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Abstract

Background: Histopathology image analysis is a gold standard for cancer recognition and diagnosis. Automatic
analysis of histopathology images can help pathologists diagnose tumor and cancer subtypes, alleviating the
workload of pathologists. There are two basic types of tasks in digital histopathology image analysis: image
classification and image segmentation. Typical problems with histopathology images that hamper automatic analysis
include complex clinical representations, limited quantities of training images in a dataset, and the extremely large
size of singular images (usually up to gigapixels). The property of extremely large size for a single image also makes a
histopathology image dataset be considered large-scale, even if the number of images in the dataset is limited.
Results: In this paper, we propose leveraging deep convolutional neural network (CNN) activation features to
perform classification, segmentation and visualization in large-scale tissue histopathology images. Our framework
transfers features extracted from CNNs trained by a large natural image database, ImageNet, to histopathology
images. We also explore the characteristics of CNN features by visualizing the response of individual neuron
components in the last hidden layer. Some of these characteristics reveal biological insights that have been verified by
pathologists. According to our experiments, the framework proposed has shown state-of-the-art performance on a
brain tumor dataset from the MICCAI 2014 Brain Tumor Digital Pathology Challenge and a colon cancer
histopathology image dataset.
Conclusions: The framework proposed is a simple, efficient and effective system for histopathology image automatic
analysis. We successfully transfer ImageNet knowledge as deep convolutional activation features to the classification
and segmentation of histopathology images with little training data. CNN features are significantly more powerful
than expert-designed features.
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Background
Histopathology image analysis is a gold standard for can-
cer recognition and diagnosis [1, 2]. Digital histopathology
image analysis can help pathologists diagnose tumor and
cancer subtypes, and alleviate the workload of pathol-
ogists. There are two basic types of tasks in digital
histopathology image analysis: image classification and
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image segmentation. In the classification task, the algo-
rithm takes a whole slide histopathology image as input,
and outputs the label of the input image. Possible labels
are pre-defined, and they can be certain types of can-
cer or normal. In segmentation, the algorithm takes part
of a histopathology image as input, and segments the
region in the input image with certain characteristics.
In both tasks, a set of training data with ground truth
labels and annotations is given. In this paper, we develop
a common framework for all these relevant histopathol-
ogy problems such as classification and segmentation, and
a visualization approach to explore the characteristics of
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deep convolutional activation features which reveal key
biological insights.
There are 3 main challenges in automatic analysis of

digital histopathology images: the complexity of the clin-
ical feature representation, the insufficient number of
training images, and the extremely large size of a single
histopathology image.
The first challenge reflects the difficulty in represent-

ing complicated clinical features. Feature representation
plays an important role in medical image analysis [3, 4].
Histopathology of different cancer types can exhibit dra-
matically diverse morphology, scale, texture and color
distributions, whichmakes it difficult to find a general pat-
tern for tumor detection that can be applied to both brain
and colon cancer. Therefore, feature representation [5]
is very important in high-level medical image tasks such
as classification and segmentation. Many previous works
have focused on feature design, such as object-like [6, 7]
and texture features [8, 9]. However, the specificity of their
designs limits the application to a fixed image source.
Another major concern is the insufficient amount of

training data in the medical images domain. The fact
that a medical image dataset usually has a much smaller
size than a natural scene image dataset makes the direct
application ofmany previousmachine learning algorithms
inappropriate for medical image datasets. Two factors
make collectingmedical images costly. One is the low inci-
dence of the studied disease. The low frequency of the
studied disease has made the collection process harder
since the number of images depends on the number of
disease incidences. The other is the extensive amount
of demanded labor for manual data annotation, since
detailed manual annotation of medical images usually
requires a great deal of effort. Moreover, since many clin-
ical clues are hard to quantify, manual annotation is also
intrinsically ambiguous, even if labeled by clinical experts.
Last problem, the enormous size of individual

histopathology images, makes the histopathology image
dataset considered large-scale; and increases the com-
putation complexity, thus making image analysis more
challenging. One typical whole histopathology section
can be scanned to yield an image of a size larger than
100, 000 × 100, 000 pixels and containing more than 1
million descriptive objects. Usually, 12 to 20 scanned
images will be made for each patient under the patho-
logical section process. Due to the inherent large-scale
property of a histopathology image dataset, the feature
extraction model needs to be both time and memory
efficient, and the learning algorithm should be designed
to be able to extract as much information as possible from
these large images.
Problems mentioned above exist in all tasks of

automatic histopathology image analysis. Beyond that,
classification and segmentation tasks also face some

specific challenges. In classification, subtle distinctions
between different cancer sub-types require features to be
highly expressive. And the fact of unbalanced instances
of different sub-types also handicap the classifiers. In the
segmentation task, the definition of regions need to be
segmented might be opaque, which makes the ground
truth annotated by multiple pathologists slightly differ-
ent. This ambiguity property becomes a challenge in the
design of segmentation frameworks.
With the advent of deep convolutional neural network

(CNN), CNN activation features have recently achieved
tremendous successes in computer vision [10–16]. The
emergence of large visual databases such as ImageNet,
including more than 10 million images and more than
20,000 classes [17], enables CNNs to provide rich
and diverse feature description from general images.
Responses of CNN hidden layers provide different levels
of image abstraction and can be used to extract complex
features like human faces and natural scenes. It makes
extracting sufficient information from medical images
possible. Therefore, in this paper, we study the potentials
of ImageNet knowledge via deep convolutional activation
to extract features for the classification and segmentation
of histopathology images.
Although CNN itself is capable of image classification

