like Xen, LIFT uses
page protections to prevent untracked code from accessing label
storage and removes those protections during emulation.

Multithreaded on-demandDIFT. By default, page protections
must be the same for all threads executing in an address space. As
a result, as soon as Xen and LIFT start to track a thread they can
no longer execute untracked threads on other cores. More gen-
erally, requiring different protections for tracked and untracked
threads, while using a protection model that allows one set of ac-
tive protections, limits parallelism; tracked threads cannot run with
protections enabled, and untracked threads cannot trap with protec-
tions disabled. On a single-core machine, on-demand DIFT systems
like LIFT or Xen could restore the appropriate protections when
switching the processor between tracked and untracked threads.
But on multicore processors app performance would suffer because
tracked and untracked threads could not run in parallel.

If an on-demand DIFT system runs on a multicore machine and
relies on the default page-protections behavior, it must do one of
two things when an untracked thread accesses tainted data and
begins emulation: (i) conservatively emulate all executing threads
in the process to identify and track future accesses to tainted data,
or (ii) use permissions-driven scheduling so that threads that require
different page protections do not execute in parallel. The first ap-
proach forces threads that would otherwise be untracked to pay a
significant performance penalty, and the second approach limits
parallelism.

2.3 Case study: eBooka
We demonstrate how permissions-driven scheduling can limit par-
allelism with the eBooka PDF reader. When a user opens a PDF
document, the app displays a circular loading bar in the UI while
using native code in background threads to load the file and prepare

it for rendering. Once the file is loaded, the app displays the first
page of the document and hides the loading bar.

We begin our experiment by continuously recording the frame
rate of the UI. Next, we wait for ten seconds before interacting with
the app, giving it time to load a complex PDF file. Finally, wewait for
one minute before terminating the experiment. In this experiment,
eBooka’s background threads are untracked and run with tainted
pages marked no-access. eBooka’s main UI thread must run with
page protections disabled to prevent the managed-code runtime
from triggering a fault.

We ran the experiment on a dual-core Galaxy Nexus smart-
phone using permissions-driven scheduling and an unmodified
Linux scheduler. The unmodified parallel scheduler runs all eBooka
threads in parallel. To implement permissions-driven scheduling,
we modify the Linux scheduler so that it does not execute threads
requiring different page protections at the same time. Our results
are in Figure 1.

In both the parallel and permissions-driven cases, the frame rate
starts out at zero FPS due to an Android optimization in which the
renderer simply displays the previous frame instead of rendering a
new frame when there are no UI updates. When all threads can run
in parallel, the frame rate jumps to 60 FPS after the initial waiting
period. At this point the app displays a “loading” message and the
loading circle continuously spins. At time t = 22 the app loads the
file and displays the first page. Because there are no more updates
to the UI, the frame rate drops back to zero FPS.

Under permissions-driven scheduling, the main UI thread (run-
ning managed code) cannot run in parallel with untracked back-
ground threads. Depending on which thread is scheduled, either
the UI will become unresponsive (when the untracked threads run)
or loading and parsing the PDF will stall (when the UI thread runs).
Both effects are observable in Figure 1.

After the initial wait period, the app displays the loading bar
just before the frame rate drops to zero FPS for about eight seconds.
During this interval, the UI thread pauses while the untracked
background threads run. Any input events from the user during
this period would not be handled within Android’s five-second
deadline, and would cause an ANR dialog to appear [2]. Between
t = 20 and t = 33 the UI stutters as the UI thread and the background
threads contend for the CPU. Eventually, at t = 35 the app loads
the file and the frame rate drops back to zero FPS because there are
no more UI updates. As expected, permissions-driven scheduling
limits parallelism, leading to poor interactivity and slow load times.

To summarize, we are unaware of any system that meets our goal
of providing practical on-demand, multithreaded DIFT on Android
across across both managed and native code. Any solution should
support unmodified apps and make the performance overhead pro-
portional to the amount of tainted data that native third-party code
processes.

3 SYSTEM OVERVIEW
In this section, we provide an overview of SandTrap, including the
principles that guided its design and its trust-and-threat model.

SandTrap: Tracking Information Flows On Demand with Parallel Permissions MobiSys ’18, June 10–15, 2018, Munich, Germany

3.1 Design principles
To provide practical DIFT on Android for managed and native code,
we designed SandTrap using the following design principles.

Track managed and native code separately. One approach
to tracking managed code and native libraries in Android is to use
the same instruction-level mechanism for both. Droidscope and
NDroid come closest to this approach by running the entire Android
platform in an x86-QEMU virtual machine. Integrating DIFT into
the QEMU hypervisor is appealing because it does not require
platform changes and naturally tracks flows through managed and
native code.

However, applying a single low-level DIFT mechanism to all
execution environments makes understanding managed-code be-
havior difficult. Because of this, Droidscope uses virtual-machine
introspection to apply different levels of QEMU instrumentation to
the Dalvik runtime and native libraries. This allows DroidScope to
track all flows and reconstruct Dalvik-level program context, but
it suffers a 30x performance slowdown. NDroid improved the per-
formance of Droidscope by integrating TaintDroid into the guest
virtual machine rather than tracking managed code through QEMU.
NDroid’s overhead is an improved 12x, but this is still much higher
than TaintDroid’s and TaintART’s 14%.

SandTrap tracks managed code and native third-party libraries
separately, relying on TaintDroid to continuously track managed
code and using on-demand DIFT for native third-party code. Even
though TaintDroid does not support the most recent versions of
Android that use ART, TaintDroid’s code is stable and widely used.
Replacing TaintDroid with TaintART or another DIFT system for
ART would require some engineering effort, but we do not antici-
pate it fundamentally changing our design or results.

TaintDroid tracks flows for each Dex bytecode, whether it is in-
terpreted or JIT-compiled. TaintDroid uses 32-bit labels and in-lines
labels with each object-instance’s fields on the heap and with local
variables on the stack. It also maintains one label for each Java array
object and each local Dalvik register (including method parameters).
Because of TaintDroid’s relatively low overhead, SandTrap always
performs DIFT on managed code.

