
SDPaxos: Building Efficient Semi-Decentralized Geo-replicated
State Machines

Hanyu Zhao
Peking University

zhaohanyu@pku.edu.cn

Quanlu Zhang
Microsoft Research

Quanlu.Zhang@microsoft.com

Zhi Yang∗
Peking University

yangzhi@pku.edu.cn

Ming Wu
Microsoft Research
miw@microsoft.com

Yafei Dai
Shenzhen Key Lab for Information
Centric Networking & Block Chain
Technology, School of Electronics and

Computer Engineering, Peking
University

dyf@pku.edu.cn

ABSTRACT
Existing state machine replication protocols are confronting two
major challenges in geo-replication: (1) limited performance caused
by load imbalance, and (2) severe performance degradation in het-
erogeneous environments or under high-contention workloads.
This paper presents a new semi-decentralized approach to address-
ing both the challenges at the same time. Our protocol, SDPaxos,
divides the task of a replication protocol into two parts: durably
replicating each command across replicas without global order, and
ordering all commands to enforce the consistency guarantee. We
decentralize the process of replicating commands, which accounts
for the largest proportion of load, to provide high performance. In
contrast, we centralize the process of ordering commands, which
is lightweight but needs a global view, for better performance sta-
bility against heterogeneity or contention. The key novelty lies in
that SDPaxos achieves the optimal one-round-trip latency under
realistic configurations, despite the two separated steps, replicating
and ordering, which are both based on Paxos. We also design a
recovery protocol to do rapid failover under failures, and a series of
optimizations to boost performance.We show via a prototype imple-
mentation the significant advantage of SDPaxos on both throughput
and latency, facing different environments and workloads.

CCS CONCEPTS
• Computer systems organization → Availability; Reliabil-
ity; • Software and its engineering → Distributed systems orga-
nizing principles;

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267837

KEYWORDS
State machine replication, Geo-replication, Heterogeneity, Con-
tention, Latency, Performance

ACM Reference Format:
Hanyu Zhao, Quanlu Zhang, Zhi Yang, Ming Wu, and Yafei Dai. 2018. SD-
Paxos: Building Efficient Semi-Decentralized Geo-replicated State Machines.
In Proceedings of SoCC ’18: ACM Symposium on Cloud Computing, Carlsbad,
CA, USA, October 11–13, 2018 (SoCC ’18), 14 pages.
https://doi.org/10.1145/3267809.3267837

1 INTRODUCTION
Today’s applications commonly use replication to tolerate server
failures and provide highly available services [12, 21]. The replica-
tion servers (i.e., the replicas) coordinate via state machine repli-
cation protocols like Paxos [26] to make sure they execute the
same sequence of commands requested by clients in the same order,
hence they can keep in a consistent state.

Meanwhile, the rapid growth of geo-distributed applications
[15, 20] has placed two critical demands on replication protocols:
high throughput and low (wide-area) latency. Traditional single-
leader protocols [27, 38, 39] employ a centralized leader to process
all client requests and propose commands (i.e., add commands into
the command sequence). This design seriously limits throughput
as the leader carries significantly higher load. Moreover, it brings
clients substantial latency penalty for sending requests to a remote
leader not co-located with the client. In the light of this limitation,
a multi-leader protocol would be preferred in geo-replication.

However, existing multi-leader protocols can exhibit poor per-
formance in some undesired but common cases. A typical approach
is rotating the leadership among replicas [34], but it makes the
system running at the speed of the slowest one (usually called the
straggler), which severely degrades performance in heterogeneous
environments. Heterogeneity is a fact of life in virtualized data cen-
ters such as Amazon EC2 [2], where uncontrollable performance
variations caused by co-location of VMs are very common [30, 45].
Heterogeneity also exists in private data centers due to factors
like multiple hardware generations, varying network conditions or
competition for resources [9, 16, 22, 42].

https://doi.org/10.1145/3267809.3267837
https://doi.org/10.1145/3267809.3267837


SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhao et al.

Another approach is dynamically designating leaders [35], by
assuming that most of the commands do not interfere, i.e., will
not result in inconsistent state even executed in different orders.
If commands interfere, it needs higher computational cost and
more round trips of wide-area communication to serialize them,
leading to low throughput and high latency. However, services
like E-commerce and social network can generate high-contention
workload, with many interfering commands on the same object
from multiple clients [5, 6, 11, 41]. This problem can be even worse
in the wide area: as requests take much longer time to finish, the
probability of contention also rises [37].

The root of the inefficiency of existing multi-leader protocols
lies in their purely decentralized coordination pattern. Although
this decentralization addresses the single-leader bottleneck as every
replica can propose commands, replicas still need to agree on a
total order on all commands proposed by different replicas to avoid
inconsistent state. We show that this process can bring significant
overhead without a global view under such decentralization, in
heterogeneous environment or under high contention (§2).

Based on this key insight, we propose SDPaxos, a semi-decentralized
protocol providing high performance, and strong performance sta-
bility against heterogeneity and contention simultaneously. Specif-
ically, we divide the functionality of a replication protocol into two
parts: one for durably replicating commands without deciding their
execution order, and the other for ordering these commands to gen-
erate an execution sequence. In SDPaxos, replicating is completely
decentralized where every replica can freely propose commands
and replicate them to other replicas, which evenly distributes the
load among replicas, and enables clients to always contact the near-
est one. Meanwhile, we employ one replica to handle ordering in
a centralized manner: this global view enables this replica to al-
ways order commands appropriately, which eliminates the penalty
introduced by heterogeneity and contention.

The idea of using a centralized node to order requests or mes-
sages in distributed systems is not original. However, SDPaxos
is novel as it is, to the best of our knowledge, the first work to
apply this pattern to multi-leader state machine replication both
correctly and efficiently. That is, SDPaxos not only handles repli-
cating and ordering both based on Paxos for correctness, but also
achieves the optimal one-round-trip latency under typical config-
urations tolerating one or two failures. SDPaxos realizes this by
efficiently overlapping replicating and ordering, and designing a
fault-tolerance approach that extends vanilla Paxos, to guarantee
consistency and linearizability.

In addition, we also fully optimize the centralized ordering to
achieve the best performance. We leverage the lightweight nature
of ordering, and further implement several performance optimiza-
tions for best load-balance. Moreover, we take advantage of the
centralized ordering to optimize read operations, in which repli-
cas can directly acquire the latest version of data with no Paxos
overhead.

We implemented a prototype of SDPaxos, and compared its per-
formance with typical single-leader (Multi-Paxos [27]) and multi-
leader (Mencius [34], EPaxos [35]) protocols. Our experiment re-
sults demonstrate that SDPaxos achieves: (1) 1.6× the throughput
of Mencius with a straggler, (2) stable performance under different
contention degrees and 1.7× the throughput of EPaxos even with a

low contention rate of 5%, (3) 6.1× the throughput of Multi-Paxos
without straggler or contention, (4) 4.6× the throughput of writes
when performing reads, and (5) up to 61% and 99% lower wide-area
latency of writes and reads than other protocols.

The key contributions of this paper are summarized as follows.

• We resolve the problem of degraded performance of replication
protocols under realistic and complex environments, e.g., het-
erogeneity and contention, by the semi-decentralization in state
machine replication.

• Wedesign SDPaxos, a protocol realizing the semi-decentralization
and achieving the one-round-trip latency under typical three/five-
replica settings. It efficiently overlaps replicating and ordering
with consistency and linearizability guaranteed. It also greatly
improves read performance with the semi-decentralized design.

• We build a prototype implementation of SDPaxos, conduct a
comprehensive evaluation and demonstrate its high performance.

2 BACKGROUND AND MOTIVATION
State machine replication is a general approach to implementing
fault-tolerant services [43]. The service is modeled as a stateful
system, and the state is changed by a sequence of commands. A
fundamental coordination problem is to ensure every non-faulty
replica executes the same sequence of commands in the same order—
then all replicas will always reach the same state, given an identical
initial state and deterministic service.

The command sequence is produced by a series of instances of
consensus, each of which decides a single command in the sequence.
An instance of the consensus problem requires a group of possibly
faulty processes to agree on a unique value (a command in this
context). Upon receiving a client request for a command, a replica
will try to have this command chosen in an unused instance, so as
to add it into the sequence.

Paxos is a widely-used algorithm to implement each of the con-
sensus instances above. Paxos defines three types of processes—
proposer, acceptor, and learner—to propose values, accept values and
learn the chosen values (commit the values), respectively. Paxos
has two phases. First, in the Prepare phase, a proposer asks a quo-
rum (typically containing a majority) of acceptors whether there is
any possibly chosen value. If so, it will have to propose that value;
otherwise it could propose a new value requested by client. Then
in the Accept phase, the proposer asks the acceptors to accept the
proposed value. The value is proposed with a ballot number ; an
acceptor will accept this value if the ballot is not lower than the
highest number the acceptor has ever seen. This rule guarantees
only the latest proposal can be accepted, even there are simultane-
ous ones. The acceptors will notify the learners upon accepting
a value. The learners commit the value when it has been chosen,
i.e., accepted by a quorum. We refer to a consensus instance im-
plemented by Paxos as a Paxos instance. We say all these instances
form a log, and each one is a log slot in the rest of this paper.