[14] and segmentation [18], the extremely large size of a
single histopathology image makes it unrealistic to per-
form classification or segmentation with CNN directly.
On the one hand, it is not practical to construct a CNN
with a very large input size. On the other hand, down-
scaling the entire histopathology image to an acceptable
size for CNN will lose too much detail information, which
makes it impossible to recognize, even for pathologists.
Based on this fact, both our classification and segmen-
tation frameworks adopt a patch sampling technique to
leverage CNN activation features of much smaller local
patches, such that essential local details will be preserved.
Different strategies are then adopted for final results. In
the classification framework, feature pooling is used to
construct features for all slide images. In the segmentation
framework, classification is performed at the patch level
and the results are used to construct image-wide segmen-
tation. Smaller patch size and smoothing are used to make
the boundaries more accurate.
In order to make CNN activation features more suitable

for histopathology images, we also fine-tune the ImageNet
model to learn more subtle and insightful features that
capture complex clinical representatives. In our experi-
ments, fine-tuned CNNmodels can reach better accuracy
on both classification and segmentation tasks.
Moreover, we explore the characteristics of the CNN

activation features by visualizing individual components
of the 4096-dimensional feature vector in histopathology
image classification. Heatmaps of patch confidence for
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each image and discriminative patches with individual
neurons of the CNN activation features are computed.
Heatmaps explain which patches or regions provide
strong responses that make their image fall into the
corresponding category, and patches that represent the
individual neuron response help us understand what char-
acteristics these responses have from the perspective of
each classifier. Through this visualization analysis, we dis-
cover some relationships between clinical knowledge and
our approach’s responses.
In this paper, we propose a simple, efficient, and effec-

tive method using CNN activation features applied to
classification and segmentation of histopathology images.
From the experiments, our framework achieves good per-
formance in two dataset. The advantages of our frame-
work include:

1. The ability to transfer powerful CNN features of
ImageNet to histopathology images, which solves the
problem of limited amount of training data in
histopathology image datasets;

2. The adoption of patch sampling and pooling
techniques to leverage local descriptive CNN
features, which makes the whole framework scalable
and efficient on extremely large whole slide
histopathology images;

3. The unified framework on two different cancer types,
which indicates the simplicity and effectiveness of
our approach.

We make two contributions to the field of automatic
analysis of histopathology images:

1. A general-purpose solution to histopathology
problems on extremely large histopathology images,
which proves effective and efficient on two different
types of cancers;

2. A visualization strategy that reveals the features
learned by our framework have biological insights
and proves the capability of CNN activation features
in representing complex clinical characteristics.

An earlier conference version of our approach was pre-
sented by Xu et al. [19]. In this paper, we further illustrate
that: (1) the framework methods can be applied to ana-
lyzing tissue types other than brain tumor, such as colon
cancer; (2) fine-tuned features based on the ImageNet
model are added; (3) heatmaps are introduced to explore
which patches or regions provide strong responses in
one image in the classification task, accompanying the
previous visualization of individual neural responses.

Related work
In recent years, usage of digital histopathology has
exhibited tremendous growth. Researchers have been

attempting to replace optical microscope with digital
histopathology as the primary tool used by pathologists.
Various replacement approaches are studied in [20–23].
Under the trend of adopting digital histopathology, sev-
eral competitions have been held to boost the tumor
histopathology research community, including the ICPR
2012 Mitosis Detection Competition [24], the MICCAI
2013 Grand Challenge on Mitosis Detection [25], the
MICCAI 2014 Brain Tumor Digital Pathology Challenge
[26], and the MICCAI 2015 Gland Segmentation Chal-
lenge Contest [27]. Our proposed framework achieved
first place results in both classification and segmenta-
tion at the MICCAI 2014 Brain Tumor Digital Pathology
Challenge [28].
Feature representation design is a prominent direction

relating to histopathology images. Manually designed fea-
tures include fractal features [29], morphometric features
[30], textural features [31], and object-like features [32].
Kalkan [33, 34] exploits textural and structural features
from patch-level images and proposes a two-level classi-
fication scheme to distinguish between cancer and non-
cancer in colon cancer. Chang [35] proposes sparse tissue
morphometric features at various locations and scales to
distinguish tumor, necrosis, and transition to necrosis for
the GBM dataset and tumor, normal, and stromal for the
KRIC dataset. Due to the large amount of data, Chang also
uses spatial pyramid matching to represent multi scale
features. Rashid [36] designs two special gland features
to describe benign and malignant glands in prostatic ade-
nocarcinoma. The two features are the number of nuclei
layers and the ratio of the epithelial layer area to the lumen
area. Song [37] transforms the images with learning-based
filters to obtain more representative feature descriptors.
Sparks [38] proposes a set of novel explicit shape fea-
tures to distinguish subtle shape differences between
prostate glands of intermediate Gleason grades on
prostate cancer. Sos Agaian [39] introduces new features
for tissue description such as hyper-complex wavelet
analysis, quaternion color ratios, and modified local
patterns.
However, the major issue with these approaches is the

difficulty in choosing discriminant features to represent
clinical characteristics. Study [40] has also shown that fea-
tures learned by a two-layer network are more powerful
than manually designed representations of histopathology
images. Nayak [41] explores sparse feature learning utiliz-
ing the restricted Boltzmann machine (RBM) to describe
histopathology features in clear cell kidney carcinoma
(KIRC) and GBM. These studies have shown that feature
learning is superior to special feature designs. But there is
a universal challenge in feature learning that the amount
of training data is limited in many cases. In our case, only
a few training images are available for classification and
segmentation.
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Using deep CNN features as generic representations is
a growing trend in many medical image tasks. Some pub-
licly available deep CNN models are utilized to extract
features: Caffe [42] is exploited in a number of works
[10, 11, 42] and OverFeat [43] is used by [16]. These
features are commonly used in classification and object
detection tasks [10, 11, 16, 42]. However, these studies
only focus on natural images.
Powerful CNN is not only capable of performing classi-

