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Abstract

Background: Histopathology images are critical for medical diagnosis, e.g., cancer and its treatment. A standard
histopathology slice can be easily scanned at a high resolution of, say, 200, 000 × 200, 000 pixels. These high
resolution images can make most existing imaging processing tools infeasible or less effective when operated on
a single machine with limited memory, disk space and computing power.

Results: In this paper, we propose an algorithm tackling this new emerging “big data” problem utilizing parallel
computing on High-Performance-Computing (HPC) clusters. Experimental results on a large-scale data set (1318
images at a scale of 10 billion pixels each) demonstrate the efficiency and effectiveness of the proposed algorithm
for low-latency real-time applications.

Conclusions: The framework proposed an effective and efficient system for extremely large histopathology image
analysis. It is based on the multiple instance learning formulation for weakly-supervised learning for image classification,
segmentation and clustering. When a max-margin concept is adopted for different clusters, we obtain further
improvement in clustering performance.
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Background
Histopathology provides some of the most critical
information for cancer diagnosis [1]. By analyzing the
histopathology images of a patient, we can predict pres-
ence or absence of cancer for a patient probabilistically to
support the pathologist in making a proper analysis. The
whole-slide images with high resolution are helpful for
pathologists to conduct researches on cancer subtypes [2].
The digitized information also makes the approaches and
analysis more quantitative, objective and tenable.With the
help of ever-increasing computer resources and related
computer software, automated analysis of histopathol-
ogy images really help pathologists make faster and more
accurate diagnosis [3].
However, extremely large histopathology images with

enormous amounts of pixels create a bottleneck for apply-
ing traditional Computer Aided Diagnosis (CAD) tools
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[3], which often operate on a single machine with lim-
ited memory and space. In our data set, for example, a
digitized histopathological image with a resolution of 226
nm per pixel can have a size of 148, 277 × 156, 661 pixels.
It is common that pathological section processing gener-
ates 12-20 images for each patient [1]. Even if we use only
12 images generated by just one patient in the training
stage, which is rarely the case in reality, with a traditional
method, it will take 65 GB of memory to load a whole sin-
gle image once in a computer and approximately 100 h
to train on a single core of a Quad-core Xeon 2.43 GHz
processor according to our experiment results. However,
a quick response is usually required in clinical practice,
especially in the frozen section procedure, in which the
pathologist has to make a therapeutic decision and tell the
surgeon in fewer than 15 min [4] after cryosection images
are received. Regardless of whether there is enough stor-
age space in a normal PC, it will take tens of hours, out
of scope in a cryosection decision stage, to process one
patient’s slices in the data distribution stage, the feature
extraction stage and the prediction stage with a single core
mentioned above. Therefore, it is infeasible to handle such
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large images with a single computer. In order to address
the problem, a learning method, whose processing time is
viable for clinical practice, is desired.
Weakly supervised learning, more specifically Multi-

ple Instance Learning (MIL) [5], fits into the analysis
for histopathology cancer images because it uses coarse-
grained labeling to aid automatic exploration of fine-
grained information. In a whole-slide image, there are lots
of pieces randomly cropped, called bags in this paper.
Patches, or instances, consisting of pixels, are sampled
from each piece. So we have three different levels of classi-
fiers, image-level, instance-level and pixel-level classifiers.
The advantage brought byMIL for histopathology analysis
is that if an instance-level classifier is trained, automatic
pixel-level segmentation (cancer vs. non-cancer regions)
could be performed. Image-level classifier could also be
directly obtained under the MIL setting and then achieve
image-level classification (cancerous or non-cancerous).
Moreover, in histopathology image analysis, it is desirable
to discover the subclasses of various cancer tissue types
to help pathologists make better diagnosis. As a general
protocol for cancer subtype classification is not all avail-
able, patch-level clustering (different cancer subtypes) of
cancer tissues is noticed by researchers. Xu et al. embed
the clustering concept into the MIL setting, proposing the
Multiple Clustered Instance Learning (MCIL) [6] method
based on MIL and under the boosting framework, which
is able to perform image-level classification, pixel-level
segmentation and patch-level clustering altogether for
histopathology images. The pathologist can use the clas-
sification results to reasonably analyze whether there is
cancer or not for a patient. The segmentation results could
be used to discover cancerous regions. Furthermore, the
prognosis of the patient could be judged by the cluster-
ing results of cancer subtypes. However, training those
models such as MCIL on large data sets is extremely
computationally intensive. Additionally, the performances
of MCIL seriously depend upon initialization of cancer
subtypes through a single clustering process, resulting in
poorly alignment of clusters and thus limited discrim-
inative properties of cancer subtypes. Though the per-
formances of MCIL in classification and clustering are
already relatively high, it fails in segmentation tasks.
In this paper, we have developed a Parallel Multiple

Instance Learning (P-MIL) algorithm onHigh-Performance-
Computing (HPC) clusters, using a combination of Mes-
sage Passing Interface (MPI) [7] and multi-threading
[8]. The algorithm parallelizes a multiple instance learn-
ing strategy and is implemented based on the hybrid
MPI/multi-threading programming model. We also intro-
duce a max-margin approach to intensifying competition
among clusters in our P-MIL method. By applying the
max-margin concept, the discriminative ability of our
classifiers and the purity of our clustering results benefit

each other. In addition, we conduct a thorough exper-
iment study in which our model is trained by millions
of instances, each with feature vectors of 215 dimen-
sions, in 128 compute nodes (1024 CPU cores) for 11.6
h successfully. We offer the experimental results as well
as analysis in support of our method. Our experiments
are conducted on a Microsoft Windows HPC [9, 10]
cluster, which is a homogeneous infrastructure consist-
ing of 128 compute nodes, connected by network with
high bandwidth and low latency. Each compute node has
2 Quad-core Xeon 2.43 GHz processors, 16 GB Random
Access Memory (RAM), 1 Gbps Ethernet adapters and 1.7
TB local disk storage. The prediction time for images gen-
erated by one patient with our method is about 382.79 s.
So the short processing time makes our work applicable
in clinical practice. P-MIL is also a general model, capable
of being applied to medical image analysis as well as many
other domains. Figure 1 is the flow diagram for P-MIL.
Our approach also differs from existing formulations in

