
Direct Universal Access: Making Data Center Resources Available to FPGA

Ran Shu1, Peng Cheng1, Guo Chen1,2, Zhiyuan Guo1,3, Lei Qu1, Yongqiang Xiong1, Derek Chiou4, and
Thomas Moscibroda4

Microsoft Research1, Hunan University2, Beihang University3, Microsoft Azure4

Abstract
FPGAs have been deployed at massive scale in data cen-

ters. Using currently available communication architec-
tures, however, it is difficult for FPGAs to access and utilize
the various heterogenous resources available in data centers
(DRAM, CPU, GPU,. . .). In this paper, we present Direct
Universal Access (DUA), a communication architecture that
provides uniform access for FPGA to these data center re-
sources.

Without being limited by machine boundaries, DUA pro-
vides global names and a common interface for communi-
cating across various resources, the underlying network au-
tomatically routing traffic and managing resource multiplex-
ing. Our benchmarks show that DUA provides simple and
fair-share resource access with small logic area overhead
(<10%) and negligible latency (<0.2µs). We also build two
practical multi-FPGA applications—deep crossing and regu-
lar expression matching—on top of DUA to demonstrate its
usability and efficiency.

1 Introduction
Large-scale FPGA deployments in data centers [1–9] has

changed the way of FPGA-based distributed systems are
designed. Instead of a small number of FPGAs and lim-
ited resources (e.g., only the DRAM on each FPGA board),
modern FPGA applications can use heterogeneous compu-
tation/memory resources, such as CPU, GPU, host/onboard
DRAM, SSD etc., across large-scale data centers. The scale
and diversity of resources enables the building of novel
FPGA-based applications, such as cloud-scale web search
ranking [10,11], storage systems [4,6], or deep learning plat-
forms [12].

Building large-scale and diverse FPGA applications re-
quires communication capabilities between any pair of FP-
GAs and other components in the data center. However, with
today’s technology such FPGA communication is highly im-
practical and cumbersome, posing severe challenges to de-
signers and application developers. There are three main
problems barring FPGA applications to conveniently and ef-

ficiently use data center resources (see Fig. 1(a)):
First, different resources at different locations (local/re-

mote) are connected in different ways (e.g., PCIe, network)
requiring different communication stacks. This greatly in-
creases programming complexity. For example, an FPGA
application may use a custom communication stack [2] to
access a local (same server) FPGA, a networking stack [11]
to access a remote (different server) FPGA, GPU/FPGA Di-
rect [13] to access a GPU, DMA to access system DRAM,
DDR IP to access local DRAM, etc. Each of these commu-
nication stacks has a different interface (different I/O ports,
functional timings, etc.), making it hard to understand, pro-
gram, optimize, and debug.

Second, most resources (e.g., host DRAM, SSD) in a data
center are organized in a server-centric manner. Each re-
source uses a dedicated name space that can only be accessed
from within a host (e.g., a PCIe address.) The lack of global
names for resources is inefficient for FPGAs when accessing
remote resources, since they first need to communicate with
the remote host, and the host first has to perform the access
on behalf of the requesting FPGA. If an FPGA wants to write
a remote SSD, for example, it first has to transfer the data to
a daemon process running on its local CPU, which passes the
data to the remote CPU, which then finally writes the data to
the targeted SSD. To make matters worse, developers manu-
ally write dedicated logic for each type of FPGA-to-resource
communication.

Third, although FPGAs have been deployed at data cen-
ter scale, current FPGA communication does not deal well
with resource multiplexing. Though various resources are
accessed through the same physical interface (e.g., DMA and
GPU/FPGA Direct both through PCIe), we are not aware
of any general resource multiplexing scheme. FPGA devel-
opers need to manually handle each specific case, which is
tightly coupled with the application logic. Moreover, prob-
lems become more severe when there are multiple FPGA ap-
plications using the same resource (e.g., applications on two
FPGAs accessing the same SSD).

Instead, FPGA developers would like an FPGA commu-

Data center network fabric

CPU
Host

DRAM SSDGPU

NIC

...

FPGA Onboard
DRAM

FPGA board

PCIe fabric

Server

FPGA Onboard
DRAM

FPGA board

CPU
Host

DRAM SSDGPU

NIC

...

FPGA Onboard
DRAM

FPGA board

PCIe fabric

Server

FPGA Onboard
DRAM

FPGA board

...

Ethernet
Ethernet

APP APP...

DMA DDR LTL
GPU/FPGA

Direct

PCIe DDR link QSFP

FPGA
applications

Stacks

Physical
Interfaces

Communication interface for FPGA applications

...

...

... ...

(a) Current FPGA communication architecture.

FPGA communication network fabric

APP APP...