fication, but also able to learn features, and several studies
directly utilize this property of CNN on histopathology
image analysis. Ciresan [24] modifies a traditional CNN
into a deep max-pooling CNN to detect mitosis in breast
histology images. The detection problem is cast as pixel
classification. Information from a patch centered on the
pixel is used as context. Their approach has won the first
place in the ICPR 2012mitosis detection competition. The
training set only includes 5 different biopsy H&S stained
slides containing about 300 total mitosis events. Cruz-Roa
[44] presents a novel deep learning architecture for auto-
mated basal cell carcinoma cancer detection. The training
set contains 1,417 images from 308 regions of interest of
skin histopathology slides. In contrast, ImageNet [17] is
comprised of around 14 million images, which is much
larger than datasets of histopathology images. Based on
our survey on feature design and feature learning, we
decided to adopt CNN features trained by ImageNet to
describe discriminative textures in histopathology images
of brain tumor and colon cancers.
Fine-tuning is an important step in CNN learning. It

maintains the original network architecture and treats the
trained CNN as an initialization. After fine-tuning train-
ing, the new model can learn more subtle representations
to describe new targeted tasks. Ross [45] proposes object
detection using fine-tuning to improve 10% points from
44.7% (R-CNN fc7) to 54.2% (R-CNN fine-tuned fc7) in
the VOC 2007 test. Zhang [46] presents a fine-grained
classification. The accuracy improves from 68.07% using
pre-trained CNN features to 76.34% using fine-tuned fea-
tures. These studies demonstrate that fine-tuning is effec-
tive and efficient. In our case, on the basis of pre-trained
CNN features, we implement the fine-tuning step to learn
more subtle representations for histopathology images.
In addition to feature representations, histopathology

image analysis also involves classification schemes. Xu
[47, 48] introduce a novel model called multiple clustered
instance learning to perform histopathology cancer image
classification, segmentation, and clustering. Furthermore,
Xu [49] presents context-constrained multiple instance
learning to adopt segmentation. Gorelick [50] proposes a
two-stage AdaBoost-based classification. The first stage
recognizes tissue components and the second stage uses
the recognized tissue components to classify cancerous
versus noncancerous, and high-grade versus low-grade

cancer. Kandemir [51] introduces a probabilistic classifier
that combines multiple instance learning and relational
learning to classify cancerous versus noncancerous. The
classifier exploits image-level information and alteration
in cell formations under different cancer states. Kalkan
[33] proposes a two-stage classification. The first stage
classifies patches into possible categories (adenomatous,
inflamed, cancer and normal). The second stage uses the
results from the first stage as features. Finally a logistic lin-
ear classifier recognizes cancerous versus noncancerous.
In our case, a linear SVM classifier is used in consideration
of its simplicity and speediness.
In classification, the inputs used are usually the

resized original image [14]. The extracted CNN fea-
tures are directly used as the last features to classify
categories. There are some different methods in [14].
Sharif Razavian et al. [16] extracts 16 patches that include
an original image, five crops (four corners and one center
of 4/9 of the original image area), and two rotations and
their mirrors. The CNN features are extracted when the
16 patches are used as the inputs. After that, the authors
[16] take the sum of all the responses of the last layer as the
final features. Gong et al. [11] samples patches in multi-
scale levels, with a stride of 32 pixels. Multi-scale order-
less pooling of deep convolutional activation features are
extracted. Then the authors [11] aggregate local patch
responses via vectors of locally aggregated descriptions
(VLAD) encoding. In our method, inspired by [52] and
the observation that histopathology images are extremely
large up to the gigapixel size of an image, we use patch
samplings to generate many patches to protect detailed
local information and use feature pooling to aggregate the
patch-level CNN features into the last features.
Histopathology image analysis is used in a wide range

of research. Khan [53] proposes a nonlinear mapping
approach to normalize staining. Image-specific color
deconvolution is applied to tackle color variation when
different tissue preparation, stain reactivity, user or proto-
col, and scanners from different manufacturers are used.
Zhu [54] proposes a novel batch-mode active learning
method to solve the challenges of annotation in scal-
able histopathological image analysis. Feature selection
and feature reduction schemes [38, 55] are also important
steps in histopathology image analysis.

Methods
CNN architecture
AlexNet [14] is a simple and common deep convolutional
neural networks and can still achieve competitive per-
formances in classification compared with other kinds of
networks. Therefore, AlexNet architecture is used in our
case. The CNN model we use in this paper is shared by
the CognitiveVision team at ImageNet LSVRC 2013 [13]
and its architecture is described in Table 1. It is analogous
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Table 1 The CNN architecture

Layer Dimension Kernel size Stride Details

input 224 × 224 × 3 - - RGB channels

conv1 55 × 55 × 96 11 4 -

pool1 27 × 27 × 96 3 2 Max pooling

conv2 27 × 27 × 256 5 1 -

pool2 13 × 13 × 256 3 2 Max pooling

conv3 13 × 13 × 384 3 1 -

conv4 13 × 13 × 384 3 1 -

conv5 13 × 13 × 256 3 1 -

pool3 6 × 6 × 256 3 2 Max pooling

fc1 4096 - - -

fc2 4096 - - -

to the one used in [14], but without the GPU split, since a
single modern GPU has sufficient memory for the whole
model. This model was trained on the entire ImageNet
dataset. Thus it is little different from what the Cogni-
tiveVision team used at ILSVRC 2013. The code used for
training and extracting features is based on [14]. In the
training step, we use the data pre-processing and data
augmentation methods introduced in [14], transforming
input images of various resolutions into 224×224. During
feature extraction, input image is resized to 224×224 pix-
els and fed to the network. The output of the fc2 layer is
used as an extracted feature vector.

Classification framework
The enormous size of the histopathology images makes
it imperitive to extract features locally. Hence, each
histopathology image is divided into a set of overlapping
square patches with a size of 336×336 pixels for 20×
magnification and 672×672 pixels for 40× magnification
scale (they are both 151,872×151,872 nm2). The patches
form a rectangular grid with 64-pixel stride, i.e., distance
between adjacent patches. To further reduce the number
of patches, we discard patches with only a white back-
ground, whose RGB values of all pixels are greater than
200. All selected patches are then resized to 224×224 pix-
els and fed into the network to obtain 4096-dimensional
CNN feature vectors. The final feature vector of an image
is computed over P-norm pooling. P-norm pooling, also
known as softmax pooling, amplifies signals from a few
patches, which is computed by

fP(v) =
(
1
N

N∑
i=1

vPi

)
1
P
, (1)

where N is the number of patches for an image, and vi is
the i-th patch feature vector. In our framework, P = 3
(3-norm pooling) is used.