For native DIFT, SandTrap targets 32-bit ARMv7 processors and
maintains 32-bit labels that mirror the format of TaintDroid’s labels.
SandTrap maintains a label for each 32-bit word of memory, each
32-bit core register (excluding the PC), and each 64-bit extended
register. SandTrap relies on MAMBO [18] to instrument native
third-party libraries. Like MAMBO, SandTrap does not support
deprecated Jazelle and thumbEE instructions, but supports the re-
mainder of the ARMv7 ISA, including floating-point, SIMD/NEON,
and thumb instructions. To the best of our knowledge, SandTrap
is the first implementation of DIFT for ARMv7 to support all non-
deprecated portions of the ARMv7 ISA. SandTrap also monitors the
Dalvik JNI layer to manage transitions between managed code and
native code. The primary responsibility of this code is synchroniz-
ing labels between Dalvik and native representations.

Given this design, a SandTrap thread can exist in one of three
states:managed, tracked, and untracked. A managed thread executes
under TaintDroid. A tracked thread executes native third-party code
under MAMBO instrumentation. An untracked thread executes
native third-party code without MAMBO instrumentation. As we

will see, the main technical challenge for SandTrap is ensuring that
an arbitrary mix of managed, tracked, and untracked threads can
execute in parallel.

Avoid permissions-driven scheduling. We initially thought
that tracking managed code and native code separately would mit-
igate most of the problems with permissions-driven scheduling,
since managed runtimes provide a software-based protection mech-
anism that is orthogonal to hardware-enforced page protections.
As long as managed-runtime code and state reside on a set of pages
that is disjoint from the set of pages holding native-library code
and state, changing the protections of native pages will have no
effect on the managed runtime.

Unfortunately, the widespread use of shared buffers across the
JNI boundary in Android prevents managed threads from running
in parallel with untracked threads under permissions-driven sched-
uling. To see why, consider a memory-protection scheme that sup-
ports only a single set of active protections for all running threads,
and assume that native code obtains a pointer to a shared buffer
via one of the JNI calls discussed in Section 2.1.

As long as accesses to shared buffers are properly synchronized
(i.e., the program is race free) and all shared buffers reside on pages
that are clear of tainted data, then managed and untracked threads
can run in parallel. If a managed (or tracked) thread acquires exclu-
sive access to the buffer (e.g., it acquires a lock) and copies tracked
data into the shared buffer, then its exclusive access will also allow
it to disable read and write access to the buffer’s pages before an
untracked thread can access it.

However, if at any moment a shared buffer resides on a page
containing tainted data, then untracked threads must trap if they
access the page. At the same time, tracked and managed threads
should not trap when accessing it. Thus, under permissions-driven
scheduling, untracked and managed threads cannot run in parallel
when a shared buffer resides on a page containing tainted data. As
demonstrated earlier, this restriction can cause poor interactivity
and a possible ANR dialog because the main thread has to pause
whenever untracked threads execute.

To avoid stalling the main thread because of permissions-driven
scheduling, SandTrap provides parallel permissions, which allows
managed threads (including the main thread) to safely run in paral-
lel with tracked and untracked threads.

Take advantage of hardware primitives. One way to pro-
vide parallel permissions is to map physical pages holding tracked
data into two virtual pages, to apply different permissions to the
two virtual pages, and to redirect memory accesses depending on
the current thread’s status [3]. The problem with this approach is
that an untracked thread may obtain a pointer to a clean buffer at
one point in time, and then dereference the pointer after the buffer
holds tainted data. Thus, SandTrap cannot rely on software protec-
tions alone.When possible SandTrap uses special hardware features
to implement parallel permissions, and we have also implemented
SandTrap using generic virtual-memory features.

First, the ARMv7 architecture provides a memory domains hard-
ware primitive. It is similar to x86 memory protection keys [1]
and has been used in several recent systems to protect portions of
an address space [8, 39] and to consolidate physical-page use [12].

MobiSys ’18, June 10–15, 2018, Munich, Germany Ali Razeen et al.

Untracked
thread

RW page permissions, zero memory domain

NO page permissions, TRACKED memory domain

RW page permissions, TRACKED memory domain

TRACKED	manager TRACKED	managerTRACKED	client

Managed
thread

Tracked
thread

Virtual memory

X

Figure 2: Parallel permissions with ARMmemory domains.

To the best of our knowledge, SandTrap is the first system to use
memory domains for on-demand emulation.

Memory domains allow the 1MB region of memory covered
by a top-level page-table entry (PTE) to be tagged with one of
16 domains. In addition, each core has a Domain Access Control
Register (DACR) that specifies how accesses to tagged memory
should be handled. The value of the DACR is a 32-bit, 16-entry
vector specifying whether the core is in no-access, manager, or
client mode with respect to each of the 16 memory domains.

If a core is in no-access mode for a domain, then any attempt
to access memory tagged under that domain will fail and trigger a
domain fault, regardless of the protections in the address’s PTE. If
a core is in manager mode for a domain, then any attempt to access
memory tagged under that domain will succeed regardless of the
PTE protections. Finally, if a core is in client mode for a domain,
then attempts to access memory tagged under that domain will be
handled according to PTE protections.

SandTrap provides parallel permissions with ARM memory do-
mains by tagging all native pages holding tainted data with a new
TRACKED domain. Figure 7 shows how SandTrap protects and tags
regions of memory holding tainted data. When code copies tainted
data to a page, SandTrap ensures the page has no-access permissions
so that untracked threads trap if they access the tainted page. Next,
SandTrap tags the top-level PTE of the page with the TRACKEDmem-
ory domain. Managed and tracked threads run in manager mode
for the TRACKED domain, so that they bypass access restrictions
placed on tainted pages. At the same time, untracked threads run in
client mode for the TRACKED domain and abide by the tainted pages’
protections. This memory-protection scheme allows SandTrap to
perform on-demand native DIFT while executing an arbitrary mix
of managed, tracked, and untracked threads in parallel with only a
single page-table per app.

Unfortunately, ARM has deprecated memory domains for CPUs
running in 64-bit mode (i.e., AArch64mode in ARMv8). For architec-
tures that lack hardware primitives similar to memory domains or
memory protection keys, parallel permissions may be implemented
by maintaining two synchronized page tables for every running

app: protected and unprotected. The virtual-to-physical mappings
of both tables are identical, and the tables differ only in that pages
holding tainted data have no-access permissions in the protected
table. Under this approach, the kernel is in charge of switching
the page table used by a core depending on the state of the execut-
ing thread. Untracked threads use the protected page table while
managed and tracked threads use the unprotected table.