To finish the two phases in one round trip, Multi-Paxos [27]
designates one replica as the common proposer and learner of all
Paxos instances (usually called the leader). The leader can run the
Prepare phases for a large number of instances beforehand, after
which it can propose a command directly from the Accept phase.



SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

A

B C

A B C

Blocked Blocked

R0

R1

R2

(a) Static ordering

A B

C

A B C

Global 
dependency
Dependency

resolution

Conflict

(b) Dependency-based ordering

Figure 1: Two ordering approaches adopted by existing
multi-leader protocols. Each square is a consensus instance,
and the letter inside is the committed command. The arrows
between squares in (b) represent dependencies, e.g., A → C
means C should be executed after A.

However, this single leader takes significantly heavier load than
others, and inevitably becomes a performance bottleneck. Moreover,
in geo-replication, clients not co-located with the leader have to
send requests to the remote leader, which brings significantly higher
wide-area latency.

To address the single leader bottleneck, multi-leader protocols
permit every replica to propose commands. However, Paxos’s live-
ness property demands that there not be different replicas proposing
in the same instance simultaneously. Therefore, each replica should
commit commands in its own exclusive instance space, then we
need to order the instances committed by different replicas.

A basic ordering approach is static ordering, which statically par-
titions the global instance space among replicas in a pre-established
manner, e.g., round-robin. This approach can hardly adapt to the
difference and temporal variation of realtime speeds of replicas,
resulting in high sensitivity to stragglers. Specifically, a replica can
commit an instance only after it has committed all preceding in-
stances, to ensure linearizability of concurrent requests [19]. Thus,
if replicas open instances at different speeds, the front runners
cannot commit their instances until the stragglers catch up. For
example in Figure 1(a), there are holes in the global instance space
in the absence of R0’s and R1’s commits, so R1’s and R2’s subse-
quent commits have to be blocked. As a result, all replicas have to
run at the speed of the slowest one. Mencius [34], a representative
static-ordering protocol, tackles this problem by replicas skipping
their turns when they fall behind, however, it cannot fully eliminate
this slow-down [35] (also confirmed in our evaluation).

Another approach is dependency-based ordering. This approach
allows replicas to commit commands bypassing a common leader,
and dynamically order them meanwhile, by only partially ordering
interfering commands. This design minimizes the overhead of non-
interfering commands, which won’t lead to inconsistent system
state even executed in different orders. For interfering commands,
replicas need to coordinate to establish their dependency graph, to
decide the execution order. However, the problem is, replicas may
see different dependencies simultaneously, which we call conflicts,
as none of them can see all commands. As the case in Figure 1(b),
theremay be a replica seeing a dependency ofA→ C , while another
seeing B → C (the two dashed boxes). As a typical protocol using
dependency-based ordering, EPaxos [35] needs more round trips
and higher CPU consumption, to merge the conflicting commands

A C

R0

D E

B

A C

R1

D E

B

A C

R2

D E

B

R0 R1 R0 R2 R2

A B C D E

Ordering

Replicating

Figure 2: Separation of replicating and ordering.

into a global dependency (i.e., (A,B) → C). Consequently, con-
tention, which brings higher probability of conflicts, unavoidably
results in higher latency and lower throughput.

The inefficiency of both the ordering approaches lies in the
lack of global information: no replica can precisely know others’
status, i.e., how many commands they have committed or what
commands they are committing, when proposing a new command.
As a compromise, when ordering the commands, replicas have to
assume all replicas have the same speed, or all commands do not
interfere, while endure potential impact of straggler or conflict.

The observation above suggests the importance of a global view
in ordering commands. However, it is difficult to provide replicas
with a global view in multi-leader protocols, while keeping low
latency. For example, a similar design in CORFU [8], a distributed
log shared by multiple clients, lets a client first ask a centralized
sequencer for a position in the log, then write content to this posi-
tion. This first-ask-then-write pattern introduces at least two round
trips, which would be unsatisfactory in the wide area.

In summary, it’s important yet challenging to design a replication
protocol that can keep high performance in realistic, changing
environments. Next we will present the SDPaxos protocol, and
show how it addresses this challenge using the semi-decentralized
design.

3 SDPAXOS DESIGN
SDPaxos is designed to offer (1) minimized number of round trips
for low wide-area latency, (2) (near-)load balance across replicas
for high throughput, and (3) strong performance stability against
straggler and contention. We will first illustrate its intuition, then
elaborate the protocol design, to show how it achieves all these
goals.

3.1 Separating Ordering from Replicating
SDPaxos takes two steps to consistently add a command into the
log: (1) durably replicating a command across replicas without
global order, and (2) assigning this command to an ordered log slot.
We illustrate this process in Figure 2. Each replica uses a partially
ordered sequence of Paxos instances allocated to it to replicate
commands, i.e., R0’s A and C , R1’s B and R2’s D and E. Meanwhile,
we assign these commands to the global slots, by designating a
replica to each slot, and packing the commands replicated by each
replica to the slots belonging to it sequentially. As the case in
Figure 2, with R0,R1,R0,R2,R2 designated to the five global slots,
we eventually get a totally ordered log of A,B,C,D,E.



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhao et al.

Client Request

R0

R1

R2
(Sequencer)

R3

R4

Respond

C-instance

O-instance

Figure 3: Message flow of the basic protocol of SDPaxos.

We refer to the two steps as replicating and ordering respectively.
Separating the two steps as two independent processes enables us to
satisfy their different needs at the same time. Replicating is purely
decentralized where every replica can freely propose commands.
In contrast, to provide ordering with a global view, we employ one
specific replica, called the sequencer, to assign commands to global
slots in a centralized manner (this single sequencer is not necessary
for correctness).

This separation is the source of SDPaxos’s advantages over exist-
ing protocols. First, for replicating, the decentralization distributes
its load evenly across replicas, and allows clients to always contact
the nearest replica in geo-replication. Second, for ordering, the
global view of all commands enables the sequencer to order com-
mands optimally—that is, dynamically assign every newly-proposed
command to the first unused global slot (unlike Mencius which can
leave holes in the log then block fast replicas), and easily serial-
ize all commands without any conflict (unlike EPaxos which can
sacrifice performance to solve conflicts). Such an optimal order fun-
damentally eliminates the impact of straggler or contention. Finally,
this separation makes the best trade-off, as the load of ordering is
much lighter than that of replicating: the messages for ordering
and replicating respectively contain a replica ID and a command,
whose size can be several bits versus tens of bytes to KBs or even
larger [6]. In §4 we also provide techniques to fully optimize the
ordering and further lighten its load, to achieve load-balance even
when the commands are small.

For fault tolerance, both the processes of replicating and ordering
should be based on Paxos. Correspondingly, we define two types of
Paxos instance, the command instance (C-instance), and the order
instance (O-instance). Each replica proposes commands in a series
of C-instances of its own to produce its partial log. The sequencer
proposes replicas’ IDs in O-instances to produce an assignment log.
Based on the assignment log, all replicas’ partial logs are finally
merged into a global log.

Despite its intuitiveness and effectiveness, realizing this separa-
tion is nontrivial. An obvious problem is, how can we complete the
two steps in just one round trip? A Paxos instance typically requires
a single round trip to be committed; with two separated instances
for each command, a trivial protocol design can bring more round
trips, especially when all O-instances have a common proposer.
Below we show how the SDPaxos protocol efficiently coordinates
the two types of instance to solve this problem.

Client Request

R0

R1

R2
(Sequencer)

R3

R4

Respond

C-instance

O-instance

Figure 4: Message flow of the complete version of SDPaxos
for five replicas. If the C-accept is not sent to the sequencer
(R2), there will be a C-request to it.

3.2 The SDPaxos Protocol
We first use a simple example in Figure 3 to illustrate how to com-
mit a command using C-instance and O-instance. When receiving
a client request for a command, replica R0 becomes the command
leader of this command, picks one of its own C-instance and repli-
cates the command to others (using the C-accept, i.e., Accept phase
message of the C-instance). In the meantime, this C-accept also
informs the sequencer (R2) to start an O-instance for this command.
Then R2 proposes R0’s ID in the next (e.g., the jth) O-instance and
sends O-accepts to others, to assign this command to the jth global
slot. Replicas will then accept these instances and send C-ACKs
and O-ACKs to R0 (R0 acts as the learner of both the instances); R2
also sends an O-ACK as it has sent an O-accept to itself. Finally,
the two instances are committed after C-ACKs and O-ACKs from a
majority are received. R0 will broadcast C-commit and O-commit
to let others commit these instances.