Moreover, in order to form a subset of more discrim-
inative features and to exclude redundant or irrelevant
features, feature selection is used in binary classification.
Features are selected based on the differences between
positive and negative labels. The difference of the k-th
feature diffk is computed by

diffk =
∣∣∣∣∣∣

1
Npos

∑
i∈pos

vi,k − 1
Nneg

∑
i∈neg

vi,k

∣∣∣∣∣∣ , (2)

where k = 1, . . . , 4096, Npos, and Nneg are the number of
positive and negative images in the training set, and vi,k
is the k-th dimensional feature of the i-th image. Feature
components are then ranked from largest diffk to small-
est, and the top 100 feature components are selected. For
multiclass classification, no feature selection is used.
Finally, a linear Support Vector Machine (SVM) is used.

In multiclass classification, one-vs-rest classification is
used. Figure 1 shows the workflow of our classification
framework.

Segmentation framework
Medical image segmentation methods can be generally
classified into three categories: supervised learning [29],
weakly supervised [48] and unsupervised [32]. A super-
vised learning method can be used only if labelled data are
available. Otherwise, other approaches (i.e. unsupervised
methods) are needed. Since we have labelled training data,
we propose a supervised learning framework for segmen-
tation. In our framework, we reframe the segmentation
problem as a classification one by performing classifica-
tion on a collection of patches. Figure 2 illustrates the
workflow of our segmentation framework.
Similar to the aforementioned classification framework,

patches are sampled on a rectangular grid of 112×112
pixel patches in 8-pixel stride. 112×112 pixel patches are
resized to 224×224 pixels to obtain their CNN feature
vectors. A linear SVM is trained to classify all patches
as positive or negative. Since a pixel can be covered by
many overlapping patches with different labels, the final
label for each pixel is decided by the majority vote of the
patches covering this pixel. Since pixel-based voting pro-
vides many tiny positive or negative regions that lack bio-
logical meaning, we utilize several smoothing techniques
to reduce region fractions. Small positive and negative
regions with an area less than 5% of the full image size are
removed.
In the MICCAI challenge, we further made two modifi-

cations to the training data for the final submitted model.

1. We observe that hemorrhage tissues appear in both
non-necrosis and necrosis regions. Hence, we
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Fig. 1 The classification workflow. First, square patches of 336 or 672 pixels in size are sampled on a rectangular grid, depending on themagnification
scale of the image. Patches are then resized to 224 pixels in size as the input of our CNN model. A 4096-dimensional feature vector is extracted from
the CNN model for each patch. A 100-dimensional feature is obtained by feature pooling and feature selection for each image. Finally, a linear SVM
classifies the selected features. The figure shows a binary classification, where the positive (blue and orange) and negative (green) are GBM and LGG
in brain tumor, cancer and normal in colon cancer respectively. In multiclass classification, a full feature vector of 4096 dimensions is used

manually relabel hemorrhage patches in the necrosis
regions as non-necrosis patches. This results in
misclassification of hemorrhage patches at test time
in the prediction stage, but since those patches are
usually in the interior of the necrosis region, such
errors can be corrected by the post-processing.

2. We observe that training images are non-uniform
and have various sizes. Additionally, the training data
is not evenly distributed. In the final model for
submission, we augment the instances of missed
regions and false regions generated by leave-one-out
cross-validation on the training data.

Dataset
We benchmark our classification framework and segmen-
tation framework on two histopathology image datasets:
the MICCAI 2014 Brain Tumor Digital Pathology Chal-
lenge and a colon cancer dataset. To illustrate the advan-
tages of our frameworks, we also benchmark other
approaches and other types of features on the same
datasets.
For the MICCAI challenge [26], digital histopathology

image data of brain tumors are provided by the orga-
nizers. In classification (sub-challenge I), the target is to
distinguish images of glioblastomamultiforme (GBM) and

Fig. 2 The segmentation workflow. Similar to classification workflow, square patches of 112 pixels in size are sampled on a rectangular grid with
8-pixel stride. Each patch is assigned a positive (orange) or negative (blue) label, which are necrosis vs. non-necrosis in brain tumor, and cancer vs.
normal in colon cancer, respectively. In training phase, a patch is labelled positive if its overlap ratio with annotated segmented region is larger than
0.6. Patches are then resized and a 4096-dimensional feature vector is extracted from our CNN model. A linear SVM classifier is used to distinguish
negative from positive patches. Probability mapping images are yielded utilizing all predicted confidence scores. After smoothing, positive
segmentations are obtained
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low grade glioma (LGG) cancer. The training set has 22
LGG images and 23 GBM images, and the testing set has
40 images. In segmentation (sub-challenge II), the goal
was to separate necrosis and non-necrosis regions from
GBMhistopathology images, since necrosis is a significant
cue for distinguishing LGG from GBM. The training
set included 35 images and the testing set includes 21
images. The image resolutions are either 502 nm/pixel or
226 nm/pixel, corresponding to 20× and 40× source lens
magnification, respectively.
For colon cancer, H&E stained histopathology images

are provided by the Department of Pathology of Zhejiang
University in China and are scanned by the NanoZoomer
slide scanner from Hamamatsu. Regions containing typ-
ical cancer subtype features are cropped and selected
following the review process by three histopathologists,
in which two pathologists independently provide their
results and the third pathologist merge and resolve con-
flicts in their annotations. A total of 717 cropped regions
were used as our dataset, with a maximum scale of
8.51×5.66 mm and average size 5.10 mm2. All images are
of 40× magnification scale, i.e. 226 nm/pixel. 355 can-
cer and 362 normal images are used for binary tasks. For
multiclass classification, there are 362 normal (N), 154
adenocarcinoma (AC), 44 mucinous carcinoma (MC), 50
serrated carcinoma (SC), 38 papillary carcinoma (PC),
and 45 cribriform comedo-type adenocarcinoma (CCTA)
images (a total of 693 images that were used). 24 cancer
images are disregarded inmulticlass classification because
there are too few instances in their cancer categories. Half
of the images are selected as the training data and other
images are used as testing data. The proportion of each
cancer subtype in the testing data are the same as the
full dataset. In the segmentation task, 150 training and
150 testing images are selected from the dataset. They are
resized to a 10× magnification scale (904 nm/pixel) and
then cropped to 1,280×800 pixels. This is the same setting
used in [32] for their algorithm GraphRLM. The segmen-
tation ground truth of colon cancer images was annotated
by pathologists, following the same review process men-
tioned before.