machine learning in the following aspects: In MCIL, can-
cer subtypes are initialized through clustering and fixed
in the learning phase. The corresponding strong classi-
fiers are updated individually through boosting. Although
MCIL introduces clustering, it assumes no max-margin
concept among clusters [6]. Other than solely updat-
ing classifiers, a sort of clustering competition mech-
anism is introduced in this paper to optimize clusters
simultaneously, representing latent cancer subtypes. By
combining these two operations, distributions of clus-
ters as well as discriminative abilities of corresponding
classifiers can be improved to achieve better comprehen-
sive performance as shown in our experimental results.
Context-constrained Multiple Instance Learning (ccMIL),
proposed by Xu et al. [11] as well, emphasizes the segmen-
tation task using the contextual information of instances
as a prior. Above all, none of the above methods except
for P-MIL are targeted for large scale data and their
processing times make them not applicable in clinical
practice.

Related work
Medical image analysis, including 2D and 3D medical
images, has been a popular and active research field for
many years. There are also some works about histopathol-
ogy image analysis. In 1999, Adiga et al. [12] introduced
a watershed algorithm as well as a rule-based merging
technique into their method to work out segmentation
of 3D histopathology images. In 2009, Caicedo et al. [13]
adopted bag of features and kernel functions for Sup-
port Vector Machine (SVM) to deal with histopathology
image classification tasks. In the same year, Gurcan et al.
[3] summarized the development and application of
histopathology image analysis, especially for CAD tech-
nology. In 2011, Lu et al. [14] proposed a technique
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Fig. 1 Parallel Multiple Instance Learning (P-MIL) on High-Performance-Computing (HPC) cluster. Red: positive instances; Green: negative instances.
At first, we divide and distribute data to the nodes. The master will collect the results calculated by individual nodes, train multiple classifiers and
choose the best one. Next, the slaves receive the best weak classifier and calculate an individual α value. The master node then will synchronize
all the nodes, choose the αbest and broadcast it. At last, all the nodes will update classifiers with the αbest and update new clusters with the new
classifiers through communication, in which the master will coordinate to ensure data coherence. The program will continue running in a loop
until the loop ends

with radial line scanning, aimed at detecting melanocytes
from keratinocytes in skin histopathology images. Two
years later, an automated technique was put forward by
Lu et al. [15] to perform segmentation and classification
on whole slide histopathological images with 90% clas-
sification accuracy. In 2016, Barker et al. [16] came up
with an automated classification approach to classifying

pathology images by brain tumor type, with the help of
localized characteristics in images.
Because of inherent ambiguity, time-consuming work

and difficulties with manual labeling, the Multiple
Instance Learning methods succeed in digging fine-
grained information from coarse-grained information so
that the burden of manpower for labeling could be eased.
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Fung et al. [17] adopt the Multiple Instance Learning
method and improve it to deal with problems in process-
ing medical images in application of CAD, which pays
close attention to medical diagnosis. A new approach
for categorization is proposed by Bi et al. [18] to search
for pulmonary embolism from some images. Two novel
formulations which extend Support Vector Machines
(SVMs), presented by Andrews et al. [19], achieve good
results when applied to the MUSK [20] data sets, the
benchmark data sets. Babenko et al. [21] even use on-line
Multiple Instance Learning to deal with object tracking
problems. Nguyen et al. [22] propose an active-learning
method to classify medical images. Chen et al. [23] put
forward a multi-class multi-instance boosting method to
detect human body parts in image processing. Qi et al.
[24] integrate MIL into SVM to perform image annota-
tions automatically. Therefore, the MIL framework can be
applied to a lot of domains, especially medical image anal-
ysis. Due to the characteristics of histopathology images,
it is suitable to apply MIL models to process the images.
There have been some works about Multiple Instance

Clustering before, which is a method for clustering inMIL
problems. Zhang et al. [25] develop a kind of Multiple
Instance Clustering method to partition bags of instances
about images into different clusters. They combine the
Multiple Instance Clustering method with the Multiple
Instance Prediction method to solve the unsupervised
Multiple Instance Learning problem. Xu et al. [26] also
develop a max-margin clustering method to find max-
margin hyperplanes among data and to label the data
in a wider sense. Furthermore, a model, which consid-
ers relations among data and produces coherent clusters
of data, is proposed by Taskar et al. [27] to extend the
Multiple Instance Learning method into wider domains
to deal with more real-world problems. A novel Multiple
Instance Clustering as well as prediction is proposed by
Zhang et al. [28] to tackle the unsupervised MIL task.
However, the aforementioned works as well as works

about processing histopathology images mostly focus on
a small data set of small images. For instance, Xu et al.
[29] experiment on a data set of 60 histopathology images,
including stained prostate biopsy samples and whole-
mount histological sections. Doyle et al. [30] conduct
experiments on a data set of 48 histopathology images
of breast biopsy tissue even though they focus on com-
plex features. Furthermore, tens of histopathology images
are used for the experiments in [31] for segmentation. In
[32], fewer than 100 histopathology images, consisting of
digital images of breast biopsy tissue, are used for experi-
ments of classification. The works mentioned above about
histopathology images are dealing with a small number
of small images. So they may not be applicable in face of
problems with large-scale data sets, for example 3.78 TB
of data in our experiments, or in practical application.