This is the basic version of SDPaxos which realizes the separation
of replicating and ordering using the two types of Paxos instances.
It overlaps the two parts by triggering the O-instance with the
C-instance message (i.e., the C-accept) sent to the sequencer. This
design needs 1.5 round trips to commit a command: since the O-
instance starts half a round trip later than the C-instance (if the
command leader is not the sequencer), and the O-instance requires
one round trip to be committed by Paxos, the overall latency is 1.5
round trips. Below we will present the complete SDPaxos protocol,
and show how it further achieves the one-round-trip latency under
realistic configurations.

The complete protocol. SDPaxos assumes an asynchronous and
unordered communication model and tolerates F non-Byzantine
failures given a total of N = 2F + 1 replicas, which is the strongest
guarantee for distributed consensus [18].

Figure 5 shows the pseudocode of SDPaxos without failures. We
assume the Prepare phases have been done beforehand. We denote
the ith C-instance of Rn as Cni , and the jth O-instance as O j . If
replica Rn ’s ID is proposed in O j , then we say O j is an O-instance
for Rn . Note that we introduce a message type not mentioned in
the example above, C-request (line 5). Because replicas can send
C-accepts (containing commands) to only a majority to reduce
messages, a lightweight C-request can be used to trigger the O-
instance, if the C-accept is not sent to the sequencer.



SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

1 C-phase
2 Replica Rn on receiving a client request for command α :
3 send C-accept(n, i , α , bali ) to at least a majority
4 if the C-accept is not sent to the sequencer then
5 send C-request(n, i) to the sequencer

6 increment the C-instance counter i
7 Any replica R on accepting C-accept(n, i , α , bali ):
8 send C-ACK(n, i , α , bali ) to Rn
9 Rn on receiving C-ACKs from a majority of replicas:

10 commit Cni and broadcast C-commit(n, i , α , bali )

11 O-phase
12 Sequencer Rm on receiving C-accept(n, i , α , bali ) or C-request(n,

i) from Rn :
13 if i ≥ number of O-instances for Rn in sequencer’s assignment log

then
14 send O-accept(j , n, balj ) to at least a majority including Rn
15 increment the O-instance counter j

16 Any replica R on accepting O-accept(j , n, balj ):
17 send O-ACK(j , n, balj ) to Rn

18 Ready condition for three or more than five replicas
19 if Rn receives O-ACKs from a majority of replicas then
20 commit O j and broadcast O-commit(j , n, balj )

21 if Rn has committed Cni and at least i O-instances for Rn then
22 respond to client

23 Ready condition for five replicas
24 if Rn is the sequencer then
25 commit O j and broadcast O-commit(j , n, balj ) on receiving

O-ACKs from a majority of replicas
26 if Rn has committed Cni ∧ any Ok with k ≤ j (O j is the i th

O-instance for Rn ) is accepted by a majority then
27 respond to client

28 else
29 commit O j and broadcast O-commit(j , n, balj ) on receiving

the O-accept from the sequencer
30 if Rn has committed Cni ∧ any Ok with k ≤ j (O j is the i th

O-instance for Rn ) is accepted by itself and the sequencer then
31 respond to client

Figure 5: Pseudocode of SDPaxos in the absence of fail-
ures. Replicas accept a C-accept or O-accept if the ballot
number (bal) is not lower than the highest number it has
ever seen in the instance.

We say a command is ready 1 when the command leader can
safely respond to a client. A command being ready requires the
C-instance and enough number (defined below) of O-instances be
committed. The conditions of an instance being committed and a
command being ready are elaborately defined to reduce latency
without breaking correctness guarantee (lines 18 to 31).

In SDPaxos, C-instances are committed strictly through Paxos
after being accepted by a majority (line 9), which needs a single
1 We do not use the term “commit a command” in the description of SDPaxos to avoid
confusion with “commit an instance”.

R0 R2

R3

R4

R0 R1 R2 R3 R4

R2

R3

R4

The reconstruted 
assignment log

Assignment logs of
the alive replicas

R0 R1 R2 R3 R4

R0 R1

R0
(Sequencer)

R1

Assignment logs of
the failed replicas

Figure 6: Recovery of O-instances for five replicas. R0 (the
old sequencer) and R1 failed. O-instances for R0 have been
seen by amajority (R0, R1, R2); those for R2, R3 and R4 are seen
by themselves. So we retry for R1 in the hole, i.e., the second
O-instance. Note that this is just an intuitive schematic dia-
gram; the real commit condition is stricter than this case.

round trip. Since the O-instance starts half a round trip later than the
C-instance for non-sequencer replicas, we optimize the O-instance
to just half a round trip to achieve the final one-round-trip latency.
The resulting message flow is shown in Figure 4.

Reducing latencyunder realistic conditions. In practice, replica
groups tolerating one or two failures (i.e., N ≤ 5) are the most
commonly used configurations [12, 15], because more replicas in-
evitably induce much higher consensus overhead. These realistic
conditions offer us an opportunity to optimize SDPaxos to achieve
the one-round-trip latency. (EPaxos also needs this assumption to
offer optimal wide-area latency [35].)

As shown in lines 18 to 22, with three (or more than five) replicas,
O-instances are also committed after being accepted by a majority.
A command (e.g., the ith one of a replica) will be ready after at
least i O-instances for this command leader are committed. In three-
replica groups, the latency is just a single round trip: as the assigned
command leader is the learner of anO-instance, the command leader
can commit the O-instance immediately when receiving the O-ACK
from the sequencer (the command leader and the sequencer have
constituted a majority). This reduces the latency of an O-instance
(for a non-sequencer replica) to just half a round trip, leading to
one-round overall latency. In groups with more than five replicas,
the O-instances still need one round trip, thus the overall latency
is 1.5 round trips.

In five-replica groups, a command can also be ready in one
round trip. Unlike the case of three replicas, an O-instance cannot
be accepted by a majority in half a round trip. Instead, we let each
non-sequencer replica commit an O-instance, upon receiving the
O-accept from the sequencer (line 29). Here, the O-instance does
not rigorously follow Paxos, which raises another problem: if this
non-sequencer replica and the sequencer fail, we cannot recover
this O-instance simply by Paxos because the other alive replicas
may have not seen the O-accept yet. For example in Figure 6, the
second O-instance is committed by R1, but it has not been seen by
R2, R3 and R4.

SDPaxos can correctly recover the O-instances of all replicas’
ready commands even in such cases. Figure 6 depicts the intuition
of our design. The opportunity is that, we do not need to reduce



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhao et al.

the latency of O-instances for the sequencer to half a round trip,
because the C-instance and O-instance of the sequencer can start at
the same time, without the extra latency to trigger the O-instance.
In five-replica groups, O-instances for the sequencer are committed
after being accepted by a majority, rather than by only two replicas,
which guarantees any committed O-instance for the sequencer
must have been seen by at least one non-faulty replica (R2 in the
figure). Moreover, the three non-faulty replicas have seen the O-
instances for themselves. Therefore, the new sequencer can trace
the committed O-instances for these four replicas, i.e., R0, R2, R3, R4
in the figure; but there is still one replica left (R1). Themagic we play
here is to infer the O-instances for this replica: as we have traced
the O-instances of four replicas, the left empty O-instances must
belong to the fifth replica. In Figure 6, we retry for R1 in the second
O-instance, then all O-instances are correctly recovered. In §3.3
we will show how we leverage this intuition to ensure correctness
under failures.

In five-replica groups, a command is ready after all preceding
O-instances have been accepted by the command leader (by a ma-
jority for the sequencer) (lines 24 to 31). Making all preceding
O-instances accepted by the command leader is to avoid putting
unready commands before ready ones during recovery (§3.3). This
restriction won’t increase latency as the sequencer can piggyback
the O-accepts that the command leader has not seen on the latest
O-accept sent to it. Similarly, O-ACKs that the sequencer has not
seen are piggybacked on the O-ACK sent to it.

Finally, the command in proposed in C-instance Cni will be exe-
cuted in the jth slot by a replica after the C-instance and O-instance
O j are committed, and all preceding commands are executed—O j
is the ith O-instance for Rn in the assignment log.

We have presented the mainbody of SDPaxos, and demonstrated
how we achieve one-round-trip latency under typical settings. Next
we will describe the accompanying recover approach for service
availability under failures.

3.3 Fault Tolerance and Recovery
We design the recovery approach of SDPaxos for full correctness
guarantee under failures. Whenever a replica, say, Rn , is suspected
to have failed, another replica will initiate the recovery process.
The replica will try to recover the C-instances of Rn , and also the
O-instances if Rn was the sequencer. By default, we let Rn+1 handle
recovery for Rn (note that this is only an implementation choice,
and is not necessary for correctness). We will describe the protocols
for recovering C-instances and O-instances respectively.

Recovery of C-instances. As C-instances rigorously execute
Paxos, after any replica fails, another can recover all of its commit-
ted C-instances simply by executing the Prepare phase for them. In
each C-instance inwhich no command is traced, a special no-op com-
mand, which keeps the state unchanged, will be proposed. There-
fore, even if a C-instance fails but the corresponding O-instance
succeeds, all replicas will still execute the same command in this
slot (either the previously proposed one, or a no-op), and will not
go into inconsistent state or be blocked.