Common communication interface

FPGA
applications

Communication interface for FPGA applications

CPU
Host

DRAM SSDGPU Onboard
DRAM

FPGA FPGA
CPU Host

DRAM SSDGPU
Onboard

DRAM FPGA FPGA

Server
Server

Unified resource naming &
Routing

Resource multiplexing

...

...

...

(b) Ideal FPGA communication architecture.

Figure 1: Comparison between a current FPGA communication architecture and an ideal communication architecture that
enables FPGAs to easily access data center resources.

nication architecture as shown in Fig. 1(b). This architec-
ture has the following desirable properties: 1) a common
communication interface regardless of what the communica-
tion endpoints are and where they reside; 2) a global, unified
naming scheme that can address and access all resources re-
gardless of their location; 3) an underlying network service
that provides routing and resource multiplexing. With such
a communication architecture, FPGA applications could eas-
ily access a diverse set of resources across the data center, us-
ing the common programming interface with each resource’s
global name. Indeed, such a communication architecture is
what developers and architects expect and is used in other
distributed systems. For example, such a design has been
proven successful in IP networks.

In this paper, we propose Direct Universal Access (DUA)
to bring this desirable communication architecture to the
FPGA world. Doing so is challenging in multiple ways,
especially considering that very little, if anything, can be
changed when we seek real-world deployment in existing
data centers. It is impractical to require all manufacturers
to support a new unified communication architecture. To cir-
cumvent this challenge, DUA chooses to abstract an over-
lay network on top of the existing communication stacks
and physical interconnections, thereby providing a unified
FPGA communication method for accessing all resources.
Moreover, performance and area is often crucial in FPGA-
based applications, so DUA was designed to mimimize per-
formance and area overheads. Inspired by ideas in software
defined networking [14, 15], we architect DUA into a data
plane that is included in every FPGA, and a hybrid control
plane including both CPU and FPGA control agents. Need-
less to say, designing and implementing this novel communi-
cation architecture also brings about numerous specific tech-

nical challenges, design choices and implementation prob-
lems. We discuss these challenges alongside our solutions in
Sections 4, 5 , 6 and 7.

In summary, we make the following contributions in this
paper. We introduce DUA, a communication architecture
with unified naming and common interface to enable large-
scale FPGA applications in a cloud environment. We im-
plement and deploy DUA on a twenty FPGA testbed. Our
testbed benchmarks show that DUA introduces negligible la-
tency (<0.2µs) and small area (<10%) overhead on each
FPGA. Moreover, we demonstrate that using DUA, it is
easy to build highly-efficient production-quality FPGA ap-
plications. Specifically, we implement two real-world multi-
FPGA applications: Deep Crossing and regular expression
matching, and show the vastly superior performance of these
applications based on DUA. In addition, we also design and
implement a new communication stack that supports high-
performance communication between local FPGAs through
PCIe, which can be integrated into DUA data plane as a
highly efficient underlying stack.

2 Background
2.1 FPGA Deployments in Data Centers

The left side of Fig. 1(a) shows an overview of cur-
rent FPGA data center deployments. FPGA boards connect
to their host server motherboard through commodity com-
munication interfaces such as PCIe. Each hosting server
can contain one [11] or more FPGA boards [2]. Each
FPGA board is typically equipped with gigabytes of onboard
DRAM [2, 9, 11]. Recent deployments [11] directly con-
nect each FPGA to the data center networking fabric, en-
abling it to send and receive packets without involving its
host server. To meet the high data rate of physical inter-

Table 1: FPGA programming efforts to connect different
communication stacks.

Resource Communication stack LoC
Host DRAM DMA 294

Host CPU FPGA host stack 205
Onboard DRAM DDR 517
Remote FPGA LTL 1356

faces, FPGAs use Hard IPs (HIPs) to handle physical layer
protocols for each interface. Above these HIPs, FPGAs pro-
vide communication stacks that abstract access to different
resources. Communication stacks may share the same HIP,
e.g. DMA [16] and GPU [13] stacks both need to use the
PCIe fabric. Although a server may contain multiple boards
connected through PCIe [2], there are no PCIe-based stacks
that support efficient and direct communication between FP-
GAs.

Data center FPGAs often contain a shell [10,11] that con-
tains modules that are common for all applications. For ex-
ample, shells typically include communication stacks for ac-
cessing various resources (e.g., PCIe, DMA, Ethernet MAC).
In this way, developers only need to write their FPGA appli-
cation logic and connect using these communication inter-
faces. The FPGA shell is similar to an operating system in
the software world.