Experiment settings
Classification
To illustrate the advantages of CNN features, we com-
pare CNN features with manual features (that have fixed
extraction algorithms) within our proposed framework.
Only the feature extraction step in the framework is mod-
ified. In our experiments, generic object recognition fea-
tures including SIFT, LBP, and L*a*b color histogram are
adopted (following settings in [48]), concatenating into a
total of 186 feature dimensions. This approach is denoted
by SVM-MF, and our proposed framework using CNN
features is denoted by SVM-CNN.

To show the effectiveness of patch sampling, we com-
pare our framework with the approach that uses CNN fea-
tures directly, without patch sampling. In this approach,
the full histopathology image was resized to 224×224 pix-
els and fed to CNN to extract the image-level features.
Then a linear SVM was used to perform classification.
This approach is denoted by SVM-IMG.
Furthermore, we compare our classification framework

with previous approaches Multiple Clustered Instance
Learning (MCIL) [48] and Discriminative Data Transfor-
mation [37]. They are denoted by MCIL and TRANS,
respectively. In MCIL, the patch extraction setting is the
same as our approach. The softmax function here was the
GMmodel and the weak classifier was the Gaussian func-
tion. The parameters of the algorithm are the same as
described in the original study. InTRANS, learning-based
filters are applied to original images and feature descrip-
tors [37]. We follow settings in their original work (image
filters of size X = 3, 5, 7 and feature filter of size Y = 5)
and use a linear SVM as the classifier.
In all approaches a linear SVM (SVM-IMG, SVM-MF,

SVM-CNN and TRANS), L2-regularized SVM with lin-
ear kernel function is adopted in experiments, whose
cost function is 1

2w
Tw + C

∑l
i=1(max(0, 1 − yiwTxi)).

Open-source toolbox LIBLINEAR [56] is used to opti-
mize SVM. The value of parameter C was chosen from
{0.01, 0.1, 1, 10, 100} and the optimal value is determined
by cross-validation on training data.

Segmentation
Similar to classification, we compare CNN features with
manual features. Settings of manual features are the same
as classification experiments. This approach is denoted
by SVM-MF, and our proposed framework using CNN
features is denoted by SVM-CNN.
To further improve segmentation results, the CNN

model trained by ImageNet is fine-tuned on histopathol-
ogy images to explore features more suitable for this task.
In our experiments, we replace the CNN’s ImageNet-
specific 1000-way classification layer with a randomly
initialized 2-way classification layer. The CNN architec-
ture remains unchanged. We start a stochastic gradient
descent (SGD) at a learning rate of 0.0001. The learn-
ing rate is used in the unmodified layers, which is one
tenth of the initial pre-training rate on ImageNet.We train
the CNN model for 20 epochs, and the learning rate is
not dropped during the training process. Besides features
being extracted from the fine-tuned CNN model, other
steps of the segmentation framework do not change. This
approach is denoted by SVM-FT.
In addition, we compare our segmentation frame-

work with a previous approach GraphRLM [32]. Since
both ours and their original dataset are colon cancer
datasets at same magnification scale, the parameters in
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our experiment are set the same as given in their publica-
tion: rmin = 8, rstrel = 2, winsize = 96, distthr = 1.25, and
compthr = 100. This approach is denoted by GraphRLM.
The settings of linear SVM are the same as classification

experiments.

Evaluation
For classification tasks, accuracy is used as the evaluation
score. For segmentation tasks, the evaluation follows the
rule provided by the organizers of the MICCAI challenge,
which computes the average of every image’s ratio of over-
lapping area size over a total involved area size of ground
truth and results predicted by the algorithm. The compu-
tation of a score is as follows. A mapping defines a set of
pixels of image i that are assigned to a positive label. Let
the ground truth mapping of the segmentation of image i
be Gi and the mapping generated by the algorithm be Pi.
The score for image i, Si, is computed as

Si = 2 |Pi ∩ Gi|
|Pi ∪ Gi| , i = 1, . . . ,K , (3)

where K is the number of total images. The evaluation
score (called accuracy) is the average of Si.
For brain tumor tasks, since the organizers of the MIC-

CAI challenge did not provide ground truth labels and
annotations of testing data, we use 5-fold cross-validation
for classification and leave-one-out cross-validation for
segmentation in our experiments. Also, the modifica-
tions mentioned in Section 2.3 do not apply in our own
cross-validation experiments.