Track some platform libraries imprecisely. Android pro-
vides a number of native platform libraries for native and managed
code. These libraries offer a range of functionality, including the
Bionic standard-C library and stubs for accessing hardware acceler-
ators. Precisely tracking flows through many of these libraries (as
opposed to native third-party libraries) would lead to correctness
problems, and so SandTrap imprecisely tracks three broad classes
of platform native libraries.

First, SandTrap does not precisely track Bionicmethods onwhich
the SandTrap implementation depends. In many cases, emulating
Bionic would lead to recursive emulation or deadlock. For example,
the Bionic implementations of malloc and free use a global lock
for synchronization, and emulating calls to malloc will cause a
deadlock if SandTrap calls malloc during emulation. Instead, Sand-
Trap performs method-grained tracking on these calls using our
understanding of the call semantics to appropriately update labels.

Second, SandTrap does not precisely track Bionic’s I/O methods,
such as file system and network reads and writes. Though SandTrap
does not use these methods itself, we instrument these methods
rather than emulate them to identify when tracked data leaves an
app. For example, in order to propagate labels to files, SandTrap
code in Bionic’s write method updates the extended attributes
of the target file. Similarly, if an app sends tainted data over the
network, SandTrap logs information about the remote socket and
the output-buffer’s label.

Finally, Android provides native stubs for interacting with hard-
ware accelerators like GPUs. SandTrap cannot precisely track code
that executes off of the main CPU, and so it interposes on accelera-
tor methods and updates output labels based on the specified inputs
and outputs. For example, many apps use OpenGL to render scenes
and perform image processing. The OpenGL API provides methods
for specifying configuration parameters, input buffers, shaders, and
output buffers. SandTrap monitors these calls, and once native code
launches a task on the GPU, it sets the output buffer’s label to the
union of all input labels.

3.2 Trust and threat model
SandTrap relies on numerous existing pieces of software, including
Android, TaintDroid, and MAMBO, and it inherits their trust-and-
threat models. For example, SandTrap does not handle implicit
flows, although it could borrow techniques from SpanDex [10] to
limit them. Furthermore, our SandTrap implementation does not
prevent buggy or malicious native code from corrupting label stor-
age or Dalvik state. However, this is not a fundamental limitation
since SandTrap could protect labels and Dalvik state using parallel
permissions or integrate memory checks into MAMBO emulation.
We leave these measures for future work.

SandTrap: Tracking Information Flows On Demand with Parallel Permissions MobiSys ’18, June 10–15, 2018, Munich, Germany

4 SANDTRAP
SandTrap continuously tracks Dex bytecodes using TaintDroid
and performs on-demand DIFT on native third-party libraries. A
SandTrap thread can execute in one of three states: managed (under
the control of TaintDroid), tracked (under the control of native DIFT
emulation), and untracked (no emulation). SandTrap’s primary goal
is to support parallel permissions so that managed, tracked, and
untracked threads can execute in parallel.

4.1 Label storage
The first challenge that SandTrap addresses is synchronizing native
and TaintDroid labels. TaintDroid labels are 32-bit vectors, where
each bit represents a different taint source, such as the GPS, micro-
phone, or camera sensor. SandTrap’s native labels have the same
format as TaintDroid’s labels. An app’s primary stack region resides
at the top of the user-accessible portion of its address space (AS).
Native-label storage for the primary stack resides at the bottom of
the AS, and SandTrap maps each word of the stack region to its
label using a fixed offset.

All native code, including the Dalvik VM, TaintDroid, SandTrap,
platform libraries, and third-party libraries reside in a read-only
code region just above the primary stack’s label storage. Each app’s
heap resides above the code region. The heap is partitioned into a
Dalvik-managed range and a native-managed range. Dalvik man-
ages its range via mspace_malloc, whereas SandTrap, platform
libraries, and third-party libraries collectively manage the remain-
ing heap memory using malloc. Dalvik stores all Java objects and
managed-thread stacks in its portion of the heap. As previously
mentioned, TaintDroid in-lines labels for Java object fields and local
variables.

Native labels for non-Dalvik heapwords reside in a 300MB region
immediately below the process’s primary stack region. SandTrap
allocates stacks for new threads by mmapping new memory above
the heap region. Thread stacks never share pages. Labels for native
thread stacks reside at the same fixed offset used to locate heap-
word labels.

To synchronize native labels and TaintDroid labels, SandTrap
interposes on transitions across the JNI and monitors requests for
pointers to shared buffers by native code. When managed code
invokes a native third-party method, it can pass Java native types
and Java object references. References and native types are passed
by copy, and SandTrap ensures that the TaintDroid labels corre-
sponding to the arguments are copied to the appropriate native
labels. It performs similar bookkeeping for return values and indi-
rect accesses to Java objects through the JNI.

Synchronizing native and TaintDroid labels for shared arrays
and ByteBuffers is slightly different because native code directly
accesses these buffers. Recall that TaintDroid maintains a single
label for each array, whereas SandTrap maintains per-entry labels
for native arrays. Thus, when native code obtains a pointer to a
Java array via the GetArrayElements family of methods, SandTrap
copies the Java array label into the native label for each native-array
entry. Also recall that calls to GetArrayElements can return a copy
of the memory backing the Java object and that these calls must be
accompanied by a corresponding call to ReleaseArrayElements.
Release calls may synchronize a copy array with the actual Java

object. SandTrap uses these release calls to synchronize labels, and
sets the Java array’s label as the union of all native-array entry
labels. SandTrap handles shared Java strings similarly.

Unlike Java strings and array objects, direct ByteBuffers are
long-lived and do not require native code to explicitly release their
pointers. Android recommends that Java code access these ob-
jects via get and set methods rather than directly accessing the
underlying byte array. Thus, when Dex bytecodes read from a
ByteBuffer via get methods, SandTrap sets the TaintDroid label
for the method’s return value equal to the corresponding native la-
bel. When Dex bytecodes write to a ByteBuffer via a set method,
SandTrap copies the TaintDroid label for the argument to the cor-
responding native label. As a result, even though TaintDroid main-
tains a single label for each array, SandTrap effectively provides per-
entry labels for direct ByteBuffers through the get and setmeth-
ods. Label synchronization between TaintDroid and SandTrap for di-
rect ByteBuffers could be optimized by only synchronizing labels
for buffers that native code accesses via GetDirectBufferAddress,
but we leave this optimization for future work.

Note that we assume that apps are race free. In particular, we
assume that threads obtain exclusive access to shared objects when
updating them and that label updates are protected by this same
exclusive access.