Since the idea of “big data” came out recently, it is
inevitable that medical images are involved as well. A lot
of researchers have already noticed the “big data” prob-
lem that medical image analysis faces. In [33], the authors
indicate that with increased amount of medical image
data Content Based Image Retrieval (CBIR) techniques
are required to process large-scale medical images more
efficiently. Latent Semantic Analysis (LSA) is applied to
large-scale medical image databases in their work. Kye et
al. [34] propose a GPU-based Maximum Intensity Projec-
tion (MIP) method with their visibility culling method to
process as well as illustrate images at an interactive-level
rate. In their experiments, every single scan can generate
more than one thousand images for a patient. It is sug-
gested in [35] that the exponential increase in biomedical
data requires more efficient methods to be proposed to
tackle problems close to real-world problems. Moreover,
Huang et al. [36] put forward a platform, including GPU-
based sparse coding and dynamic sampling techniques, to
speed up analysis of histopathological whole slide images,
which can take hundreds of hours to process a whole set
of whole slide images high power fields originally. A novel
framework based on point set morphological filtering is
proposed in [37] to process large-scale histopathological
images as well.
There are a few existing works about parallel or dis-

tributed algorithms for medical image analysis. The most
related work is that of Aji’s [38]. Aji et al. propose a spa-
tial query framework for large scale pathology images
based on MapReduce. The framework is evaluated by 10
physical nodes and 192 cores (AMD 6172, 2.1 GHz) on
Cloudera Hadoop-0.20.2-cdh3u2. The experiment shows
that the framework can support scalable and high perfor-
mance spatial queries with high efficiency and scalability.
Pope et al. [39] simulate a realistic physiological multi-
scale model of heart using hybrid programming models.
In 2017, Wei et al. [40] map MIL bags to vectors for better
scalability.
Other than medical image analysis, there are a lot

more works about parallel algorithms. In machine learn-
ing, Xiao [41] conducts a survey about parallel and dis-
tributed computing algorithms. These algorithms include
K-Nearest Neighbor (KNN), Decision tree, Naive Bayes,
K-means, Expectation-Maximization, PageRank, Support
Vector Machine, Latent Dirichlet Allocation, and Condi-
tional Random Fields [41]. Srivastava et al. [42] propose
a parallel formulation of their serial algorithm about clas-
sifiers for data mining. Aparicio et al. [43] propose a
parallel implementation of the KNN classifiers to tackle
large-scale data mining problems. Zeng et al. [44] pro-
pose a hybrid model of MPI and Open Multi-Processing
(OpenMP) to deal with the communication work during
parallelization, which considers both running efficiency
and code complexity. In [45], Pacheco et al. make a
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detailed description about programming with MPI par-
allelization concepts. A novel iterative parallel approach
dealing with unstructured problems about linear systems
is proposed by Censor et al. [46]. In addition, Zaki et al.
[47] come up with a parallel classification method used
for data mining. Moreover, He et al. [48] propose a par-
allel extreme SVM algorithm based on MapReduce, that
is able to meet the need of tackling big-data problems
and on-line problems. A software system, which could
distribute image analysis tasks to a distributed and par-
allel cluster with many compute nodes, is developed by
Foran et al. [49]. Thus parallel methods are alike to some
degree, most of which are aimed at distributing comput-
ing tasks to different compute nodes to make full use
of the computing ability of the nodes. Moreover, many
experimental results show that a hybrid parallelization
model is better than a model using only one sort of par-
allelization technique. That’s why we come up with a
hybrid model of multi-threading and MPI to help imple-
ment the parallel framework for the MIL method. No
previous work has ever applied a parallelized method to
dealing with histopathology image analysis in practical
application.
It is worth mentioning the history of our research work

because it makes a clear and logical path from the ori-
gin to our current work. At first, we develop MCIL and
ccMIL but both of them were merely applied to rela-
tively small-scale images. Facing the demand of clini-
cal practice and expecting a method applicable in many
organs, we have to develop the P-MIL method. Unlike
the P-MIL method, previous works such as MIL [50],
MCIL [6] and ccMIL [11] mainly focus on the pro-
cess of learning a classifier to enhance accuracy, though
infeasible in clinical application. As mentioned before, P-
MIL mainly contributes a parallelized algorithm to make
it applicable in real scenes and a max-margin concept
about competition among clusters to further improve
accuracy of classifiers. The whole process of the project
includes the full guidance of pathologists. Apart from the
colon histopathology images we use, hospitals are col-
lecting brain tumor images and gastric carcinoma images
as well.

Methods
P-MIL is a parallelized multiple instance learning for-
mulation and able to maximize margin among clusters.
It is based on MIL and under the boosting framework,
meanwhile, taking patch-level clustering into consider-
ation. The basic framework of our P-MIL method is
able to perform classification, segmentation and clus-
tering altogether. Our P-MIL framework introduces a
max-margin concept to enhance the competition among
clusters thus achieves better overall performance. With

the development of cluster computing, parallel algo-
rithms make a lot of sense in reality. The parallelized
structure of our P-MIL method effectively shortens the
execution time, which makes it possible for practical
application.
In this section, first, we overview the basic MIL frame-

work of our parallel algorithm. Second, we show our
max-margin concept on competition of clusters. Finally,
we introduce our parallel computing techniques, MPI
and multi-threading. Additionally, we present a detailed
pseudo code for P-MIL.

Multiple instance learning framework for classification,
segmentation, and clustering
Fully supervised approaches for histopathology image
analysis require detailed manual annotations, which are
not only time-consuming but also intrinsically ambigu-
ous, even for well-trained experts. Standard unsupervised
approaches usually fail due to their complicated patterns.
The MIL framework works well for the task because it
takes advantage of both supervised approaches and unsu-
pervised approaches.
In our framework, the cancer and non-cancer pieces,

randomly cropped from the whole histopathology slices
(called images in this paper), are considered as positive
and negative bags respectively. The patches densely sam-
pled from these pieces are considered as instances. In the
MIL framework, a bag is labeled as positive if at least one
of the instances in the bag is considered as positive. In
other words, if we find cancer cells in a small patch, the
patient is regarded as a cancerous patient.
We assume that xi represents the ith bag in training data

