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ABSTRACT
Over the last decade, there has been a tremendous growth in data-
intensive applications and services in the cloud. Data is created on
a variety of edge sources such as devices, and is processed by cloud
applications to gain insights or make decisions. These applications
are typically update intensive and involve a large amount of state
beyond what can fit in main memory. However, they display sig-
nificant temporal locality in their access pattern. We demonstrate
FASTER, a new key-value store that combines a latch-free con-
current hash index with a hybrid log: a concurrent log-structured
record store that spans main memory and storage, while supporting
fast in-place updates in memory. FASTER achieves up to orders-of-
magnitude better throughput than systems deployed widely today.
It is built as an embedded high-level language component using
dynamic code generation, and can work with any storage back-end
such as local SSD or cloud storage. Our demonstration focuses
on: (1) the ease with which cloud applications and state stores can
deeply integrate state management into their high-level language
logic at low overhead; and (2) the innovative system design and the
resulting high performance, adaptability to varying memory capac-
ities, durability, and natural caching properties of our system.
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1. INTRODUCTION
A variety of data is created on edge sources such as Internet-of-

Things devices, mobile applications, browsers, and servers today.
This data is processed by applications and services in the cloud to
gain insights. Processing may include ad-hoc analysis of collected
data in batches (e.g., in Hadoop and Spark), or realtime monitoring
and processing as it arrives (e.g., in Streaming Dataflows [2, 3] and
Actor-based Application Frameworks [1]). State management is a
critical component in all such processing needs. Web applications
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may also issue a mix of record inserts, updates, and reads, usually
supported via caching object stores such as Redis and Memcached.

State management is a difficult challenge for such applications
and services, and has several unique characteristics:
• Large State Size: The amount of state accessed by some ap-

plications can be very large, far exceeding the capacity of main
memory. For example, a targeted search ads provider may main-
tain per-user, per-ad and clickthrough-rate statistics for billions
of users. Even when it fits in memory, it is often cheaper [6] to
retain infrequently accessed state on secondary storage.
• Update Intensity: While reads and inserts are common, there

are applications with significant update traffic. For example, a
monitoring application receiving millions of CPU readings every
second from sensors and devices may need to update a per-device
aggregate for each reading.
• Temporal Locality: Even though billions of state objects may be

alive at any given point, only a small fraction is typically “hot”
and accessed or updated frequently with a strong temporal local-
ity. For instance, a search engine that tracks per-user statistics
(averaged over one week) may have a billion users “alive” in the
system, but only have a million users actively surfing at a given
instant. Further, the hot set may drift over time: in our example,
as users start and stop browsing sessions.
• Point Operations: Given that state consists of a large number

of independent objects that are inserted, updated, and queried,
a system tuned for (hash-based) point operations is often suffi-
cient. If range queries are infrequent, they can be served with
simple workarounds such as indexing histograms of key ranges.

1.1 Existing Solutions
A simple solution adopted by many systems is to partition the

state across multiple machines, and use pure in-memory data struc-
tures such as the Intel TBB Hash Map [11], that are optimized for
concurrency and support in-place updates – where data is modi-
fied at its current memory location without creating a new copy
elsewhere – to achieve high performance. However, the overall so-
lution is expensive, often severely under-utilizes the resources on
each machine, and makes failure recovery complicated.

Key-value stores are a popular alternative for state management.
A key-value store is designed to handle larger-than-memory data
and support failure recovery by storing data on secondary storage.
Many such key-value stores [5, 10, 9] have been proposed in the
past. However, these systems are usually optimized for blind up-
dates, reads, and range scans, rather than point operations and read-
modify-write (RMW) updates such as per-key aggregates, which are
prevalent in our target applications. Hence, these systems do not
scale to more than a few million updates per second, even when the
hot-set fits entirely in main memory. Caching systems such as Re-
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Figure 1: Throughput comparison.
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Figure 2: Overall FASTER architecture.

dis and Memcached are optimized for point operations, but are slow
and depend on an external system such as a database or key-value
store for storage and/or failure recovery. The combination of con-
currency, in-place updates (in memory), and ability to handle data
larger than memory is important for efficient state management in
our target applications; but these features are not simultaneously
met by existing systems.

1.2 Introducing FASTER
We have built a new concurrent key-value store called FASTER,

designed to serve applications that involve update-intensive state
management. The FASTER interface supports, in addition to reads,
two types of state updates seen in practice: blind updates, where
an old value is replaced by a new value blindly; and read-modify-
writes (RMWs), where the value is atomically updated based on the
current value and an input (optional). RMW updates enable us to
support partial updates (e.g., updating a single field in the value) as
well as mergeable incremental aggregates such as sum and count.