Recovery of O-instances. When the sequencer fails, we need
to reelect a new one; then the new sequencer must recover the O-
instances to reconstruct the assignment log. We use a view-based
approach to ensure correct recovery of O-instances. Each replica
stores a view number to identify which view it thinks it is in. Every
message is sent with the sender’s view number, and considered
valid only if its number is not smaller than the recipient’s.

SDPaxos performs a view change to elect a new sequencer. To
start a view change, a replica increments its view number, sends
V-request messages to others, and becomes a candidate. V-request
also contains Prepare messages of all O-instances (O-prepare(j , bal))
to trace them. On receiving a V-request with a larger view number
than its own, a replica increments its view number to that one,
and sends a vote to the candidate. The vote also piggybacks the
replies to O-prepares, which helps the new sequencer reconstruct
the assignment log according to Paxos: for each O-instance, the
sequencer picks the value with the highest ballot number among
the replies toO-prepares in the votes. Note that replicas only process
messages for view change during this period. On receiving votes
from a majority, the candidate is elected as the new sequencer, and
sends notifications to others.

To ensure linearizability, the new sequencer cannot insert a
newly-received command to a slot preceding a ready one [19].
With three or more than five replicas, this can be ensured simply
by filling in the “hole”s in the assignment log with no-cl 2 (line 37
in Figure 7)—replicas execute a no-op when encountering a no-cl.
We can safely propose no-cl in the holes because these O-instances
have not be committed (otherwise at least alive replica will see it).

For five replicas, the “hole”s may be previously allocated to
replica Rm and committed (Rm is the replica other than the old
sequencer and the alive replicas who vote for the new sequencer).
So we need to retry for Rm in these O-instances, until there are
as many O-instances for it as its ready commands. We let each
voter replica report in its vote the largest-numbered C-instance
of each replica it has accepted, then the new sequencer takes the
maximum for Rm (C[m] in Figure 7). C[m] implies the maximum
number of Rm ’s possibly ready commands, because the C-instance
of any ready command of Rm must have been seen by one of the
voters. Therefore, the sequencer should propose Rm ’s ID in the
empty O-instances until there are at least C[m] O-instances for Rm
(lines 32 to 36). Although the procedure above implicitly assumes
Rm also failed (because we need to tolerate two arbitrary failures),
it works correctly even if Rm is still alive. A corner case is that,
Rm commits an O-instance (e.g., O j ) for it, but the corresponding
C-instance (e.g., Cmi ) is not committed, then the new sequencer
will propose no-cl if it does not see any value in both O j and Cmi .
This case won’t violate consistency or linearizability, because the
command inCmi must have not been executed or ready (Rm will only
be blocked at this slot). We allow Rm to accept the no-cl proposed
by the new sequencer with a higher ballot number even if O j has
been marked as committed by it, so that it can make progress.

Note that in five-replica groups, the new sequencer should make
sure all O-instances have been accepted by a majority in a view
change. After all of these complete, the new sequencer sets the

2“cl” is the abbreviation of “command leader”.



SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Input: C[m]: number of C-instances of Rm accepted by the
majority voters; O [m]: number of O-instances for Rm (Rm
is the replica other than the old sequencer and the majority
voters in five-replica groups)

32 if N == 5 then
33 repeat
34 propose Rm ’s ID in the first empty O-instance
35 O [m] ← O [m] + 1
36 until O [m] ≥ C[m] ∧ there is no empty O-instance preceding

the C[m]th one for Rm

37 foreach empty O-instance between non-empty ones do
38 propose no-cl

Figure 7: Recovery of O-instances.

O-instance counter to the first empty one in its assignment log, and
starts to serve new requests.

3.4 Correctness
SDPaxos guarantees consistency and linearizability of command
execution. Here we give a sketched proof, mainly to intuitively
explain why SDPaxos is correct. A formal proof can be found in
the extended version of this paper [3].

Consistency At most one command can be executed by different
replicas in the same slot of the global log.
Proof sketch. In SDPaxos, C-instances are committed rigorously
through Paxos, which ensures that every C-instance can choose at
most one command. Since commands in all C-instances are merged
into the global log according to the assignment log, it suffices to
show there can be at most one command leader in each O-instance
in the assignment log.
(i) For three or more than five replicas, O-instances are also com-
mitted through Paxos, so there can be at most one command leader
chosen in each O-instance.
(ii) For five replicas, we focus the proof on the case of view change
(without sequencer failures, consistency trivially holds as all O-
instances will be replicated to all replicas). Specifically, we prove
that if some replica R has executed the command in Cni , then the
corresponding and all preceding O-instances can be recovered in
a view change (thus the command leader chosen in all these O-
instances won’t be changed). Because the last sequencer has made
all O-instances accepted by a majority in the last view change, we
only need to focus on those proposed in the last view.

1) If R is one of the majority voters, then all the O-instances to
recover can be traced in R’s vote. 2) If R is the old sequencer, then
all the O-instances to recover can be traced in the votes from the
majority voters, as each of these O-instances has been accepted
by at least one of them. 3) Otherwise, all these O-instances except
those for R can be traced in the votes from the majority voters.
Therefore, all the holes in the assignment log must be previously
allocated to Rn . After filling in the holes with Rn , all O-instances
preceding the one of the command in Cni can be recovered.

Linearizability If α and β are commands on the same object, and
the request for β arrives at the system after α is ready, then α will be
executed before β .
Proof sketch. Assume α is proposed in C-instanceCni of Rn , while β
is proposed in C-instanceCmj of Rm . When the sequencer proposes
Rn ’s ID in the ith O-instance for Rn , there must be less than j O-
instances for Rm in all preceding ones, because the request for the
jth command of Rm (i.e., β) has not arrived at the system yet. Now
we prove that after α is ready, all O-instances preceding the ith one
for Rn in the sequencer’s assignment log are always non-empty.

If the sequencer never fails, then this property hold trivially as
no O-instances can be lost. Then we prove that this property still
holds after a view change.
(i)With three ormore than five replicas, the ready condition ensures
the new sequencer can trace at least i O-instances for Rn , with all
holes filled in with no-cl.
(ii) With five replicas, if Rn is one of the three voters or the old
sequencer, the new sequencer can also trace at least i O-instances
for Rm with no preceding hole. Otherwise, the new sequencer knows
the number of Rn ’s ready commands is no more than C[n]. After
the sequencer proposes Rn ’s ID in the empty O-instances until
C[n] ≤ O[n], there will be no hole preceding the ith O-instance for
Rn .

By (i) and (ii), a sequencer can never assign β to a slot preceding
the ith one allocated to Rn , because these O-instances are all non-
empty.

3.5 Optimization for Reads
Besides the protocol presented above, SDPaxos also provides an
optimization for operations like reads in storage systems, which
only access, but do not change the system state. For such operations,
it’s unnecessary to add them into the log via Paxos; all we need
is to ensure the freshness of the read data. Fortunately, we can
easily know when to read through the sequencer as it can see all
the updates on the object to be read.

A read R on an object O must be aware of all the updates on O
which are ready before the request of R is received. We denote the
most recent one of those updates asW , and the sequence number
ofW in the global log as iE . Here iE implies the earliest safe-to-read
time. While it’s relatively difficult to trace iE precisely, we can opt
for a possibly higher number. We denote the sequence number of
the last allocated slot as iG , the last slot allocated to an update on
O as iA, when the sequencer receives the request for read from a
replica. In fact iG is equal to the value of the O-instance counter
minus one. Since every committed update must have been seen by
the sequencer, we always have iG ≥ iA ≥ iE . Figure 8 illustrates
the temporal relationship of iG , iA and iE .

A replica sends R-request(O) to the sequencer to read O . It’s safe
enough for the sequencer to return iG or iA. While iA would be
better because it eliminates the redundant latency waiting for the
execution of irrelevant commands. To enforce this optimization, the
sequencer can maintain a mapping called history table in memory
from each object to the corresponding iA. Replicas should also ap-
pend the name of the object to update to the C-requests. Whenever
the sequencer allocates a slot for an update on O , it modifies the
value of O in the history table to the number of that slot. When



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhao et al.

W(O) …… … …W(O) W(O*)
Log of

Commands

Ready commands

iE iA iG

Safe-to-read range

Figure 8: Temporal relationship of iE , iA and iG . The num-
ber iE points to the last update (write) on objectO among all
ready commands. A read on O can be safely performed af-
ter iE . While iA is the last sequence number allocated to an
update on O (this command can have not be ready yet), and
iG is the last number allocated to any command (possibly
on other objects, e.g., O∗ in the figure). Note that the three
numbers are not necessarily inequal.

the history table is unavailable, e.g., a new sequencer has been just
elected, iG is also acceptable.