4.2 Parallel permissions
To keep track of which pages hold tainted data, SandTrap maintains
a count of the number of tainted words on each page. If a page’s
count increases from zero to one, then the page must be protected. If
the page’s count decreases from one to zero, its protections must be
removed. Updating page counts and page protections is handled by
the JNI layer and the native DIFT implementation in collaboration
with kernel code.

Page protections are a relatively coarse-grained protection mech-
anism, and prior work on unlimited watchpoints has suggested
that using pages to trap-and-emulate can lead to high false-trap
rates [19]. That is, a thread may trigger emulation by accessing
untainted data on a tainted page. Thankfully, this has not been
our experience with SandTrap, perhaps because native threads on
Android typically perform bulk processing of large buffers.

As previously described, Android’s default page-protection scheme
is not enough to provide parallel permissions. Thus, depending on
the underlying hardware, SandTrap uses page protections in con-
junction with ARM memory domains or two page-tables to provide
on-demand native DIFT.

ARM memory domains. When hardware memory domains
are available, SandTrap defines a new domain called TRACKED, and
managed and tracked threads run in manager mode for the TRACKED
domain. Running in manager mode allows these threads to bypass
page protections for pages falling under the TRACKED domain. How-
ever, domains cover coarse 1MB regions, and a thread in manager
mode will ignore protections for all pages under the TRACKED do-
main, including pages without tainted data. This can be dangerous
in systems like Android that use copy-on-write and a shared zero
page to improve memory utilization.

By default, virtual pages that map to these shared physical pages
are write protected to defer the work of creating a physical copy.

MobiSys ’18, June 10–15, 2018, Munich, Germany Ali Razeen et al.

However, if such a virtual page falls under the TRACKED domain,
then a thread inmanager mode could bypass the page’s write protec-
tions and modify the underlying physical page. Such errant writes
would be visible to all threads with the physical page mapped into
their address space. Modifying the zero page is particularly damag-
ing and often leads to a full system crash.

As a result, no physical page mapped into a virtual page in a
TRACKED region of memory can be mapped into any other virtual
page. SandTrap prevents threads from corrupting shared physical
pages by pro-actively allocating and mapping-in unique physical
pages for each virtual page marked copy-on-write or mapped to
the zero page. In the worst case, a 1MB region of virtual memory
could be populated by a single tainted page with the remainder
of the region mapped to zero pages. In this case, SandTrap will
waste nearly 1MB of physical memory allocating identical zero-
filled physical pages. Fortunately in practice, SandTrap typically
allocates only a few new physical pages when tagging a TRACKED
region. This is because most heap and stack pages that share a
first-level PTE with a tainted page are either unmapped or are not
marked for copy-on-write.

Similarly, when an app allocates a new anonymous page with
mmap under the TRACKED domain, SandTrap immediately allocates
a new physical page instead of relying on copy-on-write. Normally
the kernel maps anonymous pages to physical-address zero, and
an access triggers a translation fault. Manager mode suppresses
protection faults, but not translation faults. Thus, if a thread in
manager mode accesses an unmapped page in the TRACKED domain,
i.e., one with a translation address of zero, ARM will still trigger a
translation fault. Avoiding translation faults on anonymous pages
helps the kernel identify legitimate translation faults, such as an
app giving up a virtual page and the kernel updating the page’s
PTE with a zero address.

Finally, our current implementation of SandTrap does not allow
pages in the TRACKED domain to be shared between processes. This
is not a fundamental limitation; to correctly support shared pages,
the SandTrap labels of a shared tainted page must be also shared.
We leave this for future work, but we have not seen this behavior
in practice since Android apps typically use Binder for inter-app
communication.

Two page-tables. When memory domains are not available,
SandTrap provides parallel permissions by maintaining two page-
tables per app. Untracked threads use a protected table, which has
protections on pages with tainted data, while managed and tracked
threads use an unprotected table. The main challenge for SandTrap
is synchronizing the virtual-to-physical mappings in both tables.

The Linux kernelmanages theAS of a process using the mm_struct
data structure. It defines metadata fields about the AS, including
a pointer to a top-level page-table. Threads within a process use
the same mm_struct and page-table instance. If changes need to be
made to the AS, the kernel consults the metadata in the mm_struct
before updating the page table. For example, a thread may map a
new anonymous page at virtual address X with mmap. The kernel
will initially map X to the zero page, which is marked read-only.
When the thread performs the first write to X , the core will raise a
write fault, which will invoke the kernel’s fault handler. The kernel
will use the metadata in mm_struct to identify that the fault was
caused by a write to a mapped but unallocated page. The kernel

will allocate a new physical page, update the top-level table so that
X maps to this new page, and return from the fault handler. From
this point onward, writes to X will succeed without trapping.

Given this starting point, SandTrap designates the page-table
pointer already defined in mm_struct as the unprotected page-table
and creates a new pointer to the protected page-table. The protected
table is lazily allocated when a thread changes to an untracked state,
or when tainted pages are protected. In addition, SandTrap ensures
that changes to mappings in the unprotected table are propagated
to the protected table, while ensuring that page protections are kept
intact. This approach significantly simplifies the implementation
because changes to mappings propagate in one direction, from the
unprotected to the protected table.

The second challenge of maintaining two page-tables is manag-
ing the TLB. The TLB caches both virtual-to-physical mappings
and page protections. Each TLB entry is tagged with the current
address space identifier (ASID). This allows the core to avoid re-
peated page-table walks on frequent accesses to the same memory
locations. When a thread switches from managed or tracked to un-
tracked, SandTrapmust ensure that the core does not use previously
cached TLB entries or the untracked thread might access tainted
data without trapping. One option is to flush the TLB whenever
the kernel switches between the unprotected and protected tables
in a core, but this will increase overhead and may not be sufficient
when TLBs are shared by multiple cores. Instead, SandTrap assigns
each app a second ASID when allocating its protected page-table.
In these cases, the app has two ASIDs, one for each table, and the
kernel sets the appropriate ASID on the core based on the page
table used by the thread.

4.3 Thread transitions
The final challenge that SandTrap addresses is managing thread
modes and transitions. SandTrap does not allow native code to cre-
ate new threads, and every thread starts as a managed thread under
the control of TaintDroid. When a managed thread invokes a native
third-party method, SandTrap copies the method arguments and
updates the native labels as described in Section 4.1. SandTrap then
asks the kernel to change the state of the thread to untracked. De-
pending on the implementation of parallel permissions, the kernel
either updates the DACR or the page table.