Results and discussion
Classification results
In the MICCAI challenge, our final submission of clas-
sification task achieved 97.5% accuracy on the testing
data, ranking first place among other participants. Table 2
shows the results of some of the top-performing meth-
ods provided on the submission website [28]. Our results
are satisfying and the difference between our performance
and the second-place team’s is up to 7.5%, which proves
that our method can achieve state-of-art accuracy, even
given a relatively small data size, with the help of Ima-
geNet.
We compare our method with state-of-art methods

in training data from the MICCAI challenge. Table 3

Table 2 Classification performance in the MICCAI challenge

Accuracy Place

Anne Martel 75.0% 4th

Hang Chang [30] 85.0% 3rd

Jocelyn Barker 90.0% 2nd

Our method [19] 97.5% 1st

Table 3 Classification performance using cross-validation in
training data from the MICCAI challenge

Accuracy

Hang Chang [30] 85.83%

Our method [19] 97.8%

Jocelyn Barker [57] 100.0%

summarizes the performances of some of state-of-art
approaches. Our results are good compared with other
methods. The method [57] uses two-stage, coarse-to-fine
profiling which significantly reduces computation time,
slower than would be desired for any real-time appli-
cation. We use NVIDIA K20 GPU to train our model.
Average necrosis and non-necrosis pixels of an image for
the challenge are 1,330,000 and 2,900,000 respectively. At
test time, the average computation time for predicting
segmentation of an entire image using our slide windows
approach is second scale on this GPU.
Adding our colon dataset and multiclass classification

scenario, we compare several methods on both the brain
tumor and colon cancer datasets. The performances are
summarized in Table 4. MCIL is excluded from the mul-
ticlass classification comparison due to the limitations of
the algorithm. In all cases, ourmethod (SVM-CNN) yields
statistically significant results.
For brain tumor classification of the GBM and LGG sub-

type, CNN features are much more powerful than manual
features (MF) and yields 20.0% improvement in perfor-
mance. Compared with MCIL and TRANS, our proposed
framework is 6.7% and 9.1% better, respectively.
For colon cancer binary classification, while our method

yields the highest performance similar to the results in
brain tumor, all methods achieve at least 90% accuracy.
In the multiclass scenario, only our method achieves
accuracy over 80%. Compared with other approaches,
SVM-CNN beats SVM-IMG when using the full image
directly by 8.2% and beats SVM-MF that uses hard-coded
manual features by 11.6%. Surprisingly, in colon cancer,
SVM-IMG performs better than SVM-MF by about 4%.
In binary classification, both MCIL and SVM-CNN

achieve significantly better performance than other meth-
ods. Since MCIL is a multiple instance learning based
algorithm, while our framework adopts the feature pool-
ing technique, which is similar to multiple instance

Table 4 Classification methods comparison

Dataset MCIL TRANS SVM-IMG SVM-MF SVM-CNN

MICCAI brain 91.1% 86.7% 62.2% 77.8% 97.8%

CRC binary 95.5% 92.3% 94.3% 90.1% 98.0%

CRC multiclass - 78.5% 79.0% 75.5% 87.2%



Xu et al. BMC Bioinformatics  (2017) 18:281 Page 9 of 17

learning, the main performance difference is contributed
by the powerful CNN feature. Using extracted features
trained on a general image database enables us to cap-
ture complex and abstract patterns even if the number of
training images is limited.
To better capture which features have been activated in

our histopathology image analysis methods, the image-
level heatmap (Figs. 5 and 6) and feature patch charac-
teristic (Figs. 7 and 8) are plotted. They are discussed in
Section 3.4.

Segmentation results
In the MICCAI challenge, our final segmentation submis-
sion also achieves first place with an accuracy of 84% on
testing data. Table 5 shows the top performances from
other participating teams [28]. Our framework outper-
forms the second-place team by 11%.
Table 6 summarizes the segmentation performance of

various methods on both the brain tumor and colon can-
cer dataset. GraphRLM is not suitable for comparison
here since it is an unsupervised method. For the brain
tumor dataset, SVM-CNN shows a 21.0% improvement
in performance over SVM-MF. Using fine-tuned CNN
further improves SVM-CNN by 0.4%.
For colon cancer, CNN-based methods show at least

16.2% performance improvement over SVM-MF, so the
results indicate a similar trend with the brain cancer
dataset. After fine-tuning, accuracy further increases to
94.8%, showing a 1.6% difference. In addition, we provide
some samples of the segmentation results using all meth-
ods, shown in Figs. 3 and 4 for the brain tumor and colon
cancer dataset, respectively.
From Table 6, a significant performance difference

can be observed using CNN-based features rather than
manual hard-coded features. Using fine-tuned CNN fea-
tures improves the accuracy of CNN features by 1%
in colon cancer. The difference can also be verified by
both Figs. 3 and 4. For GraphRLM, the segmentation
results are incomprehensible or no segmentation result
is provided. Although the result of GraphRLM cannot
be precisely quantified, it fails to outline valuable bound-
aries or generates no boundary in most cases. Even in
colon cancer, the same cancer type used in their pub-
lication, GraphRLM cannot provide segmentations that
share similar morphological patterns. On the other hand,

Table 5 Segmentation performance in the MICCAI challenge

Accuracy Place

Anne Martel 63% 4th

Hang Chang 68% 3rd

Siyamalan Manivannan [58] 73% 2nd

Our method [19] 84% 1st

Table 6 Segmentation methods comparison

Dataset GraphRLM1 SVM-MF SVM-CNN SVM-FT

MICCAI brain - 64.0% 84.0% 84.4%

CRC - 77.0% 93.2% 94.8%

GraphRLM is an unsupervised method

all other methods achieve at least 64% accuracy. SVM-
CNN and SVM-FT show discernible improvement in per-
formance over SVM-MF both in accuracy statistics and
visualization.

Selection of patch size
In our classification framework, the size of sampled
patches is 336×336 pixels for 20× magnification and
672×672 pixels for 40× magnification scale. We also
try other patch sizes to explore the influences of differ-
ent patch sizes. Results are shown in Table 7. From the
results in Table 7, we find that a patch size of 672×672
yields the highest accuracy on both binary and multiclass
classification tasks.
In our segmentation framework, a patch size of

112×112 pixels is chosen. We also explore the influences
of patch size on our segmentation framework. The results
are shown in Table 8. From the results, it shows that a
smaller patch size will give rise to better segmentation
results on both datasets. This fact follows our intuitions.
In the segmentation framework, labels of positive or neg-
ative are given to each sampled training patch based on
its overlapping ratio with annotated region, and segmen-
tation result is constructed from predicted labels of all
sampled patches. In this condition, larger patch size will
affect the resolution of the boundary of the segmented
region, which hurts the accuracy of the segmentation
results.