FASTER supports data larger than memory. When the data fits in
memory, it can process 100s of millions of ops/sec. Fig. 1 shows
throughput for the YCSB-A workload with RMW operations, us-
ing a Zipf key distribution with 8-byte keys and payloads, as com-
pared to pure in-memory systems and key-value stores capable of
handling larger data (see our paper [4] for details). FASTER scales
well, and outperforms systems in both categories. Retaining high
performance while supporting data larger than memory required
a careful design and architecture. We propose to demonstrate the
FASTER system and several of its novel features:
• FASTER uses a new epoch-based synchronization framework that

facilitates lazy propagation of global changes to all threads via
trigger actions. We will highlight the use of this framework to
simplify the design of several system components.
• FASTER uses a new hash index design that is concurrent, latch-

free, resizable, and cache-friendly. It can work with a variety
of memory allocators for storing records, including in-memory
allocators for operating in a pure in-memory setting, and log-
structured memory allocators [12, 8] for handling data larger
than memory.
• Log-structured allocators are based on the read-copy-update strat-

egy, in which updates to a record are made on a new copy on
the log. We find that such a design severely limits throughput
and scalability in FASTER. As noted earlier, in-place updates are
critical for reaching our target performance. Instead, FASTER
uses HybridLog: a new hybrid log that seamlessly combines
in-place updates with a traditional append-only log. The hybrid
log organization allows FASTER to perform in-place updates of
“hot” records and use read-copy-updates for colder records. Fur-
ther, it acts as an efficient cache by shaping what resides in mem-
ory without any per-record or per-page statistics. Maintaining
HybridLog concurrently and efficiently required us to solve
novel technical challenges.

• FASTER supports durability, and can recover to a recent consis-
tent point after failure. Recovery in FASTER is based on fuzzy
index snapshots and periodic consistent points on HybridLog.
Implemented as a high-level-language component in C# using

dynamic code generation, FASTER is easy to integrate and use in
an application, and avoids the overhead of the typical socket-based
interfaces of systems such as Redis and Memcached. We have also
ported FASTER to C++ for use in other scenarios. FASTER blurs
the line between traditional key-value stores and update-only “state
stores” used in streaming systems (e.g., the Spark State Store [2]).

In this paper, we overview the system and describe our demon-
stration, and refer readers to our research paper [4] for the technical
details. In particular, our demonstration focuses on: (1) the ease
with which cloud applications and state stores can deeply integrate
state management into their high-level language logic at low over-
head; and (2) our innovative system design and the resulting high
performance, adaptability to varying memory capacities, durability,
and natural caching properties of our system.

2. SYSTEM OVERVIEW
Fig. 2 shows the overall architecture of FASTER. Threads per-

form operations on FASTER using epoch protection (Sec. 3.1) to
manage concurrency. FASTER consists of a hash index that holds
pointers to key-value records and a record allocator that allocates
and manages individual records. The index (Sec. 3.2) provides effi-
cient hash-based access to hash buckets, which are cache-line-sized
arrays of hash bucket entries. Each entry includes some metadata
and an address provided by a record allocator. The record allocator
stores and manages individual records. Hash collisions that are not
resolved at the index level are handled by organizing records as a
linked-list. Each record consists of a record header, key, and value,
and points to the previous record in the linked-list. While FASTER
can work with standard in-memory and log-structured allocators,
we propose the HybridLog allocator (Sec. 3.3) that combines
log-structuring with in-place updates to handle larger-than-memory
data without losing performance when the hot data fits in memory.

User Interface
In addition to the standard get-put interface supported by key-
value stores, FASTER supports advanced user-defined updates. We
use dynamic code generation to integrate the update logic provided
as user-defined delegates during compile time into the store, re-
sulting in a highly efficient store with native support for advanced
updates. The generated FASTER run-time interface consists of the
following operations:
• Read: Read the value corresponding to a key.
• Upsert: Blindly replace the value corresponding to a key with

a new value. Insert as new, if the key does not exist.
• RMW: Update the value of a key based on the existing value and

an input (optional) using the update logic provided by the user
during compile-time. We call this a Read-Modify-Write (RMW)



operation. The user also provides an initial value for the update,
which is used when a key does not exist in the store.
• Delete: Delete a key from the store.