Untracked threads run at full speed as long as they do not access
a page holding tainted data. If an untracked thread never accesses a
tainted page, then when it returns through the JNI layer, SandTrap
switches the thread’s state to managed before returning control to
TaintDroid. However, if an untracked thread accesses a page with
tainted data, it will cause a page fault and trigger DIFT emulation.
SandTrap performs native DIFT within a fault handler running on
the faulting thread’s stack. In order to register a handler for each
thread, we modified the Android implementation of pthreads to
wrap new threads’ start methods with a hook method.

Inside the hook method, SandTrap registers a SIGSEGV fault
handler. SIGSEGV is a synchronous signal, and the Linux kernel
guarantees that if a thread with a registered SIGSEGV handler
triggers a fault, the signal will be delivered to the faulting thread.
This is critical for ensuring that SandTrap performs DIFT on the
correct thread. Otherwise, the kernel could deliver the signal to an

SandTrap: Tracking Information Flows On Demand with Parallel Permissions MobiSys ’18, June 10–15, 2018, Munich, Germany

untracked thread that has not accessed tainted data, a tracked thread
that is already running under DIFT, or, worst of all, a managed
thread like the main thread.

On a trap, SandTrap’s signal handler switches the thread to
a tracked state. Next, it invokes MAMBO to start executing ba-
sic blocks beginning with the faulting instruction and using the
thread’s existing stack. As unmodified MAMBO expects to con-
trol a process from start to finish, we made extensive changes to
MAMBO so that it can pause and resume emulation at arbitrary
execution points. For example, some native third-party libraries
invoke platform OpenGL routines during emulation. As mentioned
previously, SandTrap must interpose on these libraries so that it
can track flows in and out of the GPU. Thus, when a tracked thread
makes an OpenGL call, SandTrap pauses emulation, performs the
OpenGL call, and then resumes emulation.

A consequence of SandTrap’s memory-protection scheme is that
each Dex call into native third-party code requires at least two
kernel traps: one to change the thread to untrackedmode, and one to
change it back to managed mode on return. Upcalls from untracked
threads into managed code cause additional traps: one to change to
managed mode, and one to change back to untracked mode. If an
app does not amortize the cost of these boundary crossings, then its
native calls may be slower under SandTrap even if the calls never
trigger emulation.

Finally, it may be possible for a thread to exit emulation once its
registers are clear of tainted data. In our experience these moments
are fleeting, and threads typically start processing tainted data
very shortly after their registers are clear. The overhead of thrash-
ing between tracked and untracked states can be very high, since
switching requires a kernel trap. As a result, SandTrap emulates
tracked threads until they return control to TaintDroid through the
JNI.

5 EVALUATION
To evaluate our SandTrap prototype we ask the following questions:
(1) Does on-demand native DIFT provide better performance than
continuous tracking? (2) Does SandTrap incur false traps? If so, are
they truly false traps, or does the thread eventually touch tainted
data? (3) Is on-demand DIFT more energy-efficient than continuous
tracking? (4) How much memory does SandTrap consume? To
answer the first two questions, we provide data about only native-
method performance, i.e., the results are not end-to-end.

End-to-end timing results require measuring the elapsed time
between an initial user interaction and a final app event (typically
to update the UI). In Android, a user interaction may spawn many
asynchronous events, and accurately accounting for the time to
process those events requires a tool such as AppInsight [29] for
Android. Lacking such a tool, we rely on energy experiments to
characterize the end-to-end impact of SandTrap.

5.1 Experimental methodology
For all of our experiments, we use a dual-core Galaxy Nexus smart-
phone running Android 4.1.1. We add instrumentation to record
timings, basic-block counts, and other data as needed for the spe-
cific experiment. Our baseline for comparison is stock Android.
For timing measurements, we modify Dalvik to log timestamps at

● ●

●

●

●

●

●

● ●

●

●

0.0

2.5

5.0

7.5

Nectroid Anagram 920
Editor

Note
Cipher eBooka QDict APV

PDF Writeily MuPDF Instagram

S
lo

w
do

w
n

Parallel Permissions Domains Two page tables

Figure 3: App-study native-code slowdown.

native-method entry and exit. We use the Android Monitor infras-
tructure to log and retrieve experiment data.

We use ten Android applications representing a variety of use
cases 1. Prior work reports that TaintDroid and TaintART overhead
is only 14%, and therefore we do not report Dalvik-induced overhead
and focus on only native overhead. We track each native routine
invocation, the time spent in each native routine, and the number
of MAMBO basic-blocks executed. We present aggregate results
(i.e., the sum for all native-method invocations) unless otherwise
stated. We note that our performance results represent a worst case
overall execution time since we simply sum the times to complete
each native-method invocation.

We use Instagram to explore SandTrap’s overhead in detail. Re-
sults from these experiments are somewhat noisy since they interact
with a live Internet service. For example, we find that each Insta-
gram experiment exhibits around 200 native method invocations.
The variation is likely due to Instagram authentication activity. To
standardize our Instagram analysis, we automate measurements
using a Python script executing on a desktop PC to issue commands
to the phone over the Android Debug Bridge (ADB). This setup
allows us to launch apps, virtually click on the UI, and virtually
type inputs, while also collecting instrumentation output from the
Android Monitor.

Instagram launches many background threads to apply filters to
images and generate thumbnails. Even after an image is uploaded
to Instagram servers, the phone could still be processing photo data
in the background. Our experiments are designed to capture all
Instagram activity for a given post, including trailing post-upload
image processing. In particular, our script issues a series of com-
mands instructing Instagram to take a photo from the front camera,
annotate the image, and post it.

5.2 On-demand vs continuous DIFT
For our experiments, we use three taint sources: camera, location,
and microphone. We measure performance as the total time that
all threads spend in native execution, normalized to a baseline of

1920 Editor, Anagram, APV PDF, eBooka, Instagram, MuPDF, Nectroid, NoteCipher,
QDict, and Writely

MobiSys ’18, June 10–15, 2018, Munich, Germany Ali Razeen et al.

stock Android. Figure 3 shows SandTrap performance for ten apps
using boxplots. SandTrap introduces modest slowdowns (1x to 8x).
Instagram is the only app that accesses tainted data (camera), and
it incurs the largest slowdown. For the other apps, the range of
slowdowns reflects different numbers and durations of native calls.
Recall that each native call in SandTrap incurs two traps, one to
switch the thread from managed to untracked mode on entry and
one to switch back to managed mode on exit. In some cases, such
as MuPDF, the overhead is due to additional crossings from native
code to managed code. As discussed in Section 4.3, each upcall from
native to managed code requires two kernel traps. Observe too that,
in general, SandTrap performs better with memory domains than
with two page-tables. This is also observable in the experiments
below.