Visualization of CNN activation features
Our proposed frameworks adopting CNN features show
high accuracy on both the brain tumor and colon cancer
dataset. We are interested in what exactly our classi-
fiers have learned from CNN features and whether they
can reveal biological insights. For this purpose, indi-
vidual components of the responses of neurons in the
last hidden layer (4096 dimensions) are visualized to
observe the properties of CNN features. In particular,
we visualize their image-wise and feature-wise responses
to understand which part of the image our CNN finds
important.
From the aspect of images, each patch is assigned a con-

fidence using the classification model trained by linear
SVM. We visualize the confidence score of each patch as
a heatmap (Figs. 5 and 6). The redder (resp. blue) a region
is, the more confident the classifier will be to consider that
region being positive (resp. negative). Heatmaps help to



Xu et al. BMC Bioinformatics  (2017) 18:281 Page 10 of 17

Fig. 3 Segmentation results for the brain tumor dataset. a the original images. b ground truth of necrosis (positive) region masked gray. The rest of
the columns show the prediction results by c GraphRLM, d SVM-MF, e SVM-CNN, and f SVM-FT methods where true positive, false positive (missed),
and false negative (wrongly predicted) region are masked purple, pale red, and orange, respectively

visualize the important regions the classifier thinks. For
each classification task, one image from each category is
shown in the paper.
In terms of features, we visualize the response of indi-

vidual neurons in the last hidden layer to observe the
characteristics of CNN features (Figs. 7 and 8). The top
activated feature dimensions are determined by the high-
est weights from the classification SVM model. For the
relevant neurons, patches that activate them the most are
selected (patches that have highest value in that feature
dimension).

Image-level heatmaps
Though we do not explicitly label the attributes of
each cancer type, the heatmaps of our classifiers show
they indeed highlight the representative hot spots. For
example, necrosis regions, which are characteristics of
GBM, are generally considered highly positive.
For brain tumors, heatmaps are shown in Fig. 5.We have

the whole of all slide images labeled as GBM and LGG,

respectively. In this classification scenario, both classes
are glioma, but with different glioma grades. High grade
glioma includes anaplastic astrocytomas and glioblastoma
multiforme, which come with the presence of necrotic
regions and hyperplastic blood vessels and megakary-
ocytes and are detectable using an H&E stain. In the
example of heatmaps, the endothelial proliferation regions
of GBM are well captured.
For colon cancer, heatmaps for both binary and mul-

ticlass classification are shown in Fig. 6. In the binary
scenario, our CNN successfully recognizes the malformed
epithelial cells in cancer instances and evenly spaced
cell structure in normal instances. For example, in the
example of the adenocarcinoma (AC) subtype, most of
the malignant ductal elements shown in the figure are
highlighted by the binary classifier. For the rest of the
image, stromal cells are abundant and considered neutral
or normal, as they are biologically benign. The lumen part
shown in the normal example is misclassified as a cancer-
like region since it resembles the shape of ill-shaped
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Fig. 4 Segmentation method comparison for the colon cancer dataset. a the original images. b ground truth of necrosis (positive) region masked
gray. The rest of the columns show the prediction results of c GraphRLM, d SVM-MF, e SVM-CNN, and f SVM-FT methods where true positive, false
positive (missed), and false negative (wrongly predicted) region are masked purple, pale red, and orange, respectively

epithelial cells. However, some specific features of each
cancer subtype are overlooked by the binary classifier.
In the mucinous carcinoma (MC) example, the classifier
recognizes the dense epithelium but ignores the primary
characteristic of MC, where abundant extracellular mucin
(light purple region in original image) can be seen. This
is due to the similarity between the colloid and empty
areas, which makes it more difficult to discern in the
binary scenario.
In the multiclass scenario, specific characteristics for

each subtype are stressed and become obvious in their

Table 7 Classification results of different patch sizes

Dataset 224×224 448×448 672×672

MICCAI brain 91.1% 93.3% 97.8%

CRC binary 97.5% 96.9% 98.0%

CRC multiclass 85.0% 85.3% 87.2%

Patch sizes in the table correspond to 40× magnification scale. For 20×
magnification scale, the sizes are halved

classifier heatmap. In the MC example, only the col-
loid part triggers the MC classifier and other malignant
parts are suppressed. The unique patterns of serrated
carcinoma (SC) and papillary carcinoma (PC) are suc-
cessfully captured by their classifier. In the SC subtype,
different from the situation all regions are recognized as
malignant, only the tooth-like epithelial structure remains
highly confident. In the PC subtype, only the elongated
tubular structure is highlighted. Many unique SC pat-
terns are ignored by the classifier since they resemble
the tubular characteristic of PC under our patch scale.
For cribriform comedo-type adenocarcinoma (CCTA), its
distinct cribriform characteristic that exhibits frequent
perforation is highlighted in the heatmap. For the AC

Table 8 Segmentation results of different patch sizes

Dataset 112×112 224×224 336×336

MICCAI brain 84.0% 78.5% 75.7%

CRC 93.2% 86.9% 81.3%
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Fig. 5 Heatmap for brain tumor GBM vs LGG classification. Each patch of the whole slide image is assigned a confidence using the classifier, which
forms the heatmap. Regions that are red in color are more likely to be GBM regions. The purpose of these heatmaps is to illustrate which part of the
whole slide image is considered important for the classifier and to prove the expressiveness of CNN features. In the GBM example, the endothelial
proliferation regions, which are considered an essential morphologic cue for the diagnosis of GBM, show high positive confidence

subtype, many malignant ductal elements are disregarded
by the classifier from the binary to multiclass scenario,
which is due to the similar ubiquitous structures in all
cancer subtypes which are not helpful for improving the
performance. For the normal example, the binary and
multiclass classifiers show consistent results, while in the
multiclass the lumen part in the middle of the image is
correctly suppressed.
To compare CNN activation features with other fea-

tures, heatmaps of manual features are also shown in
Fig. 6. From the figures, we can clearly see the advantage
of CNN activation features.