3. MAJOR SYSTEM COMPONENTS
We next describe the three main components of FASTER: an

epoch protection framework that forms our threading model, our
concurrent in-memory hash index, and our HybridLog record al-
locator. Together, they form the core of the FASTER key-value store
that is the focus of our demonstration.

3.1 Epoch Protection Framework
FASTER threads perform operations independently with no syn-

chronization most of the time. At the same time, they need to agree
on a common mechanism to synchronize on shared system state.
To achieve these goals, we extend the idea of multi-threaded epoch
protection [7]. Briefly, the system has a global current epoch value
that is periodically incremented. Threads hold on to a particular
epoch to perform a set of operations. There is a global notion of a
safe epoch, such that no threads are active in that epoch or earlier.
While systems like the Bw-Tree [9] use epochs for specific pur-
poses such as garbage collection, we extend it to a generic frame-
work by adding the ability to associate callbacks, called trigger
actions, when an epoch becomes safe.

Epochs with trigger actions can be used to simplify lazy synchro-
nization in parallel systems. Consider a canonical example, where
a function active-now must be invoked when a shared variable
status is updated to active. A thread updates status to
active atomically and bumps the epoch with active-now as
the trigger action for the current epoch. Not all threads will observe
this change in status immediately. However, all of them are
guaranteed to have observed it when they refresh their epochs (due
to sequential memory consistency using memory fences). Thus,
active-now will be invoked only after all threads see the sta-
tus to be active and hence is safe. We use the epoch framework
in FASTER to coordinate system operations such as memory-safe
garbage collection, index resizing, circular buffer maintenance, page
flushing, shared log page boundary maintenance, and checkpoint-
ing for recovery. This allows us to provide FASTER threads with
unrestricted latch-free access to shared memory locations in short
bursts for user operations such as reads and updates.

3.2 Hash Index
The FASTER index is a cache-aligned array of 2k hash buckets.

Each hash bucket consists of seven 8-byte hash bucket entries and
one 8-byte entry that serves as an overflow bucket pointer. The 8-
byte entries allow us to operate latch-free using compare-and-swap
operations. Each entry consists of a 48-bit address (provided by
the record allocator) and a 15-bit tag, which is used to increase our
effective hashing resolution to k+15 bits. Note that the index does
not store keys; this keeps the index small and allows us to retain it
entirely in main memory. Keys whose hash values map to the same
array offset and tag are organized as a reverse linked-list pointed to
by the index entry.

Reads and deletes are straightforward latch-free operations, but
inserts into the index are trickier to carry out in a latch-free manner
while preserving the invariant of exactly on index entry per bucket
and tag. We use a two-phase protocol along with a tentative bit
to solve the problem. The index also supports resizing on-the-fly:
we use our epoch framework with a sequence of phases to achieve
latch-free resizing without blocking, while retaining performance
in the common case where the index size is stable. Our paper [4]
covers the details on our solutions to these challenges.
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Figure 3: Logical address space in HybridLog.

3.3 Hybrid Log Allocator
Log-structured allocators are commonly used for organizing data

that spills to secondary storage, but we find that such an alloca-
tor is unable to scale beyond a few million operations per second,
due to the overhead of read-copy-update and the pressure on the
tail of the log. We address this challenge using HybridLog, a
novel data structure that combines in-place updates (in memory)
and log-structured organization (on disk), while providing latch-
free concurrent access to records. HybridLog spans memory and
secondary storage, where the in-memory portion acts as a cache for
hot records and adapts to a changing hot set.

We first define a global logical address space that spans main
memory and secondary storage. The logical address space is di-
vided into three contiguous regions: (1) stable region (2) read-only
region and (3) mutable region as shown in Fig. 3. The stable region
is the part of logical address space that is on secondary storage.
The in-memory portion is composed of read-only and mutable re-
gions. Records in the mutable region can be modified in-place,
while records in the read-only region cannot. We use read-copy-
update to modify a record in the read-only region: a new copy is
created at the tail (in the mutable region) and then updated. Fur-
ther updates to such a record are performed in-place, as long as
it stays in the mutable region. This organization provides good
caching shaping behavior without requiring fine-grained statistics,
as the read-only region provides a second chance for hot records to
go back to the tail before they are evicted.

The regions of HybridLog are demarcated using three offsets
maintained by the system: (1) the head offset, which tracks the
lowest logical address that is available in memory; (2) the read-
only offset, which tracks the boundary between the read-only and
mutable regions in memory; and (3) the tail offset, which points to
the next free address at the tail of the log.