X : xi ∈ X = {x1, . . . , xn} (n is the number of bags). For
each bag, yi ∈ Y = {−1,+1} is the corresponding label
for xi. +1 represents positive while -1 represents negative.
xi = {xi1, . . . , xim}, consisting of m instances (m is the

number of instances in the ith bag). Histopathology cancer
images include multiple types of instances, each of which
belongs to one of the clusters, denoting cancer subtypes
or non-cancer. Initially, the clustering operation divides
the instances into K clusters of positive instances and a
negative instance cluster. For each instance and a sort
of positive cluster, there is a latent variable: ykij ∈ Y =
{−1,+1}, denoting whether the instance xij belongs to the
kth positive cluster, where k ∈ {1, . . . ,K}. j, which varies
from 1 tom, represents the label of an instance with regard
to a specific bag. i represents the corresponding bag. Here,
yi and ykij have the same value range. A bag is labeled as
positive if at least one of its instances belongs to at least
one of the K clusters:

yi = max
j

max
k

(
ykij

)
. (1)
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H(xi) and hk(xij) are a bag-level classifier and an instance-
level classifier respectively, which are to be learned in the
method later, where

H(xi) = max
k

max
j

hk(xij). (2)

The training data consists of X and Y . hk represents the
kth instance-level classifier for the kth cancer subtype.
TheMultiple Instance Learning-Boost (MIL-Boost) [50]

framework is employed to instantiate the approach in
this paper. The loss function we choose is defined in the
AnyBoost method [51] :

L(h) = −
n∑

i=1
wi

(
1 (yi = 1) log pi + 1 (yi = −1)

× log (1 − pi)
)

(3)

pi ≡ p (yi = 1|xi) , (4)
where 1(·) is an indicator function, pi is a function of h and
L(h) is a function of pi at a bag-level. The loss function is
the standard negative log likelihood. wi is the prior weight
of the ith training data. The probability pij of an instance
xij is:

pij = σ
(
2hij

)
, hij = h(xij). (5)

The probability pi is the maximum in pij.
For differentiation purposes, a soft-max function [52], a

differentiable approximation of max, is then introduced.
For a set of m variables, v = {v1, v2, . . . , vm}, the soft-max
function gl(vl) is defined as:

gl(vl) ≈ max
l

(vl) = v∗,

∂gl(vl)
∂vi

≈ 1 (vi = v∗)∑
l
1(vl = v∗)

,m = |v|. (6)

Using the soft-max function g in place of the max
function, we can write pi as:

pi = gj
(
gk

(
pkij

))
= gjk

(
pkij

)
= gjk

(
σ

(
2hkij

))
(7)

σ(v) = 1
1 + exp (−v)

, hkij = hk(xij). (8)

The function gjk
(
pkij

)
could be understood as a function

g including all pkij indexed by k and j. In this paper, the
generalized mean (GM) model [53] is chosen as the soft-
max function.
We can train the weak classifier hkt , where t denotes the

tth round iteration, by using the weight |wk
ij| to find the

minimum error rate. The weight wk
ij can be written as

wk
ij = −∂L(h)

∂hkij
= −∂L(h)

∂pi
∂pi
∂pkij

∂pkij
∂hkij

. (9)

Here,

∂L(h)

∂pi
=

{ − 1
pi if yi = 1
1

1−pi if yi = −1
(10)

∂pi
∂pkij

= pi

(
pkij

)r−1

∑
j,k

(
pkij

)r ,
∂pkij
∂hkij

= 2pkij
(
1 − pkij

)
. (11)

Finally, we get a strong classifier hk :

hk ← hk + αk
t h

k
t , (12)

hkt = arg minh
∑
ij

1
(
h

(
xkij

)
�= yi

)
|wk

ij|,

αk
t = arg minαL

(
hk + αhkt

)
.

(13)

hkt is chosen from the weak classifiers trained with fea-
ture histograms, and αk

t is chosen by using a line search
method.
For training, we have to choose a kind of appropriate

weak classifier. The only requirement for a weak classifier
or a weak learner is that it is better than random guessing
[54], so that’s why weak classifiers are always simple and
easy to build. By applying boosting to weak classifiers, they
can be trained and combined to be strong classifiers.
A decision stump [55] is a special decision tree con-

sisting of a single level. As a weak classifier in a machine
learning model, a decision stump is a desirable base
learner for ensemble techniques. A full decision tree is
accurate but time-consuming. In consideration of the
efficiency of the algorithm and the implementation of
parallelization, we adopt a previously proposed weak clas-
sifier, which could be called multi-decision stumps [50].
It is a combined classifier with multiple thresholds to
be trained. Achieving high accuracy as well as high effi-
ciency, the multi-decision stump classifier performs well
in experiments.
We use a boosting framework for training, learning and

updating classifiers. For each iteration step, each cancer
subtype and each instance, we calculate the weight |wk

ij| at
first. Then we have a weighted histogram for each feature
in this instance. Classifiers are trained based on the gener-
ated weighted histograms [56], one for each feature [57].
Lastly, the best classifier with the minimum error rate is
chosen to be the best weak classifier. With this classifier,
we use a line search method to find the best αk

t to mini-
mize the loss function value. A strong classifier is updated
afterwards. Boosting is adopted and instantiated in our
approach in that it is also compatible to parallelism.

Max-margin concept
The margin between two clusters is defined as the mini-
mumdistance between the hyperplane for the two clusters
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and any data point belonging to the two clusters. Margin is
determined by classifiers, whose reliability indicates accu-
racy and clarity of clustering. A max-margin algorithm
is aimed to maximize the aforementioned distance, more
specifically, the difference between the true category label
of the sample and the best runner-up [58]. In this paper,
we conduct classifiers training and cluster competition
simultaneously to realize max-margin. Specifically, cluster
competition maximizes the intraclass difference (cancer
subtype vs cancer subtype), which is one of the charac-
teristics of the cancer images, and greatly accelerates the
convergence of the boosting algorithm. At the same time,
the boosting framework learns discriminative classifiers
for both intra-classes and inter-classes (cancer subtype to
non-cancer). Figure 2 illustrates the max-margin concept
by using linear classifier.
Due to lack of explicit competition among clusters,

MCIL [6] is not well aligned for clusters. In this paper, we
explicitly maximize margin in clustering. To achieve this
goal, in the initial stage, we use K-means [59] algorithm
to divide all the positive instances into K clusters, where
the positive instance sets are D+