Sequencer lease. We use sequencer lease, which is similar to
“master lease” in some Multi-Paxos systems [13], to authorize the
sequencer to directly reply to R-requests. This is to avoid the case
where an old sequencer unaware of a new one replies a stale number.
A replica grants a lease to the sequencer making a promise that it
will never vote for other replicas in a view change before the lease
expires. As long as the sequencer holds unexpired leases granted
by a majority of replicas, it can serve reads as previously described.
Sequencer lease guarantees safety because it prevents any other
replica from being elected as a new sequencer. Thus, there will
never be an iE larger than the iA that the current sequencer knows.

Cost of reads. This optimization enables the sequencer to serve
reads locally. Non-sequencer replicas handle reads with only two
messages, while committing a read through Paxos needs at least
2(Q − 1) + (N − 1) = (2Q + N − 3) (2 for accept and 1 for commit)
messages with a quorum size ofQ . Although reads are handled in a
centralized way, the sequencer still processes fewer messages for each
read than in Paxos-based protocols. If the total number of objects is
very large, we can apply this optimization only for some hot items.
If the sequencer is carrying high load, we can also deactivate this
optimization, as it needs to maintain the history table. Reads in
SDPaxos significantly outperform Paxos-based protocols, which is
confirmed in our evaluation.

4 IMPLEMENTATION AND OPTIMIZATIONS
We implemented SDPaxos on basis of an existing Go implementa-
tion of Multi-Paxos, Mencius and EPaxos, shared by the author of
EPaxos [1]. We use these protocols to replicate an in-memory key-
value store. Specifically, clients can issue read or write requests to
the servers, then the server receiving a request will run the protocol
to commit the command (for reads, SDPaxos uses the optimization
rather than commit them). Then all servers will execute all the
committed commands. The codes of all these protocols are built
within a common framework, whichminimizes the implementation-
related performance difference. Belowwe describe our performance
optimizations in this prototype implementation:

Message merging. This optimization is to reduce the number of
packets to send and receive between replicas. We merge the mes-
sages of C-instances and O-instances by lazy-sending O-instance
messages: we first write messages into a buffer, and flush the buffer
only when sending C-instance messages (and O-accepts to the as-
signed command leaders) by default. This condition can also be
adjusted according to demand.

Multi-threading. This optimization is to exploit parallelism
in processing the messages of the two types of instances. As the
metadata of C-instances and O-instances are completely separated,
we set two threads to process their messages in parallel, so that
they have little impact on each other. We also set another thread
dedicated to sending messages, so as to overlap message sending
and processing. The optimizations above and the lightweight nature
of O-instance messages together minimize the overhead of the
centralized ordering. Note that in the original implementation of
other protocols, all messages are sent and processed within a single
thread. For fairness, we also add the thread for sending messages
into all other protocols.

Straggler detection. We deploy a straggler detection to prevent
SDPaxos from being impacted by a straggler sequencer. If a se-
quencer is slow, we can replace it with a view change to get out of
the dilemma. Other purely decentralized protocols can hardly bene-
fit from such a detection, because the replicas are totally equivalent
and there is nothing to migrate between them.

We implement a low-cost on-demand detection, in which repli-
cas estimate the sequencer’s healthiness according to whether the
sequencer can satisfy their requirements for ordering. Specifically,
each replica counts the number of O-accepts for itself received from
the sequencer every 500 ms. If the throughput is less than 50%
of its requirement for at least 3 times, it considers the sequencer
as a straggler. Then it asks others whether they make the same
judgment, and if so, it will start a view change to replace the old
sequencer. To reduce the probability of misjudgment caused by
high load, we also limit the frequency of view change triggered by
the detection.

Thrifty messaging. In all protocols except Mencius, each replica
only sends the Accept phase messages to a quorum including itself,
rather than all replicas. The O-accept for a non-sequencer replica in
SDPaxos is only sent to the command leader. These messages will
be aggressively resent to other replicas, in case of failure or message
loss. This optimization cannot be applied to Mencius, because it
needs replies from all replicas to enforce the “skip” mechanism to
mitigate the impact of stragglers.

There are still many implementation-level optimization choices
for SDPaxos. Belowwe explore several possible optimizations around
the centralized ordering design:

Sequencer division. We can divide the responsibility of sequencer
to all replicas for complete load balance. For example, in a key-value
store, we can partition the key space using approaches like consis-
tent hashing [24], then make each replica order the commands on
one partition (commands on different keys can be out-of-order).

Dedicated sequencer. In realistic environment, we can use an-
other machine dedicated to playing the role of sequencer, which



SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

16 B 1 KB
0

20K

40K

60K

80K

100K

Th
ro

ug
hp

ut
 (r

eq
s /

 s)

67.2% 1.2%

47.7%

55.6%

21.7%

33.6%

28.2%

38.8%

20.0%

32.5%

Writes
Multi-Paxos
Mencius
EPaxos

SDPaxos-S
SDPaxos-N

16 B 1 KB
0

100K

200K

300K

400K

500K

64.9%

55.7%

5.5%

34.8%

Reads
SDPaxos-S
SDPaxos-N

(a) Throughput and reduction percentage without straggler detection.

0 2 4 6 8 10 12 14 16 18 20 22
Time (s)

0

20K

40K

60K

80K

100K

120K

140K

Th
ro

ug
hp

ut
 (r

eq
s /

 s)

Sequencer becomes
 straggler

Straggler detected

Delayed commits

(b) Throughput of SDPaxos after a slow sequencer is
detected.

Figure 9: Throughput with a straggler. In (a), the percentage above each bar shows the throughput reduction proportion caused
by the straggler. “SDPaxos-S” and “-N” stand for SDPaxoswith a sequencer and a non-sequencer straggler respectively.We only
show SDPaxos for reads since the read throughput is equal to that of writes for other protocols. In (b), the two dashed lines
indicate the average throughput with a sequencer and a non-sequencer straggler respectively.

can fully eliminate the load imbalance of ordering. This machine
and N − 1 replicas can constitute a Paxos group for O-instances for
one replica.

O-instance batching. Another simple yet effective optimization
is batching: a replica’s n commands can be batched in one global
slot, so the number of O-instances will be divided by n. Even a
small value of n like 2 or 3 can significantly reduce the load of
O-instances.

5 EVALUATION

Experimental setup. We evaluate SDPaxos, Multi-Paxos [27],
Mencius [34] and EPaxos [35], on Amazon EC2 m4.large instances.
Each EC2 instance has 2 virtual cores and 8GB RAM, running a
server or client process on Ubuntu 16.04.

We use close-loop and open-loop clients tomeasure peak through-
put and precise latency, respectively. Close-loop clients wait for
the reply to a request to send the next, while open-loop clients
don’t. In throughput experiments, each client sends each request
to a randomly-chosen replica, or to the leader in Multi-Paxos. In
(wide-area) latency experiments, each client only sends requests to
the replica it is co-located with. We use client requests containing
commands of two sizes, small (16 B) and large (1 KB) respectively.
Unless otherwise noted, the commands are all writes.

We first evaluate the throughput of these protocols using het-
erogeneous cluster (§5.1) and workload with contention (§5.2), to
observe their performance stability against these adverse conditions.
We also show their read and write throughput in homogeneous
cluster with contention-free workload (§5.3). We then evaluate
the wide-area latency of these protocols (§5.4). Finally, we test the
availability of SDPaxos under failures (§5.5).

5.1 Throughput under Heterogeneity
We test these protocols with a straggler in a three-replica cluster
to evaluate their performance in heterogeneous environment. The
results indicate that SDPaxos experiences the least throughput
reduction percentage (compared to that without straggler) with a

non-sequencer straggler, and a relatively high percentage with a
sequencer straggler. Moreover, SDPaxos can rapidly replace the
sequencer with a normal replica when the current one is slow.

Throughputwithout straggler detection. Wemake one replica
straggler, by running infinite loop programs contending for CPU on
it. The server program acquires roughly one third of CPU time slice
compared to that during normal operation. For Multi-Paxos, the
straggler is the leader (otherwise the throughput is hardly affected).
For SDPaxos, we let the sequencer and a non-sequencer replica
be the straggler respectively to observe the difference. Figure 9(a)
shows the throughput and the reduction percentage of these proto-
cols with a straggler (the throughput without straggler is shown in
§5.3, Figure 11).

With a non-sequencer straggler, SDPaxos always achieves the
highest throughput (up to 1.6× and 1.4× compared to Mencius and
EPaxos), and also the least reduction proportion among the multi-
leader protocols. A non-sequencer straggler can hardly encumber
other replicas since they can simply expel the straggler from their
quorums (which is also feasible for EPaxos). However, the reduction
percentage of writes goes higher when the sequencer is straggler
(e.g. 28.27% vs 20.07% with 16 B writes). A slow sequencer also
causes high throughput reduction of read requests, since all reads
are processed by it. Later we will see how the straggler detection
rapidly overcomes the problem of a slow sequencer.