We next examine SandTrap’s overall performance using Insta-
gram with different taint sources as a representative benchmark.
We specify either the microphone or the camera as a taint source.
These cases represent two extremes. Instagram captures pictures
with the camera and spends significant time in native routines
processing the resulting images. In contrast, when taking a photo,
Instagram does not access the microphone, and as a result image-
processing background threads should remain untracked. We also
include results for unmodified TaintDroid and continuous DIFT.

The baseline stock Android spends approximately 10.5 seconds
executing native code and makes approximately 200 native-method
invocations. The results, shown in Figure 4a, reveal two impor-
tant highlights: (1) SandTrap performance approaches the baseline
system for use cases that access little or no tainted data, and (2)
SandTrap incurs 6-8x slowdown when DIFT is required. These
results demonstrate the importance of on-demand DIFT and con-
firm that SandTrap achieves worst-case performance comparable
to other native DIFT implementations.

TaintDroid achieves performance equal to stock Android, as
expected since we focus only on native-method execution and
TaintDroid does not perform DIFT on native code. We observe
that for Instagram and tainted microphone data, SandTrap incurs
a modest 1.5x slowdown (using domains) due to the overhead of
switching threads between managed and untracked states. In con-
trast, always performing DIFT emulation on native code incurs a
6-8x slowdown. For Instagram with tainted camera data, SandTrap
incurs slowdowns comparable to continuous native DIFT since
Instagram performs substantial computation on image data.

To better understand SandTrap performance, we next examine
the overhead of individual SandTrap components. When a thread
accesses a protected page with tainted data, SandTrap transfers
control to a MAMBO-based instruction emulator. SandTrap adds
two additional overheads for DIFT on each MAMBO basic block
beyond baseline MAMBO emulation: (1) writing DIFT rules to a
buffer and (2) processing DIFT rules in a handler at the end of
each basic block. Here we examine the overhead for each of these
components.

To isolate the various SandTrap overheads we examine three
different scenarios that emulate all native methods regardless of
whether they access tainted data or not: (1) baseline MAMBO emu-
lation, including trap overhead to begin emulation (emulation only),
(2) DIFT rule recording only (no DIFT handler), and (3) continuous

●

●

●●
●

0

2

4

6

8

10

TaintDroid SandTrap
(mic)

SandTrap
(camera)

SandTrap
(always track)

S
lo

w
do

w
n

Parallel Permissions None Domains Two page tables

(a) Different taint sources

●

●

●

0

2

4

6

8

10

12

TaintDroid SandTrap
(emulation only)

SandTrap
(no DIFT handler)

SandTrap
(complete)

S
lo

w
do

w
n

Parallel Permissions None Domains Two page tables

(b) SandTrap component overhead

Figure 4: SandTrap overhead using Instagram.

tracking (complete). Each step adds an incremental overhead be-
yond the baseline stock Android. Figure 4b shows the performance
of Instagram with tainted camera data for TaintDroid and the three
scenarios described above.

SandTrap’s DIFT rule logging introduces minimal additional
overhead beyond instruction emulation. The biggest source of over-
head is the DIFT handler that processes DIFT rules at the end of
each MAMBO basic block. There may be opportunities to reduce
this overhead since we have not optimized the DIFT handler in our
implementation.

5.3 False traps
Since SandTrap uses coarse page protections to trap accesses to
tainted data, it will also trap native methods that (1) access un-
tainted data that shares a page with tainted data, or (2) overwrite
tainted data with untainted data. A false trap occurs if we begin
emulation for a native method, but it never accesses tainted data
before returning to Dalvik. In some cases, a trap may occur be-
cause a native method accesses untainted data, but the method may

SandTrap: Tracking Information Flows On Demand with Parallel Permissions MobiSys ’18, June 10–15, 2018, Munich, Germany

1282

552

15 6
61

11 1
42

2 2 1 1 1 1 6
0

500

1000

0 25 50 75 100
Percentage of execution before reading tainted data

F
re

qu
en

cy

(a) Accessing tainted data

1

57

10

450

98

418

30

80

200

120

440

10 10 10 201020

0

100

200

300

400

10 100 1,000 10,000 100,000 1,000,000 10,000,000
Number of basic blocks executed

N
um

be
r

of
 tr

ac
ke

d
ex

ec
ut

io
ns

(b) Total MAMBO blocks executed

Figure 5: SandTrap false traps using Instagram.

eventually access tainted data before returning to Dalvik. In these
situations, the native method simply triggers a trap earlier than
strictly necessary.

We ran another set of Instagram experiments (with two page-
tables) to analyze why native methods trap. In sum, there were
a total of 1,996 emulated native-method invocations. Our results
reveal that false traps are rare (only 12 invocations), and only a small
percentage of methods read tainted data within the first MAMBO
block (236 invocations). To better understand when a native method
accesses tainted data, we count the number of dynamic MAMBO
block executions after a trap until at least one register contains
tainted data (first block). We also count the total number of dynamic
MAMBO block executions after a trap until the native method exits
(total blocks). The first block count divided by total blocks captures,
as a percentage, how far a native method executes before it accesses
tainted data following a trap.

Figure 5a shows an aggregate histogram where the x-axis is
the percentage of execution for each native invocation in dynamic
MAMBO blocks, where each bin is 5%. The y-axis counts the in-
stances that read tainted data for a given percentage of execution.
From this figure we observe that most native invocations read
tainted data within the first five to ten percent of basic blocks fol-
lowing a trap. Specifically, 92% of native invocations read tainted
data within the first 10% of executed MAMBO blocks following

● ●

●

●
●

0

100

200

300

400

Stock SandTrap
(mic)

SandTrap
(camera)

SandTrap
(always track)

E
ne

rg
y

us
ed

 (
Jo

ul
es

)

Parallel Permissions None Domains Two page tables

Figure 6: SandTrap energy consumption using Instagram.

a trap. The few executions near 100% are due to a single native
method.

We also present a histogram in Figure 5b of the total number
of MAMBO blocks executed in each native code invocation. We
see that about 26% execute 100 or fewer blocks, and the remaining
76% execute large numbers of basic blocks. This suggests that fine-
grain access control may further improve performance by delaying
emulation for some invocations.