1 = {
D1
1,D2

1, . . . ,DK
1
}
and

the negative instance set is D−
1 . When in the tth iteration,

for training a weak classifier hkt , we choose the posi-
tive training data as Dk

t and the negative training data as(
D+
t − Dk

t

) ⋃
D−
t instead of just D−

t . The hkt would then

concatenate to hk as a step of the boosting framework.
Afterwards, instead of making the instances in clusters
fixed all the time, we update the cluster label of every
instance at the end of each iteration. Specifically, after t
iterations of training, we use the trained classifier to com-
pute pkij and to generate new sets of positive instances,
D+
t+1 = {

D1
t+1,D2

t+1, . . . ,DK
t+1

}
. Figure 3 illustrates

a simple update process of two clusters using linear
classifier.
Upon updating, the instance xij belongs to the kth clus-

ter, so that it is classified with the highest probability by
the kth strong classifier hk . In this way, the updated divi-
sion of the training instances maximizes the differences
among the clusters and indicates the most discriminative
ability of the current cluster classifiers, resulting in strong
competition.
For some novel but small clusters, when competing with

bigger clusters, they tend to be dying out if the margin is
too small to distinguish the clusters. So the max-margin
method could effectively reduce the possibility of the
aforementioned situation as much as possible. For exam-
ple, it is impossible for a pathologist to remember all the
cancer subtypes. Furthermore, some rare subtypes may
have only a few instances available for training. The max-
margin concept is introduced to enhance competition
thus distinguishing the rare subtypes from others, which
can make prognosis much easier.

Parallel multiple instance learning
Parallel programmingmodels
In our work, we utilize both MPI and multi-threading
techniques to implement parallelization. All that we
want to do is to parallelize our algorithm, and MPI
is just a convenient tool for parallel implementation.
Multi-threading is a widespread parallel programming
and execution model that aims to maximize utiliza-
tion of multi-core processor computers. Data sharing
across different nodes in HPC cluster could be done by
cross-process communication. We adopt MPI where data
sharing is done by one process sending data to other
processes.

Fig. 2 Illustrations of max-margin using linear classifier. Green, red and purple dots represent three specific cancer subtypes, while black dots represent
non-cancer instances. Linear boundaries are trained to separate cancer subtypes from each other (intra-class) and the non-cancer (inter-class)
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Fig. 3 Illustrations of cluster competition using max-margin linear classifier. Green and red dots represent two classes. In a, two classes are initialized
by K-means method. In b–d, cluster competition takes place until the model converges. Specifically, instances in each class are classified by linear
classifiers, according to which they update their labels. Then, a new classifier is trained based on the new labels. The cluster competition converges
when both classifiers and labels of instances become in a stable state

Although the MPI parallel programming model could
already enable application to scale up in HPC cluster,
previous studies [39, 60] show that a hybrid model has
more advantages. The MPI/multi-threading hybrid paral-
lel model is a combination of MPI as inter-node commu-
nication and multi-threading as intra-node parallelism. It
uses only one process per node for MPI communication
calls, thereby reducing memory footprints, MPI runtime
overhead and communication traffic. Each MPI process
is consisting of several threads, one of which as the mas-
ter thread for inter-node communication and all of which
could be assigned computation work.
The MIL algorithm has the data parallel nature that

the most compute-intensive tasks can be divided and
executed simultaneously and independently. Since every
image bag can be treated independently before every syn-
chronization stage , the prior weight for each training
data bag, the weighted histograms for instances, the loss
function values for choosing αbest and the updating behav-
iors for clusters with refreshed classifiers can all be done
in parallel. After distributing and dispatching the tasks,
a simple synchronization step will bring the algorithm
procedure back to normal un-parallel routine.
Considering the architecture of the HPC cluster and

the data parallel nature of the MIL algorithm, we adopt
this hybrid parallel model, which is highly parallelized and
achieve satisfactory performance.

Implementation of P-MIL
We parallelize the MIL by utilizing its data parallel nature
and implement it in two stages: the data distribution stage
and the MIL training & searching stage.

In the data distribution stage, we partition the large-
scale data set X into multiple disjoint data subsets, and
distribute them evenly to HPC cluster nodes. Other input
data is so small that every node can have a copy of it.
We use an image bag as a unit for data partition and dis-
tribution, so in the next stage the values of the instances
belonging to the same bag could avoid being exchanged
across different nodes, which saves a lot of communica-
tion cost.
In the training & searching stage, we use the hybrid par-

allel model in which each node will work independently
calculating on data subsets cached in its local disk or
memory by multi-threads, and do inter-node communi-
cation through MPI to exchange partial results.
For inter-node collaboration, we use the master-slave

paradigm to implement it. Among all the nodes on HPC,
we assign one node as the master node, and others as
slaves (actually, we reuse one slave node to launch a mas-
ter process because master codes and slave codes have
no computational overlap). The master node is mainly
responsible for global-level sequential operations, such
as choosing the best hkt and updating hk . The master is
the core of communication and synchronization, control-
ling the whole parallel program. For example, determining
the best weak classifier, choosing the best αk

t to mini-
mize the loss function value, distributing the determined
value to other nodes and dispatching data-transfer tasks
to the querying nodes are some of the responsibilities
of the master in P-MIL. The slaves are the actual com-
putational nodes running compute-intensive code based
on its data subsets, such as computing wk

ij and comput-
ing histogram of xdij. As mentioned before, among master
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and slaves, we use MPI for their communication. On each
slave node, we use multi-threading to do intra-node paral-
lelism. Each slave node launches one process consisting of
eight Windows threads, each on a core. The eight threads
work independently on disjoint image bags and update
shared values (such as histogram of xdij) in memory with
protection by critical section. The computation work of
each thread has no influence on the computation work
of others. That is the main idea of parallelization, to cal-
culate something that has no run-time order dependency
in some area of a program on different nodes. When
communication (such as broadcasting and reducing) with
other nodes is needed, only one thread is selected to call
MPI functions while other 7 threads wait until it finishes
communication. This approach has less message load than
if all threads in the process participate in MPI commu-
nication. So the slave nodes mainly do the computation
work and will obey the order of the master node. It is com-
mon in a synchronization stage that sometimes a node has
to wait for other nodes finishing calculating, in which the
process of the program depends upon the slowest node,
but data coherency is guaranteed under this framework.
Details of P-MIL are presented in Algorithm 1. K is