Multi-Paxos performs severely worse with a slow leader when
the requests are small, i.e., CPU-bound, because all commands are
proposed by the leader. With large requests the throughput is nearly
unaffected since it has been highly bounded by the bandwidth of
the leader. Mencius suffers the most from a straggler among these
multi-leader protocols (with the reduction up to 55.61%). Because
all replicas have to wait for the straggler’s skips or commits before
committing every instance, their throughputs are highly restricted
by the straggler. While EPaxos exhibits graceful performance degra-
dation after expelling the straggler from the quorum.

Rapid sequencer shift with straggler detection. As we can
see in Figure 9(b), after the sequencer becomes a straggler, it can



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhao et al.

0 5 25 50 75 100
Conflict rate (%)

0

20K

40K

60K

80K

100K

120K

Th
ro

ug
hp

ut
 (r

eq
s /

 s)

16 B

SDPaxos/3 replicas
SDPaxos/5 replicas
EPaxos/3 replicas
EPaxos/5 replicas

0 5 25 50 75 100
Conflict rate (%)

0

20K

40K

60K

80K 1 KB

SDPaxos/3 replicas
SDPaxos/5 replicas
EPaxos/3 replicas
EPaxos/5 replicas

Figure 10: Throughput with increasing conflict rate.

be detected within 2 seconds. Then a replica is elected as the new
sequencer, and allocates global sequence numbers for the blocked
instances (the peak point of the curve). After that, the system ex-
hibits the throughput with a non-sequencer straggler.

5.2 Throughput under Contention
We use increasing conflict rate, i.e., the proportion of updates on
the same object, to test the throughput under contention. Figure 10
compares the results of SDPaxos and EPaxos. Multi-Paxos and
Mencius are omitted, since their throughputs are unaffected (like
SDPaxos).

Conflicts brings higher CPU consumption of EPaxos in tracking
dependencies and maintaining dependency graphs. Moreover, the
throughput of five replicas is even lower, due to another round trip,
i.e.,moremessages, for interfering commands.When the commands
are small, EPaxos’s throughput decreases under higher conflict rate
(up to 44%). Note that, even a low rate (e.g., 5%) has visibly reduced
the throughput (up to 24%). With large commands, the throughput
reduction under contention is lower (with three replicas), since the
system is network-bound.

5.3 Throughput in Ideal Case
We test the throughput of these protocols in a local cluster without
stragglers using contention-free workload. We also tune the propor-
tion of read requests in the workload to observe the performance
variation of these protocols.

As we can see in Figure 11, SDPaxos’s throughput increases sig-
nificantly as read proportion goes higher, since SDPaxos only costs
two messages for each read. In comparison, other protocols show
no performance variation as they still need to commit reads using
more messages. With small commands, SDPaxos’s reads achieve up
to 4.6× throughput of writes: the advantage on number of messages
is especially obvious because the main bottleneck of the system is
CPU processing messages. When the commands are large, the gap
is narrowed (up to 3.2×) because the system consumes more time
in sending replies containing large key-values to clients.

We also compare the performance of these protocols when read
proportion is 0% (i.e., SDPaxos also commits all commands via
the complete Paxos-based protocol). Under high load, Multi-Paxos
earliest reaches the throughput limit due to its single-leader bot-
tleneck. However, SDPaxos reaches higher throughput (up to 6.1×

0 25 50 75 100
Read proportion (%)

0

100K

200K

300K

400K

500K

600K

Th
ro

ug
hp

ut
 (r

eq
s /

 s)

16 B
SD/3R
SD/5R
Mul/3R
Mul/5R

Men/3R
Men/5R
E/3R
E/5R

0 25 50 75 100
Read proportion (%)

0

50K

100K

150K

200K

1 KB
SD/3R
SD/5R
Mul/3R
Mul/5R

Men/3R
Men/5R
E/3R
E/5R

Figure 11: Throughput with no straggler and no conflict.
“SD”, “Mul”, “Men”, “E” represent SDPaxos, Multi-Paxos,
Mencius and EPaxos respectively. “3R” and “5R” stand for
three replicas and five replicas.

CA OR OH IRE SEL
CA 1.16 20 52 139 146
OR 0.02 68 125 133
OH 1.1 84 197
IRE 0.48 229
SEL 1.11

Table 1: The RTTs between the five regions (ms).

that of Multi-Paxos) also with a centralized node, because we have
minimized the extra load on the sequencer.

Without stragglers and conflicts, the three multi-leader protocols
all exploit the performance of all replicas. Nevertheless, SDPaxos
still slightly outperforms the other two protocols when the com-
mands are small due to the separation and paralleled processing of
C-instances and O-instances. Mencius sends and processes more
messages for every request to enforce the skip mechanism. While
EPaxos consumes more CPU resources in tracking and maintain-
ing dependencies, even with this cost reduced to minimum by the
conflict-free workload. Large requests also narrow the gap between
these protocols since they are all bounded by bandwidth among
replicas.

5.4 Latency in the Wide Area
In the wide area, latency is dominated by network communication,
which is decided by the number of round trips, and the distance to
the replica to contact. The test for Multi-Paxos is omitted because
its disadvantage is obvious: client has to communicate with the
remote leader, as long as it is not co-located with the leader.

The replicas and clients for wide-area experiments are deployed
in California (CA), Oregon (OR), Ohio (OH), Ireland (IRE) and Seoul
(SEL). The sequencer of SDPaxos locates in CA. The round-trip
times (ping latencies) between these regions are shown in Table 1.

Commit latency. We use the term “commit latency” to refer to
the latency to when the replica responds to the client (i.e.,when the
command is ready in SDPaxos). Figure 12 shows the average commit
latencies and 95% CIs of clients in each region. With the optimal
number of round trips and quorum size, the only negative factor
for SDPaxos’s latency is a sequencer too distant to be contained in



SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

CA OR OH
0

10
20
30
40
50
60
70
80

La
te

nc
y 

(m
s)

3 Replicas

CA OR OH IRE SEL
0

50
100
150
200
250
300
350
400 5 Replicas

SDPaxos
Mencius
Mencius-imbalanced

EPaxos-0%
EPaxos-5%
EPaxos-50%

Figure 12: Average commit latency in each region. Error bars show 95% CI. “Imbalanced” means the number of clients in one
region (OH and IRE for three and five replicas respectively) is half of that of the others. The percentage in EPaxos is conflict
rate. The legend applies to both the left and the right subfigures (the same below).

CA OR OH
0

20

40

60

80

100

120

La
te

nc
y 

(m
s)

3 Replicas

CA OR OH IRE SEL
0

50
100
150
200
250
300
350
400 5 Replicas

S-Uniform
S-9:1/Zipf
S-1:1/Zipf

M-Uniform
M-9:1/Zipf
M-1:1/Zipf

E-Uniform
E-9:1/Zipf
E-1:1/Zipf

Figure 13: Average read latency in each region. Error bars show 95% CI. “S”, “M”, and “E” represent SDPaxos, Mencius and
EPaxos respectively. “Uniform” and “Zipf” are key distributions. “9:1” and ”1:1” are R/W ratios for Zipf (always 1:1 for Uni-
form).

the quorum. As is shown in Figure 12, SDPaxos always achieves
optimal latency with three replicas. With five replicas, the only
exception is the latency of IRE is relatively high (140 ms compared
to the theoretically ideal 125 ms), because the sequencer in CA
cannot be contained in the quorum of the replica in IRE.

With three or five replicas, EPaxos also has optimal quorum size.
However, EPaxos has to handle conflicts with one more round trip
with five replicas, which leads to significantly higher latency under
conflicts. The average latency increases up to 24% and 60% with
conflict rate of 5% and 50%, while the 95% CI increases up to 75%
and 165%, respectively.

In Mencius, if some remote replica receives requests in a lower
rate, it will increase others’ latencies because they must hear from
the slow one to make sure it has committed or skipped all instances.
This is essentially the same case as a straggler. Therefore, Mencius’s
average latency is higher than SDPaxos and EPaxos in some data
centers due to waiting for remote replica’s reply. Moreover, when
clients generate requests at different frequencies, replicas in “fast”
regions have to wait for replies from “slow” regions more frequently.
In “Mencius-imbalanced”, fewer clients in OH and IRE cause the
latencies in other sites to be significantly higher, i.e., close to the
round-trip times to both the sites.

Read latency. We use the YCSB [14] benchmark to evaluate the
read latency under simultaneous accesses to the objects. We use two
kinds of R/W ratios, 1:1 and 9:1, and two key distributions, uniform
and Zipf (always R/W=1:1 for uniform). For uniform distribution,
the key is chosen from 500000 different keys at random. For Zipf,

the key is generated by a Zipf generator with an exponent of 0.99,
which is the default in YCSB.

For SDPaxos, the theoretical minimum read latency is the a round
trip to the sequencer. As is shown in Figure 13, the average latency
is lower than that of other protocols in CA with three replicas, and
in OR and OH with five replicas (17% to 99%), because the distance
to the sequencer is shorter than that to the nearest majority.