5.4 Energy consumption
To obtain energy measurements, we use a Monsoon mobile device
power monitor. Unfortunately, the Galaxy Nexus does not allow
USB pass-through mode and continuously charges the battery. To
overcome this, we connect the power monitor directly to the battery
terminals and use WiFi-ADB with our scripting harness to invoke
specific actions on the phone. For these experiments we disable
auto-brightness and set screen brightness to the minimum level.
We also utilize a constant wait time between screen transitions in
Instagram across all experiments.

The Monsoon voltage level is set to 4V and we gather samples
of current (Amps) at 5,000 samples/sec. We average the current
within each one-second interval, multiplying by 4V provides aver-
age power as well as energy (Joules) for the one second interval.
Summing over the entire experiment duration provides the total
energy consumed. Importantly, this experiment captures the work-
load’s parallelism available by executing on multiple cores.

Figure 6 shows the energy results for our Instagram experiments.
We compare stock Android, SandTrap with tainted microphone
data, SandTrap with tainted camera data, and SandTrap under con-
tinuous DIFT. As expected, SandTrap’s energy usage increases with
increased DIFT activity. Stock Android consumes a median of 181
Joules while SandTrap with tainted microphone data uses approx-
imately 200 Joules. Recall that our Instagram workload does not
process microphone data. SandTrap with tainted camera data and
SandTrap under continuous DIFT both consume approximately
250 Joules. Note that in all experiments, SandTrap using memory
domains consistently consumed 10 Joules fewer than the two-page-
tables implementation.

MobiSys ’18, June 10–15, 2018, Munich, Germany Ali Razeen et al.

121

93

67 70

40

80

120

160

Stock TaintDroid Domains Two page tables

M
em

or
y

us
ed

 (
M

B
)

Figure 7: SandTrap memory consumption using Instagram.

5.5 Memory domains vs two page-tables
In the experiments above, SandTrap with memory domains out-
performs SandTrap with two page-tables for several reasons. First,
under domains, for a thread to switch from tracked to untracked,
the kernel only needs to update the DACR. Under two page-tables,
the kernel must update the page-table base register and perform
additional ASID and cache-management tasks. Second, with two
page-tables the kernel must synchronize table mappings. Finally,
the two-page-tables implementation reduces TLB re-use since each
table is associated with a separate ASID.

On the other hand, under memory domains physical pages under
the TRACKED domain cannot be mapped to multiple virtual pages.
To see if this limitation leads to higher memory usage, we run
our Instagram experiments with stock Android, TaintDroid, and
SandTrap with tainted camera data, and collect memory usage
information with procrank, a tool on Android that shows each
app’s unique set size (the amount of memory private to that app).
Figure 7 illustrates the results.

We sample this information at each discrete point of our Insta-
gram experiment (e.g., before taking a photo, before annotating the
image, and before uploading it). Therefore, our results represent
the steady state memory usage. The domains implementation of
SandTrap consumes the most memory, using a median of 121MB of
memory. This is because when a 1MB region of memory is placed in
the TRACKED domain, SandTrap immediately allocates a new copy
of all pages that are shared or mapped to the zero page. In contrast,
SandTrap with two page-tables can accommodate more physical
page sharing and uses only 93MB of memory. Note that both Sand-
Trap implementations use more memory than either stock Android
or TaintDroid. This is due to the additional label storage that the
SandTrap implementations require.

6 RELATEDWORK
Section 2.3 describes SandTrap’s relationship to prior work on DIFT.
In this section, we focus on SandTrap’s relationship to prior work
on memory protection and sharing. Mondrian [35], CHERI [36],
and proposals for unlimited watchpoints [19] utilize new or spe-
cialized hardware to provide per-core memory permissions. These
systems would be useful for implementing on-demand DIFT, but

we designed SandTrap with existing commodity ARM processors
in mind.

Wedge sthreads [6] and lightweight contexts (lwCs) [24] allow
developers to refactor their applications into protected components.
Both sthreads and lwCs manage memory protections by creating
a new page table for each execution context. This is similar to
SandTrap’s two page-table approach, but neither allows threads to
run in parallel. Secure Memory Views (SMV) [21] is also similar
to SandTrap’s parallel permissions in that it uses multiple page
tables to provide different memory protections to threads running
in parallel. However, SMV does not allow a thread to switch per-
missions depending on its execution context, and unlike pthreads,
SMV threads do not share an address space by default. Both of these
restrictions are a poor fit for our setting.

ARMLock [39] and Shreds [8] use memory domains’ no-access
mode to protect regions of memory from components that share an
address space. In contrast, SandTrap uses manager mode to allow
threads to bypass page protections and access protected pages.
Recent work on shared address translation for Android [12] used
memory domains to improve fork performance by consolidating
the use of physical pages for storage page tables.

Finally, Dune [5] uses x86 virtualization hardware to give user-
level code control over its own page table, but Dune’s page-table
management is not thread safe, and ARM is listed as future work.

7 CONCLUSION
In this paper we have presented the design and implementation of
SandTrap. SandTrap performs multithreaded, on-demand DIFT of
native third-party libraries in Android using parallel permissions.
Experiments with a prototype implementation demonstrate that
tracking overhead for native code is proportional to the amount of
tainted data it handles.

8 ACKNOWLEDGEMENTS
Wewould like to thank the anonymous reviewers and our shepherd
Aruna Balasubramanian for their invaluable feedback.

REFERENCES
[1] 2015. Memory protection keys. https://lwn.net/Articles/643797/. (2015).
[2] 2018. Android Developers - Keeping Your App Responsive. https://developer.

android.com/training/articles/perf-anr.html. (2018).
[3] Andrew Appel and Kai Li. 1991. Virtual Memory Primitives for User Programs.

In Proceedings of ASPLOS ‘91.
[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves le Traon, Damein Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precice Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of PLDI ‘14.

[5] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis. 2012. Dune: Safe User-level Access to Privileged CPU Fea-
tures. In Proceedings of OSDI ‘12.

[6] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting Applications into Reduced-privilege Compartments. In Proceedings of
NSDI ‘08.

[7] Erik Bosman, Asia Slowinska, and Herbert Bos. 2011. Minemu: The World’s
Fastest Taint Tracker. In Proceedings of RAID ‘11.

[8] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. 2016.
Shreds: Fine-Grained Execution Units with Private Memory. In Proceedings of
IEEE SP ‘16.