the number of cancer subtypes, T is the number of iter-
ations, D is the number of features and N is the number
of compute nodes. In the line search algorithm, at the
line 9 of Algorithm 1, [ left, right] is the search inter-
val, ε is precision limit and B is the number of search
branches.
The process is designed to decrease the frequency of

data scanning andMPI operations. In each inner iteration,
we scan the whole data set only once when calculat-
ing the weighted histograms and scan the features for
the best weak classifier once more to get hkt (xij). The
reductions of histograms for different features are merged
into one MPI operation to save the time of synchro-
nization among slaves, and it is similar while handling
loss1, loss2, . . . , lossB.

Results
In the experiments, we implement the parallel computing
framework of P-MIL and apply it to large-scale high-
resolution images.
For comparison purposes, MIL and MCIL are also par-

allelized and implemented in the experiments. Compared
to P-MIL, the parallelized MCIL method has no max-
margin concept among clusters to intensify the compe-
tition. Relative to the parallelized MCIL, the parallelized
MIL method has no inner loop as well as latent variable.
That is, no cluster classifier for each cluster is trained in
the parallelizedMIL. The boosting parts of the algorithms
of these methods are alike. It is noteworthy that if the
other two methods are not parallelized, their execution

Algorithm 1 P-MIL
1: Input: Bags {X1, . . . ,Xn}, {y1, . . . , yn},K ,T ,D,N
2: Output: h1, . . . ,hK

[∗]: Communication step using MPI
[M]: Operation on master
[ S]: Operation on slaves

// Divide all instances in positive bags into K clus-
ters {Cluster1, . . . ,ClusterK } using parallel K-means
algorithm [41].

3: for t = 1 → T do
4: for k = 1 → K do
5: [ S] wk

ij = ∂L
∂hk(xij)

[ S] wk
ij = −wk

ij when xij /∈ Clusterk

// Train best weak classifier hkt using weights
|wk

ij| :
6: for d = 1 → D do
7: [ S] Calculate the weighted histogram of xdij
8: end for

[∗] Slaves reduce the histograms together tomas-
ter
[M] Train D weak classifiers CLF1..D

[M] Calculate the error rate error1..D of CLF1..D

on the histogram
[M] hkt = CLFd∗

(d∗ = argminderrord)
[∗] Master broadcasts hkt to slaves
// Search best αk

t via line search :
9: while right − left > ε do

10: [ S] step = right−left
B

[ S] αi = left + i × step, i = 1, . . . ,B
[ S] lossi = L(.,hk + αihkt , .)
[∗] Slaves reduce lossi together to master
[M] αbest = αi∗(i∗ = argminilossi)
[∗] Master broadcasts αbest to slaves
[ S] [ left, right]=[αbest − step,αbset + step]

11: end while
[ S] αk

t = left+right
2

[ S] Update strong classifier hk ← hk + αk
t hkt

12: end for
// Update clusters using h1, . . . ,hK :
[ S] Put xij to Clusterk∗

(k∗ = argmaxkhk(xij))
13: end for

time is not comparable to that of P-MIL. By the way,
ccMIL emphasizes on the segmentation task and uses
contextual information that makes it difficult to imple-
ment a parallelized version of ccMIL, which is why ccMIL
is not included in our experiments.
We verify the scalability of our framework and compare

the accuracies of MIL, MCIL and P-MIL in image-level
classification, pixel-level segmentation and patch-level
clustering.
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Data set
We collect the image data set in the First Affiliated Hospi-
tal of Zhejiang University fromMay 1st to September 17th
in 2011. The number of patients is 118. The number of
the whole slices is 1318. The images are obtained from the
Nano Zoomer 2.0-HT digital slice scanner produced by
Hamamatsu Photonics with a magnification factor of 40.
The study protocol was approved by the Research Ethics
Committee of the Department of Pathology in Zhejiang
University. All the individuals used for the analyses have
provided written, informed consent.
We cut the images into pieces (each piece: 10, 000 ×

10, 000 pixels) because the image size of 200, 000 ×
200, 000 pixels is beyond the storage capacity of a single
node. We randomly choose 13,838 pieces as the original
training data set in our experiment (9868 cancerous and
3970 non-cancerous). The size of the original training data
set is 3.78 TB. In the original training data set, each piece
is labeled as cancer or non-cancer by two pathologists
independently. If there exists a disagreement between
two pathologists on a certain image, the two patholo-
gists together with a third senior pathologist will discuss
the result until a final agreement is reached. To evaluate
the segmentation performance for testing purposes, we
also choose 30 cancer pieces as testing data and label the
corresponding cancerous regions. The testing data and
training data are independent. The annotations also follow
the above process to ensure the quality of labeled ground
truth. It takes a total of 720 man-hours for three anno-
tators to finish the labeling work. In addition, 30 cancer
pieces, consisting of many instances, are representative,
and we believe that they are reliable for testing.
For each piece, we extract patches using a step size of

100 pixels. For multi-scale, patches of three size-levels
(160 × 160, 320 × 320 and 640 × 640) are extracted.
388,072,872 patches from 13,838 pieces are obtained.
A group of generic features are used for each patch, con-

sisting of Color, Scale Invariant Feature Transform (SIFT)
[61], Gray Level Histogram [62], Histogram of Oriented
Gradient (HOG) [63], Locally Assembled Binary (LAB)
[64], Gray Level Co-occurrence Matrix (GLCM) [65] and
Region [66]. The SIFT algorithm captures interest points
in an image as well as information about their scale and
orientation to obtain local features. Even if the image is
rotated, brightened or taken from different angles, the
performance of the feature is still reliable. Cancer cells
always have enlarged and hyper-chromatic nuclei, dif-
ferent from normal cells. By using the image gradient,
SIFT descriptors are able to capture important features
of objects, especially the appearances, thus able to dis-
tinguish cancer cells from normal cells. The Gray Level
Histogram feature is statistics of the distribution of gray
levels in an image, which shows information about the
gray level frequency and the clarity of the image. The