When the the requested object is modified by other replica at
the same time, read latencies of all these protocols go higher, as
replicas may have to wait for the commit message of the instance
after which the read can be done. For SDPaxos, under uniform
distribution, the 95% CIs are always nearly equal to the average,
since the probability of simultaneous access is low. While the Zipf
distribution, under which some popular objects are accessed fre-
quently, increases the worst-case read latency, i.e., higher 95% CI.
The worst-case latency is further increased by the 1:1 R/W ratio,
i.e. more possibly simultaneous updates. Note that the 95% CI of
SDPaxos is nearly always lower than that of other protocols.

For EPaxos, the 95% CI with five replicas is higher than that
with three replicas, because conflicts of reads and writes also brings
one more round trip. While for Mencius, its latency turns out to
be significantly higher than others due to the similar reason ex-
plained above: because the read and the corresponding write are
both committed in an instance, the latencies of both instances can
be nonoptimal, thus the latency to the read is done, i.e., the both
instances are committed, can only be even higher.



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhao et al.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
Time (100 ms)

0

10K

20K

30K

40K

50K

Th
ro

ug
hp

ut
 (r

eq
s /

 s)

Sequencer fails

New sequencer
is elected

OR
OH

Figure 14: Throughput of the two non-sequencer replicas
when the sequencer fails.

5.5 Service Availability under Failures
To evaluate the availability of SDPaxos, we measure the throughput
of the non-sequencer replicas dynamically, during which the se-
quencer is shut down. We set this experiment in wide area (CA, OR
and OH) since it will take higher latency to detect the sequencer’s
failure.

As shown in Figure 14, after the sequencer fails, throughputs of
the other two replicas drop to zero for a short period. Then the one
in OR is elected as the new sequencer. The theoretically highest
latency of this period is the heartbeat interval and the sequencer
lease duration plus the time of a view change. We set both the
heartbeat interval and the lease duration to 500 ms, which guaran-
tees the failover can always be finished within several hundreds of
milliseconds. In Figure 14, the stalling period of the replica in OR
and OH lasts about 300 ms and 400 ms respectively—the sequencer
fails approximately at the middle of a heartbeat interval. The one in
OH spends more time for the notification from the new sequencer.

6 RELATEDWORK
Paxos, followed by a series of variants, has dominated the discussion
of distributed consensus over years. Classic Paxos [26] commits a
command in two rounds, and can be optimized to the one-round
Multi-Paxos [27]. Fast Paxos [29] reduces latency with client re-
quests sent directly to all acceptors, and employs a coordinator to
handle conflicts, i.e., requests received by replicas in different orders.
Generalized Paxos [28] avoids conflicts by allowing non-interfering
commands committed in different orders, and requires a leader to
order interfering commands. Fast Paxos and Generalized Paxos
need larger quorum size to reach consensus bypassing a proposer,
resulting in higher wide-area latency. Viewstamped Replication
[32, 38] and Raft [39] reach consensus at the level of the whole log
rather than each instance, by employing a leader to replicate all log
entries to other replicas.

Recent works focus on boosting performance of replication pro-
tocols. Mencius [34] and Egalitarian Paxos (EPaxos) [35] are two
typical protocols designed for high throughput and low wide-area
latency. SDPaxos draws on their multi-leader mechanism, and real-
izes efficient command ordering by the semi-decentralized design.
In fact, similar communication pattern can be found in some works
in related topics [8, 10, 17, 23]; however, they need either higher
latency (at least two round trips [8, 23]), or stronger assumption
(e.g., reliable communication [10, 17]) to guarantee correctness. In

particular, CORFU [8] is a distributed shared log which uses a cen-
tralized sequencer to assign log positions to clients dynamically.
The key difference between CORFU and SDPaxos is that a CORFU
client must first contact the sequencer, then write to the log, induc-
ing higher latency. CORFU adopts this design because it uses a static
mapping from logical positions in the log to physical pages—only
after acquiring a log position can a client knowwhich physical page
to write. In contrast, in SDPaxos this mapping (i.e., the assignment
log, mapping log slots to commands) is generated dynamically, so
replicas can replicate commands and ask for ordering in parallel.

Speculative Paxos [40] and NOPaxos [31] further show that com-
mand ordering can be done with very low overhead in the network
layer, hence nearly zero coordination needed for the replication
protocol layer. However, such designs rely on software-defined
networking or next-generation hardware in data centers.

Some Multi-Paxos systems use master lease [13] to facilitate the
leader to perform local reads. Megastore [7] allows every replica to
read all objects locally, at the expense of poor write performance.
Paxos quorum leases [36] facilitate local reads on a subset of ob-
jects, which needs an appropriate allocation of leases on objects to
replicas. SDPaxos is a natural fit for quorum lease as the sequencer
can easily know which replica read an object the most often.

Replication protocols are the cornerstone of a broad range of
fault-tolerant services. For example, Boxwood [33], Chubby [12]
and Apache ZooKeeper [21] use replication protocols to provide
available distributed coordination services. Google’s Spanner [15]
and Megastore [7] are distributed storage systems using Paxos to
replicate data. Calvin [44] uses ZooKeeper to commit transactions
in deterministic distributed databases. MDCC [25], TAPIR [46] and
Janus [37] merge replication protocol and concurrency control
protocol in geo-distributed transaction processing.

7 CONCLUSION
We have presented the design and implementation of SDPaxos, a
new state machine replication protocol for efficient geo-replication.
At its core, SDPaxos proposes the semi-decentralized replication, to
provide high performance and strong performance stability against
heterogeneity and contention. SDPaxos uses an elaborate protocol
design which overlaps the separated replicating and ordering pro-
cesses to achieve the one-round-trip latency under realistic configu-
rations while guaranteeing correctness. Comprehensive evaluation
shows SDPaxos’s high throughput and low wide-area latency, in
ideal, heterogeneous, and high-contention cases. The source code
of SDPaxos has been made available at [4].

ACKNOWLEDGMENTS
We would like to thank the anonymous SoCC reviewers for their
insightful feedback and comments. We thank Prof. Jinyang Li and
Prof. Yang Wang for their valuable suggestions on our design. We
also thank Prof. Mahesh Balakrishnan for helping us deeply un-
derstand the differences between SDPaxos and CORFU and some
other related works. This work is supported by National Natural
Science Foundation of China (NSFC) under Grant No. 61472009,
and Shenzhen Key Fundamental Research Projects under Grant No.
JCYJ20151014093505032.



SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

REFERENCES
[1] 2013. EPaxos code base. (2013). https://github.com/efficient/epaxos
[2] 2018. Amazon Elastic Compute Cloud. (2018). https://aws.amazon.com/ec2/
[3] 2018. SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Ma-

chines (Extended Version). (2018). https://github.com/zhypku/SDPaxos/blob/
master/sdpaxos.pdf

[4] 2018. Source code of SDPaxos. (2018). https://github.com/zhypku/SDPaxos
[5] Raja Appuswamy, Angelos C. Anadiotis, Danica Porobic, Mustafa K. Iman, and

Anastasia Ailamaki. 2017. Analyzing the Impact of System Architecture on the
Scalability of OLTP Engines for High-contention Workloads. Proc. VLDB Endow.
11, 2 (Oct. 2017), 121–134. https://doi.org/10.14778/3149193.3149194

[6] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload Analysis of a Large-scale Key-value Store. In Proceedings of
the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’12). ACM, New
York, NY, USA, 53–64. https://doi.org/10.1145/2254756.2254766

[7] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
2011. Megastore: Providing Scalable, Highly Available Storage for Interactive
Services. In Proceedings of the Conference on Innovative Data system Research
(CIDR). 223–234. http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf

[8] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, TedWobber, Michael
Wei, and John D. Davis. 2012. CORFU: A Shared Log Design for Flash Clusters.
In Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI’12). USENIX Association, Berkeley, CA, USA, 1–1. http:
//dl.acm.org/citation.cfm?id=2228298.2228300

[9] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011.
Towards Predictable Datacenter Networks. In Proceedings of the ACM SIG-
COMM 2011 Conference (SIGCOMM ’11). ACM, New York, NY, USA, 242–253.
https://doi.org/10.1145/2018436.2018465

[10] Kenneth Birman, André Schiper, and Pat Stephenson. 1991. Lightweight Causal
and Atomic Group Multicast. ACM Trans. Comput. Syst. 9, 3 (Aug. 1991), 272–314.
https://doi.org/10.1145/128738.128742

[11] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. 1999. Web caching
and Zipf-like distributions: evidence and implications. In IEEE INFOCOM ’99.
Conference on Computer Communications. Proceedings. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. The Future is Now
(Cat. No.99CH36320), Vol. 1. 126–134 vol.1. https://doi.org/10.1109/INFCOM.1999.
749260

[12] Mike Burrows. 2006. The Chubby Lock Service for Loosely-coupled Distributed
Systems. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI ’06). USENIX Association, Berkeley, CA, USA, 335–350.
http://dl.acm.org/citation.cfm?id=1298455.1298487