[9] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A Generic Dy-
namic Taint Analysis Framework. In Proceedings of ISSTA ‘07.

[10] Landon P. Cox, Peter Gilbert, Geoffrey Lawler, Valentin Pistol, Ali Razeen, Bi Wu,
and Sai Cheemalapati. 2014. SpanDex: Secure Password Tracking for Android.
In Proceedings of USENIX Security ‘14.

https://lwn.net/Articles/643797/
https://developer.android.com/training/articles/perf-anr.html
https://developer.android.com/training/articles/perf-anr.html

SandTrap: Tracking Information Flows On Demand with Parallel Permissions MobiSys ’18, June 10–15, 2018, Munich, Germany

[11] David Devecsery, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2018.
Optimistic Hybrid Analysis: Accelerating Dynamic Analysis Through Predicated
Static Analysis. In Proceedings of ASPLOS ‘18 (ASPLOS ’18).

[12] Xiaowan Dong, Sandhya Dwarkadas, and Alan L. Cox. 2016. Shared Address
Translation Revisited. In Proceedings of EuroSys ‘16.

[13] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. 2005.
Labels and Event Processes in the Asbestos Operating System. In Proceedings of
SOSP ‘05.

[14] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011. PiOS:
Detecting Privacy Leaks in iOS Applications. In Proceedings of NDSS ‘11.

[15] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-Flow
Tracking system for Realtime Privacy Monitoring on Smartphones. In Proceedings
of OSDI ‘10.

[16] WesLee Frisby, Benjamin Moench, Benjamin Recht, and Thomas Ristenpart. 2012.
Security Analysis of Smartphone Point-of-Sale Systems. In Proceedings of WOOT
‘12.

[17] Peter Gilbert, Jaeyong Jung, Kyungmin Lee, Henry Qin, Daniel Sharkey, Anmol
Sheth, and Landon P. Cox. 2011. YouProve: Authenticity and Fidelity in Mobile
Sensing . In Proceedings of SenSys ‘11.

[18] Cosmin Gorgovan, Amanieu d’Antras, and Mikel Luján. 2016. MAMBO: A Low-
Overhead Dynamic Binary Modification Tool for ARM. ACM Trans. Archit. Code
Optim. 13, 1, Article 14 (April 2016), 14:1–14:26 pages.

[19] Joseph L. Greathouse, Hongyi Xin, Yixin Luo, and Todd Austin. 2012. A Case for
Unlimited Watchpoints. In Proceedings of ASPLOS ‘12.

[20] Alex Ho, Michael Fetterman, Christopher Clark, Andrew Warfield, and Steven
Hand. 2006. Practical Taint-Based Protection using Demand Emulation. In Pro-
ceedings of EuroSys ‘06.

[21] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathis Payer.
2016. Enforcing Lease Privilege Memory Views for Multithreaded Applications.
In Proceedings of CCS ‘16.

[22] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
2011. DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation.
In Proceedings of NDSS ‘11.

[23] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. 2007. Information Flow Control for Standard
OS Abstractions. In Proceedings of SOSP ‘07.

[24] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-weight Contexts: An OS Abstrac-
tion for Safety and Performance. In Proceedings of OSDI ‘16.

[25] James Newsome and Dawn Song. 2005. Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Commodity Soft-
ware. In Proceedings of NDSS ‘05.

[26] Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin T.S. Chan. 2014. On Tracking
Information Flows through JNI in Android Applications. In Proceedings of DSN
‘14.

[27] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng
Wu. 2006. LIFT: A Low-Overhead Practical Information Flow Tracking System
for Detecting Security Attacks. In Proceedings of MICRO ‘06.

[28] AndrewQuinn, David Devecsery, Peter M. Chen, and Jason Flinn. 2016. JetStream:
Cluster-Scale Parallelization of Information Flow Queries. In Proceedings of OSDI
‘16.

[29] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan, Ian Ober-
miller, and Shahin Shayandeh. 2012. AppInsight: Mobile App Performance
Monitoring in the Wild. In Proceedings of OSDI ‘12.

[30] Ali Razeen, Valentin Pistol, Alexander Meijer, and Landon P. Cox. 2016. Better
Performance Through Thread-local Emulation. In Proceedings of HotMobile ‘16.

[31] Haichen Shen, Aruna Balasubramanian, Anthony LaMarca, and David Wetherall.
2015. Enhancing Mobile Apps To Use Sensor Hubs Without Programmer Effort.
In Proceedings of UbiComp ‘15.

[32] Riley Spahn, Jonathan Bell, Michael Z. Lee, Sravan Bhamidipati, Roxana Geam-
basu, and Geil Kaiser. 2014. Pebbles: Fine-Grained DataManagement Abstractions
for Modern Operating Systems. In Proceedings of OSDI ‘14.

[33] Mingshen Sun, Tao Wei, and John C.S. Lui. 2016. TaintART: A Practical Multi-
level Information-Flow Tracking System for Android RunTime. In Proceedings of
CCS ‘16.

[34] Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana Geambasu,
and Nikhil Sarda. 2012. Clean OS: Limiting Mobile Data Exposure with Idle
Eviction. In Proceedings of OSDI ‘12.

[35] Emmett Witchel, Josh Cates, and Krste Asanović. 2002. Mondrian Memory
Protection. In Proceedings of ASPLOS ‘02.

[36] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI Capability Model: Revisiting RISC in an Age
of Risk. In Proceedings of ISCA ‘14.

[37] Lok Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing
the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis. In

Proceedings of USENIX Security ‘12.
[38] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. 2006.

Making Information Flow Explicit in HiStar. In Proceedings of OSDI ‘06.
[39] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. ARMlock:

Hardware-based Fault Isolation for ARM. In Proceedings of CCS ‘14.

	Abstract
	1 Introduction
	2 Background
	2.1 Android: threads, native code, and shared buffers
	2.2 Dynamic Information-flow Tracking
	2.3 Case study: eBooka

	3 System Overview
	3.1 Design principles
	3.2 Trust and threat model

	4 SandTrap
	4.1 Label storage
	4.2 Parallel permissions
	4.3 Thread transitions

	5 Evaluation
	5.1 Experimental methodology
	5.2 On-demand vs continuous DIFT
	5.3 False traps
	5.4 Energy consumption
	5.5 Memory domains vs two page-tables

	6 Related work
	7 Conclusion
	8 Acknowledgements
	References