Feature patch characteristic
In the CNN features extracted from distinct medical
images, we find that single feature dimension can indicate
certain characteristic, which is one of the exciting discov-
eries made when applying visualization of CNN activation
features. Even though there might exist certain types of
manually designed features providing the same charac-
teristics, CNN is able to learn these characteristics from
large image dataset automatically, without any manual
designs. Reported by histopathologists, some of the fea-
tures can convey clinical insights, which can also verify
our finding from the image-level heatmap analysis. The

characteristics of each feature are visualized by select-
ing patches from all the images with the highest weights.
For more details on the brain tumor images, we refer the
reader to [19].
For colon cancer, the most discriminative features in

both binary and multiclass classification are visualized,
and shown in Figs. 7 and 8 respectively. Similar to the
finding in heatmaps, even though we did not supply
extra information about any pathological characteristic,
features with high weights in a classifier corresponds
to specific characteristics of a category. In binary clas-
sification, important cancer features include glandular
cancer (1st, 2nd, 4th, 5th and 6th row), and papillary
shapes (3rd row); while important non-cancer features
include normal glands (1st and 2nd row), lymph cell
clusters (3rd row), hemorrhage (4th and 5th row), and fat
(6th row).
The multiclass classifier automatically discovers fea-

tures more specific to each of the subtypes, with some
cases particularly interesting and potentially instructive.
For example, CCTA features not only contain the afore-
mentioned cribriform structure (2nd row) as expected,
but also contain a feature activated on hemorrhage
regions (1st row) — suggesting some undiscovered corre-
lation between CCTA and hemorrhage.
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Fig. 6 Heatmap for binary and multiclass classification of colon cancer using both manual features and CNN activation features. Similar to Fig. 5,
heatmap is drawn based on confidence scores of each patch, and the purpose is also to explore the expressiveness of CNN features. In binary
classification (2nd and 4th column), red regions are more likely to be cancer. In multiclass classification (3rd and 5th column), only the classifier that
predicts the image’s label is shown, that is, for the AC image, only the prediction of the AC-vs-rest classifier is shown. Areas that are red are more
likely to be the image’s label. The transition of the highlighted regions from binary to multiclass classification indicates that our multiclass classifiers
can recognize the specific characteristics of each cancer subtype. The comparison between the CNN features and manual features shows the CNN
features have greater power of expressiveness than the manual features

Many CNN features also suggest some new criteria for
classifying cancer tissues. For example, PC features dis-
tinguish the tip (1st row) and middle part (2nd row) of
its special tubular structure. MC features seem to sepa-
rate patches of colloid secretion by the density of mucus:
the first row of patches has more mucus than the sec-
ond row. The two features visualized here for AC look
very similar (both showing the dense epithelial lining of
the colon duct), and the same can be recognized as glan-
dular structures. In CCTA patch characteristics, features
of the aforementioned cribriform structure (1st row) and
hemorrhage (2nd row) are turned on, both being typical
characteristics of CCTA. Noting that even though patches
of hemorrhage shown here do not belong to the proper-
ties of colon cancer, they can still represent a neuron in
the last CNN hidden layer that is often triggered by the
features of the hemorrhage. For the normal type, features
containing patches of longitudinal and transverse crypts

(intestinal gland, 1st row) or patches of stroma cells (2nd
row) are turned on.

Conclusions
In this paper, we introduce deep convolutional activation
features trained with ImageNet knowledge and apply a
CNNmodel to the extraction of features from brain tumor
and colon cancer digital histopathology datasets. We suc-
cessfully transfer ImageNet knowledge as deep convolu-
tional activation features to the classification and segmen-
tation of histopathology images with relatively little train-
ing data. According to our experiments, CNN features
are significantly superior to manual features. Additionally,
due to the vast size of a single histopathology image, fea-
ture pooling technique is adopted to construct the single
image-level feature vector in our classification framework.
Experiments demonstrate that our frameworks achieve
state-of-the-art results of 97.5% for classification and 84%
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Fig. 7 Sample discriminative patches selected with individual components (neurons) of the CNN activation features. Each row of patches causes a
high response in one of the 4096 neurons from all colon training images in binary classification task. 6 top-weight features for each classifier are
selected and top patches triggering these 6 neurons are selected to represent the characteristics of the corresponding feature. The purpose of this
figure is to show the characteristics of individual components of CNN features which are thought be important by the binary classifier. These
visualized characteristics convey some clinical insights

for segmentation in the MICCAI brain tumor challenge.
Later, we apply both frameworks on colon cancer images
and achieve similar success, showing remarkable improve-
ment over previous methods.
Moreover, the features learned by our classifier yield

biologically meaningful insights that are recognized by
pathologists. Jointly, the histopathology morphology from
these selected patches or regions will help pathologists
discover patterns with biological insight. By observing
the discriminative patches with the individual neurons of
CNN activation features, we can discover tissue compo-
nents of corresponding subtypes. It is useful to explore

the development process across different cancer stages
and subtypes. By applying digital histopathology image
analysis, subtle differences in complex morphology pat-
terns can be captured and quantified, and we can re-
investigate their joint interaction to reflect the prognosis
or medicine response of patients and provide fine grained
characterizations.
Our motivation is to introduce a general-purpose solu-

tion to histopathology problems. This makes our setup
considerably simpler than most others. Fully convolu-
tional networks (FCN) [18] are not suitable to classify
large scale images. Therefore, we do not compare our
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Fig. 8 Sample discriminative patches selected with individual components (neurons) of the CNN activation features. Each row of patches causes a
high response in one of the 4096 neurons from all colon training images in multiclass classification task. Two top-weight features for each classifier
are selected and top patches triggering these two neurons are selected to represent the characteristics of the corresponding feature. The purpose
of this figure is to show the characteristics of individual components of CNN features which are thought be important by the multiclass classifier.
These visualized characteristics convey some clinical insights

method with FCN. In future work, we will compare our
method with FCN in terms of segmentation.
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