Threads use an atomic fetch-and-add operation on the tail off-
set for new allocations. Since updates and reads are very frequent,
locking the head and read-only offsets to determine how to process
these operations would cause severe performance degradation. In-
stead, we leverage epoch protection and let threads use a cached
value of these offsets, updated at epoch boundaries. Thus, each
thread has its own view of HybridLog regions, that may diverge
from the true system view. This divergence leads to subtle con-
currency issues. For example, consider two threads issuing RMW
operations. The first thread may consider a logical address to be in
the read-only region and therefore copy it to the tail. In parallel,
the second thread may view the same address to be in the mutable
region, and update it in place, leading to a lost update by the sec-
ond thread. We identify this case by defining a safe read-only offset
that is guaranteed to have been seen by all threads. Updates in the
fuzzy region between the safe and true read-only offsets are handled
carefully by delaying the update until it is safe to perform. Our pa-
per [4] has the details on these and other concurrency challenges.

4. DEMONSTRATION WALKTHROUGH
We structure the demonstration of the C# version of FASTER in

four parts. The C++ version of FASTER will also be made available
at the demo, for interested audience members.



(a) Compile-time callback definitions. (b) Run-time interface and use. (c) Run-time performance dashboard.

Figure 4: Screenshots of aspects of the system that will be demonstrated to visitors.

4.1 Compile-Time Definitions
We will first demonstrate the FASTER compile-time interface,

depicted in Fig. 4a, which accepts user-defined read and update
logic in the form of side-effect-free callback functions. Users can
either choose to let the system handle record-level concurrency, or
provide advanced logic for single- and multi-threaded access. For
instance, when used as a partitioned state store, users can avoid any
synchronization when accessing and updating records.

4.2 Run-Time Interface
Next, we will demonstrate the run-time interface, depicted in

Fig. 4b, and summarized below. This interface is dynamically code-
generated for an application, for the specified read and update logic
and the data-types for keys and values.
Status Read(Key*, Input*, Output*, Context*, long);
Status Upsert(Key*, Value*, Context*, long);
Status RMW(Key*, Input*, Context*, long);
Status Delete(Key*, Context*, long);

All calls include a long argument for a sequence number used
in recovery. For a read, the user provides an input that is used by
the read callback function, to read the appropriate field into the
output. With RMW, the input is used along with the old value, by
the update callback function, to compute the new value. Contexts
are used when operations go asynchronous, e.g., due to I/O. The use
of this interface will be demonstrated in two settings: (1) as a key-
value store used in a stand-alone cloud application that manages
per-device state; and (2) as the state store of an aggregation operator
in a streaming dataflow pipeline.

4.3 Run-Time Behavior and Performance
We will demonstrate the run-time behavior and performance (see

Fig. 4c) of FASTER using two workload scenarios.
1) Key-Value Store: We will run a benchmark YCSB workload
with varying percentage of reads, blind updates, and RMW opera-
tions. This benchmark will show how FASTER performs in terms of
throughput, storage read and write IOPS, and memory utilization.
We will cover two cases: (a) when data fits in memory; and (b) as
the memory budget is varied, as depicted in Fig. 4c.
2) Streaming State Store: We will demonstrate FASTER being used
as the state store for a streaming aggregate query (e.g., per-key
sum). The query operates over a key space that may exceed main
memory. The operator may generate its own output, or our log may
be flushed on demand as the query output.

4.4 Recovery
FASTER employs a low-overhead, non-blocking recovery solu-

tion. We will demonstrate the durability of FASTER by killing the
computation midway and restarting it, to show that FASTER can re-
cover quickly to a consistent point, and continue processing at high

throughput after a failure, using a recent index and log snapshot.
The key demonstration here is the light-weight persistence enabled
by FASTER as a high-level language component.

5. CONCLUSIONS
We demonstrate FASTER, a new concurrent key-value store for

managing application state. FASTER is based on a latch-free index
that works with HybridLog, a concurrent log that combines an in-
place updatable region with log-structuring, to optimize for the hot
set without any fine-grained caching statistics. FASTER achieves
better throughput – up to 160M operations per second on one ma-
chine – than systems deployed widely today, and outperforms in-
memory data structures when the workload fits in memory. Our
demonstration focuses on: (1) the ease with which cloud appli-
cations and state stores can integrate state management into their
high-level language logic; and (2) the innovative system design and
the resulting high performance, adaptability to varying memory ca-
pacities, durability, and caching properties of our system.
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