[13] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos Made
Live: An Engineering Perspective. In Proceedings of the Twenty-sixth Annual ACM
Symposium on Principles of Distributed Computing (PODC ’07). ACM, New York,
NY, USA, 398–407. https://doi.org/10.1145/1281100.1281103

[14] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC ’10). ACM, New York, NY,
USA, 143–154. https://doi.org/10.1145/1807128.1807152

[15] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-distributed
Database. (2012), 251–264. http://dl.acm.org/citation.cfm?id=2387880.2387905

[16] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. https://doi.org/10.
1145/1327452.1327492

[17] Xavier Défago, André Schiper, and Péter Urbán. 2004. Total Order Broadcast
and Multicast Algorithms: Taxonomy and Survey. ACM Comput. Surv. 36, 4 (Dec.
2004), 372–421. https://doi.org/10.1145/1041680.1041682

[18] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM 32, 2 (April 1985),
374–382. https://doi.org/10.1145/3149.214121

[19] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492. https://doi.org/10.1145/78969.78972

[20] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar, and
Harry C. Li. 2013. An Analysis of Facebook Photo Caching. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13). ACM,
New York, NY, USA, 167–181. https://doi.org/10.1145/2517349.2522722

[21] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings of

the 2010 USENIX Conference on USENIX Annual Technical Conference (USENIX-
ATC’10). USENIX Association, Berkeley, CA, USA, 11–11. http://dl.acm.org/
citation.cfm?id=1855840.1855851

[22] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-aware Dis-
tributed Parameter Servers. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data (SIGMOD ’17). ACM, New York, NY, USA, 463–478.
https://doi.org/10.1145/3035918.3035933

[23] M. F. Kaashoek and A. S. Tanenbaum. 1991. Group communication in the Amoeba
distributed operating system. (May 1991), 222–230. https://doi.org/10.1109/
ICDCS.1991.148669

[24] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. 1997. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. In Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing (STOC ’97). ACM,
New York, NY, USA, 654–663. https://doi.org/10.1145/258533.258660

[25] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.
2013. MDCC: Multi-data Center Consistency. In Proceedings of the 8th ACM
European Conference on Computer Systems (EuroSys ’13). ACM, New York, NY,
USA, 113–126. https://doi.org/10.1145/2465351.2465363

[26] Leslie Lamport. 1998. The Part-time Parliament. ACM Trans. Comput. Syst. 16, 2
(May 1998), 133–169. https://doi.org/10.1145/279227.279229

[27] Leslie Lamport. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18–25.
[28] Leslie Lamport. 2005. Generalized Consensus and Paxos. Technical Re-

port. 60 pages. https://www.microsoft.com/en-us/research/publication/
generalized-consensus-and-paxos/

[29] Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19 (October 2006),
79–103. https://www.microsoft.com/en-us/research/publication/fast-paxos/

[30] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp:
Comparing Public Cloud Providers. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement (IMC ’10). ACM, New York, NY, USA, 1–14.
https://doi.org/10.1145/1879141.1879143

[31] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K.
Ports. 2016. Just Say No to Paxos Overhead: Replacing Consensus with Network
Ordering. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA,
467–483. http://dl.acm.org/citation.cfm?id=3026877.3026914

[32] Barbara Liskov and James Cowling. 2012. Viewstamped Replication Revisited.
Technical Report. Technical Report MIT-CSAIL-TR-2012-021, MIT.

[33] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A. Thekkath,
and Lidong Zhou. 2004. Boxwood: Abstractions As the Foundation for Storage
Infrastructure. In Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6 (OSDI’04). USENIX Association,
Berkeley, CA, USA, 8–8. http://dl.acm.org/citation.cfm?id=1251254.1251262

[34] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building
Efficient Replicated State Machines for WANs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation (OSDI’08). USENIX
Association, Berkeley, CA, USA, 369–384. http://dl.acm.org/citation.cfm?id=
1855741.1855767

[35] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is More
Consensus in Egalitarian Parliaments. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (SOSP ’13). ACM, New York, NY, USA,
358–372. https://doi.org/10.1145/2517349.2517350

[36] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2014. Paxos Quorum
Leases: Fast Reads Without Sacrificing Writes. In Proceedings of the ACM Sym-
posium on Cloud Computing (SOCC ’14). ACM, New York, NY, USA, Article 22,
13 pages. https://doi.org/10.1145/2670979.2671001

[37] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Consolidating
Concurrency Control and Consensus for Commits Under Conflicts. (2016), 517–
532. http://dl.acm.org/citation.cfm?id=3026877.3026917

[38] Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped Replication: A New Pri-
mary Copy Method to Support Highly-Available Distributed Systems. In Proceed-
ings of the Seventh Annual ACM Symposium on Principles of Distributed Computing
(PODC ’88). ACM, New York, NY, USA, 8–17. https://doi.org/10.1145/62546.62549

[39] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (USENIX ATC’14). USENIX Association, Berkeley,
CA, USA, 305–320. http://dl.acm.org/citation.cfm?id=2643634.2643666

[40] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishna-
murthy. 2015. Designing Distributed Systems Using Approximate Synchrony in
Data Center Networks. In Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation (NSDI’15). USENIX Association, Berkeley,
CA, USA, 43–57. http://dl.acm.org/citation.cfm?id=2789770.2789774

[41] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kannan Ram-
chandran. 2016. EC-cache: Load-balanced, Low-latency Cluster Caching with
Online Erasure Coding. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI’16). USENIX Association, Berkeley,
CA, USA, 401–417. http://dl.acm.org/citation.cfm?id=3026877.3026909

https://github.com/efficient/epaxos
https://aws.amazon.com/ec2/
https://github.com/zhypku/SDPaxos/blob/master/sdpaxos.pdf
https://github.com/zhypku/SDPaxos/blob/master/sdpaxos.pdf
https://github.com/zhypku/SDPaxos
https://doi.org/10.14778/3149193.3149194
https://doi.org/10.1145/2254756.2254766
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
http://dl.acm.org/citation.cfm?id=2228298.2228300
http://dl.acm.org/citation.cfm?id=2228298.2228300
https://doi.org/10.1145/2018436.2018465
https://doi.org/10.1145/128738.128742
https://doi.org/10.1109/INFCOM.1999.749260
https://doi.org/10.1109/INFCOM.1999.749260
http://dl.acm.org/citation.cfm?id=1298455.1298487
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/1807128.1807152
http://dl.acm.org/citation.cfm?id=2387880.2387905
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2517349.2522722
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://doi.org/10.1145/3035918.3035933
https://doi.org/10.1109/ICDCS.1991.148669
https://doi.org/10.1109/ICDCS.1991.148669
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://www.microsoft.com/en-us/research/publication/fast-paxos/
https://doi.org/10.1145/1879141.1879143
http://dl.acm.org/citation.cfm?id=3026877.3026914
http://dl.acm.org/citation.cfm?id=1251254.1251262
http://dl.acm.org/citation.cfm?id=1855741.1855767
http://dl.acm.org/citation.cfm?id=1855741.1855767
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1145/2670979.2671001
http://dl.acm.org/citation.cfm?id=3026877.3026917
https://doi.org/10.1145/62546.62549
http://dl.acm.org/citation.cfm?id=2643634.2643666
http://dl.acm.org/citation.cfm?id=2789770.2789774
http://dl.acm.org/citation.cfm?id=3026877.3026909


SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhao et al.

[42] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, RandyH. Katz, andMichael A.
Kozuch. 2012. Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis. In Proceedings of the Third ACM Symposium on Cloud Computing (SoCC
’12). ACM, New York, NY, USA, Article 7, 13 pages. https://doi.org/10.1145/
2391229.2391236

[43] Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using the State
Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299–319.
https://doi.org/10.1145/98163.98167

[44] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’12). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/2213836.2213838

[45] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica.
2008. Improving MapReduce Performance in Heterogeneous Environments.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 29–42. http:
//dl.acm.org/citation.cfm?id=1855741.1855744

[46] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,
and Dan R. K. Ports. 2015. Building Consistent Transactions with Inconsistent
Replication. In Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP ’15). ACM, New York, NY, USA, 263–278. https://doi.org/10.1145/2815400.
2815404

https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/2213836.2213838
http://dl.acm.org/citation.cfm?id=1855741.1855744
http://dl.acm.org/citation.cfm?id=1855741.1855744
https://doi.org/10.1145/2815400.2815404
https://doi.org/10.1145/2815400.2815404

	Abstract
	1 Introduction
	2 Background and Motivation
	3 SDPaxos Design
	3.1 Separating Ordering from Replicating
	3.2 The SDPaxos Protocol
	3.3 Fault Tolerance and Recovery
	3.4 Correctness
	3.5 Optimization for Reads

	4 Implementation and Optimizations
	5 Evaluation
	5.1 Throughput under Heterogeneity
	5.2 Throughput under Contention
	5.3 Throughput in Ideal Case
	5.4 Latency in the Wide Area
	5.5 Service Availability under Failures

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