HOG feature uses the distribution of direction density
of gradients or edges to build a good descriptor about
the appearance and shape of an object. The LAB fea-
ture is a selectively reduced set of Assembling Binary
Haar Features [64, 67]. By reduction, the LAB feature not
only reduces the computation cost but also excels at face
detection and other pattern recognition tasks. The GLCM
feature captures texture information as well as struc-
ture information in an image. The Region feature shows
higher discriminative power than single feature points in
image matching because more representative information
is extracted. The total feature dimension is 215. Due to the
extremely large number of the patches, it takes 20 h in the
feature extraction stage using eighty nodes.
We store our data set in an Redundant Arrays of

Independent Disks 6 (RAID6) disk array, which can be
accessed by every node. For readability and scalability, all
the data is stored in plain-text format (ASCII code). In the
data distribution stage, each node obtains the correspond-
ing data, transforms them into binary format and saves the
transformed data in local disk feature by feature, so that
we can obtain high locality when we train a single-feature
weak classifier. Furthermore, half of the RAM (8GB) in
each node is used to cache the data set, as memory is
orders of magnitudes faster than local disk. The data set
is still in a disk array. What caching does here is it uses
part of the internal memory as a sort of cache memory
for faster access to data in the disk due to requirements
for fast communication between nodes. In our experi-
ments, we choose the Microsoft Windows HPC cluster
as the platform. Nodes in the cluster are connected by
network that enables low-latency, high-throughput appli-
cation communication on the basis of Remote Direct
Memory Access (RDMA) technology. Data blocks and
messages are sent by using MPI implementations.

Settings
The soft-max function we use here is the GM model
and the weak classifier we use is multi-decision stump.
For parameters, we set K = 5, [ left, right]=[ 0, 1], ε =
10−5 and B = 100. The value of T varies on different
experiments.

Scalability
For parallel performance analysis, we carry out P-MIL on
the large-scale data set with a varying number of nodes.
We run 10 iterations because time used for each iteration
is almost the same. Overall runtime, time of the data dis-
tribution stage, time of training the best weak classifier,
time of searching the best alpha and the average amount
of local disk storage used for each node are recorded in
Table 1.
The time for the data distribution stage heavily depends

on the speed of disk array and the bandwidth of network.
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Table 1 Global statistics about time and storage for different numbers of nodes

N nodes Cores Overall[s] Distribution[s] Training[s] Searching[s] Storage[MB]

8 64 184361 22453 157183 4725 71384

16 128 157329 22352 132575 2402 31597

32 256 121897 20401 100214 1282 11709

64 512 21437 20485 313 639 1672

128 1024 21020 20491 203 326 0

We use 64 network Input/Output (IO) threads for stabil-
ity reasons in this stage for all experiments, which is why a
varying number of nodes shared similar time in this stage.
The training stage is data-intensive. In the experiments in
which we are using 8, 16 and 32 nodes, RAM is not enough
to keep the whole data set, so we have to scan data from
local disk, which is time-consuming. When we are using
64 nodes, some data is stored in the local disk, notwith-
standing the operating system would automatically load
them into the kernel buffer. So in the experiments of 64
and 128 nodes, all the data could be loaded into memory,
in which we could indeed achieve high computing perfor-
mance. Due to the inherence of the searching algorithm as
well as the size of the data, the searching stage is inevitably
compute-intensive. The searching algorithm we choose is
brute-force but highly parallel, so this stage could speed
up almost linearly.
In Table 2, we show the communication, synchroniza-

tion and computation time of the training and search-
ing stages using 64 and 128 nodes. Comm.&sync. time
makes up of communication time and synchronization
time among compute nodes. An example of synchroniza-
tion is that, in the best αk

t searching stage, the master
has to get summarization of all the lossi values to deter-
mine the next search interval to search, so the slaves which
finish calculating lossi faster have to wait for the slower
ones. Communication time is the sum of the time costs
of calling MPI functions. To measure the load balance, we
report the average time, the maximum time and the ratio
between each pair of each part. The closer this ratio is to
1, the better the load balance.
In a word, in each iteration, it takes us only 53 s to pro-

cess 388 million instances with 128 nodes. In Tables 1 and
2, it is indicated that our framework is available with even

fewer nodes, which also shows that the parallelization
strategy is both efficient and effective.

Classification, segmentation and clustering
For accuracy analysis, we use the parallelized MIL, the
parallelized MCIL and P-MIL to make comparisons,
based on the MIL-Boost framework. We follow the stan-
dard leave-one-out method in a six-fold cross validation.
128 nodes are used to trainMIL,MCIL and P-MILmodels
on the training data with T = 500 iterations using the same
features and parameters. It takes 3.2 h (500 iterations),
11.5 h (500 iterations and K = 5) and 11.6 h (500 iterations
and K = 5) for MIL, MCIL and P-MIL respectively in
a training process. If these methods are not parallelized,
with the core number we used changed to one, it will take
about 4.2 months, 15.2 months and 15.3 months for MIL,
MCIL and P-MIL respectively to run in a training process.
We can see how much time will MIL and MCIL take to
process on a single core if not parallelized, which is not
comparable to P-MIL at all in processing time. The paral-
lelizedMIL has no clustering in its program so its process-
ing time is obviously smaller. With a competition concept
introduced to enhance accuracy, P-MIL is expected to
take slightly more time than the parallelized MCIL does.
The three models are tested on the test data for piece
classification (cancer vs non-cancer). Figure 4 shows the
Receiver Operating Characteristic (ROC) curves [68] with
regard to the classification results. As is shown in Fig. 4,
the F-measure of P-MIL is slightly better than the other
two methods. So P-MIL is not only much faster than
the other two methods, but also has higher classification
accuracy.
The 30 cancer pieces are used to evaluate segmenta-

tion results. The F-measure is used for the quantitative

Table 2 Load balance statistics about training and searching time for 64 and 128 nodes

Stage Comm. & Sync. Computation

avg.[s] max.[s] avg./max. avg.[s] max.[s] avg./max.

64-training 58.1 64.1 0.91 254.5 310.0 0.82

64-searching 275.4 294.4 0.94 363.7 589.9 0.62

128-training 81.4 90.9 0.90 121.4 200.2 0.61

128-searching 147.3 160.6 0.92 178.8 324.8 0.55
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Fig. 4 The mirrored Receiver Operating Characteristic (ROC) curve for
comparisons of piece-level classification results with Multiple Instance
Learning (MIL), Multiple Clustered Instance Learning (MCIL) and
Parallel Multiple Instance Learning (P-MIL). The generalized mean
(GM) model is the soft-max function in the methods

measurement of segmentations. The F-measure values
are 28.2%, 43.1% and 61.7% for MIL, MCIL and P-MIL
respectively in 30 labeled positive images. The P-MIL
significantly improves segmentation results by increas-
ing competition among clusters. MIL-based approaches
are a form of weakly supervised learning, closely related
to semi-supervised machine learning. According to [69],
an F-measure value of 60% in segmentation results is
already relatively high in weakly supervised learning. Fur-
thermore, our segmentation results are mainly to help
pathologists to locate the cancerous regions. A partial
cancer region suggested by the segmentation is enough to
guide the pathologists to search for more detailed cancer
regions.
Since we mainly focus on clustering performance here,

we only include true positive instances as the measured
data. In the clustering evaluation measure stage, purity is
chosen as external criteria for evaluating how well cluster-
ing results fits in standard answers. The purity of P-MIL is
99.89% while the purities of MIL and MCIL are 97.3% and
98.1% respectively (K = 5). Due to the max-margin con-
cept among different clusters, the purity performance of
P-MIL is better than those of the other two methods. The
achieved purity is almost 100.0%, which is challenging to
achieve. As shown in Fig. 5, the P-MIL algorithm is both
effective and efficient.

Discussion
P-MIL outperforms MIL and MCIL in execution time,
image-level classification, pixel-level segmentation and
patch-level clustering according to previous analysis and
Fig. 4. In addition, P-MIL is a general but effective
and efficient method, can be performed in real-time.

Fig. 5 Image Types: a: The original images. b–d: The instance-level
segmentations for MIL, MCIL and P-MIL respectively. e: The ground
truth. ANC: abnormal; NC: normal. Different colors represent different
cancer subtypes

As expected, the results show that the searching and
training efficiency increases almost linearly as the number
of nodes increase. The time of distributing data obviously
cannot be reduced by increasing nodes but the training
time is reduced sharply in this way. In consideration of
cost, there might be a trade-off point to balance the cost
of the platform and the efficiency of the program. For
instance, an optimal ratio of performance to cost can be
calculated and chosen by the user. Moreover, since HPC
Cloud Computing is available, in which we can easily
request the number of nodes we require, we do not need
plenty of nodes to participate in computing if there is only
a small amount of training data to train and predict.
P-MIL shows high accuracy for the test data in eval-

uation. Its main difference with MIL and MCIL in the
learning stage is the introduction of competition. Enhanc-
ing competition among clusters and updating the new
clusters indeed contribute to the high accuracy of the test
results.
In clustering, we set the number of clusters, K, to a

value greater than four to explore new possible cancer
subtypes. There are four major subtypes of colon can-
cer, including: moderately or well differentiated tubular
adenocarcinoma, poorly differentiated tubular adenocar-
cinoma, mucinous adenocarcinoma and signet-ring cell
carcinoma [70]. Different visual patterns in clusters may
divide a known cancer pattern into cancer subtypes. Since
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there exists no clear standard or definition for subclasses
and subtypes, our method is potentially helpful for discov-
ering new cancer subtypes in classification. In the future,
we will conduct experiments with different values of K
and cooperate with pathologists to further validate the
clustering results in clinical practice.

Conclusions
We propose the P-MIL algorithm for large scale
histopathology image analysis using the MPI/multi-
threading programming model on the Microsoft HPC
cluster to perform classification, segmentation and clus-
tering altogether. The concept of max-margin is intro-
duced to the P-MIL framework to improve clustering
results. As a result of max-margin, our method achieved
high performance in the aforementioned tasks. The par-
allel framework significantly shortens the execution time,
which makes our method viable in practical application.
At last, we successfully complete the experiment using
extremely large histopathology images in 128 nodes for
11.6 h. Our results demonstrate that P-MIL scales up
almost linearly and achieves satisfactory performance,
including classification, on a large-scale data set up to a
size of 3.78 TB. The short prediction time of about 382.79
s for one patient’s images suggests the clinical applica-
tion value of our method. Our experiments show that we
could apply the method to efficient histopathology image
analysis, through which, if possible, a cancerous patient’s
prognosis could be almost accurately made. One advan-
tage of choosing HPC as the parallel computing platform
is that Windows Azure added support for HPC and MPI
recently, which enables our algorithm to scale up to cloud
with minor porting effort.
Furthermore, this work can also be extended to achieve

better performance and results. First, as a general model,
P-MIL can be applied to other image types in addition to
colon cancer images. We are currently collecting a com-
plete data set of large-scale brain tumor images for further
testing of our algorithm. Moreover, the boosting frame-
work in our method could be replaced with other types
of boosting, which would probably improve the perfor-
mance. In addition to max-margin, there might be some
other ways to enhance the competition among clusters.
Besides, the parallel model could be further improved. For
example, we could adopt a more strongly parallel hybrid
model to enhance the degree of parallelization and run-
ning efficiency. Time complexity and space complexity of
our algorithmmay still have room for improvement. In the
near future, we will migrate P-MIL from HPC to Azure to
benefit from the larger computing power.
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