FPGAs in data centers are widely used to accelerate dif-
ferent applications. Applications like deep neural networks
[17, 18] and bioinformatics [19] have high demand on com-
munications between FPGAs. FPGAs for web search rank-
ing applications [10,11] rapidly exchange data with host and
other FPGAs to generate the ranking as quick as possible.
Key-value store acceleration [20] requires FPGAs to access
remote FPGA’s on board DRAM or even remote servers host
memory. Big data analytics [21] not only require rapid co-
ordination between computation nodes, but also need to di-
rectly fetch data from database [4, 5]. The demand of high
throughput and extra low latency require FPGAs to access
heterogeneous resources directly which challenges the de-
sign of FPGA communication architecture in data centers.

2.2 Existing Problems
Current FPGA communication architecture pose multiple

severe problems:
Complex FPGA Application Interface: FPGA-based

systems are hard to develop and deploy. One of the major
reasons is that communication interfaces are hard to imple-
ment. Interfacing requires significant programming exper-
tise and effort by application developers. To make things
worse, existing stack interfaces are highly implementation
specific, with substantial incompatibilities and differences
between different vendors. This makes building the commu-
nication system of the application alone a major undertaking
(e.g., KV-Direct [20]).

To convey a concrete sense of the programming difficul-
ties involved, consider a simple FPGA application that uses

different communication interfaces to access four different
resources: host DRAM, host CPU, on board DRAM, and
remote FPGA. Table 1 shows the lines of Verilog code for
application developers to connect each stack’s interface.

Poor Resource Accessibility: Although data centers pro-
vide many computation/memory resources that potentially
could be used by FPGA applications, most of these resources
(even the homogeneous ones) are only named in server-
local name space and work with their own software device
driver/stack. There is no unified naming scheme for access-
ing remote resources. Without unified naming, most PCIe-
based resources (e.g., DRAM, SSD, GPU) can only be ac-
cessed within a server’s PCIe domain, making it difficult
for remote FPGAs to use. Even with latest technology like
RDMA that FPGAs can use to access specific remote re-
sources, the software driver/stack is still needed for remote
communication, impacting performance.

Fixed Network Routing: In current communication ar-
chitectures, FPGA applications can only access resources
through limited and fixed paths. In [2], for example, FPGAs
communicate with other local FPGAs through the dedicated
PCIe fabric and can not access remote resources through net-
working. In [11,22], FPGAs are directly connected to Ether-
net through top-of-rack (ToR) switches, i.e., a pair of FPGAs
can only communicate through Ethernet even when they are
in the same PCIe domain. Both of these examples cannot
make full use of all available bandwidth.

Also, such fixed communication architectures limit the
system’s scalability. For example, deploying large FPGA ap-
plications via a network-based communication architecture
increases the port density of ToR switches and is a challenge
to data center networking, even if most FPGAs are used
for compute-intensive tasks and need only little networking
bandwidth.

Poor Resource Multiplexing: To support accessing data
center resources as a pool, resource multiplexing is one of
the key considerations of an FPGA communication architec-
ture. Current architectures do not handle stack multiplexing
well. For example, if two applications both access local host
DRAM through DMA, they need to collaboratively write a
DMA multiplexer and demultiplexer. From our experience,
even a simple multiplexer/demultiplexer requires 354 lines
of HDL code. Moreover, currently there is no general phys-
ical interface multiplexing scheme, and it is therefore hard
for current FPGA applications to simultaneously access lo-
cal host DRAM and local SSD without modifying the un-
derlying shell, since these two resources are both connected
through the PCIe bus.

The Elastic Router proposed in [11] tries to solve the mul-
tiplexing problem in an FPGA environment. Currently, how-
ever, it only addresses the problem of multiplexing between
multiple applications which use a common networking stack,
without handling multiplexing between other stacks and be-
tween physical interfaces. Later we will see that DUA ex-

tends this with a general resource multiplexing scheme.
Inefficient Communication Stack: Existing communi-

cation architectures implement resource accessing for FP-
GAs in an indirect and inefficient way. Typically, FPGA
applications use DMA to access local resources, which re-
sults in significant latency and low bandwidth. We note that
while [23] provides a direct FPGA-to-FPGA communication
mechanism through PCIe, it is inefficient. Specifically, the
receiver FPGA acts as host DMA driver and first issues an
DMA request. The sender FPGA treats the request as a nor-
mal DMA request and sends data. After sending data they
need to synchronize the queue pointers. Since a data trans-
mission crosses the PCIe fabric 3 times, it wastes bandwidth
and has higher than necessary latency.

Furthermore, an FPGA can only access remote host
DRAM by relaying data between the two sides’ CPUs, re-
ducing performance and consuming cores. We measured the
performance of doing so in our testbed (see §8). Specifi-
cally, we ran two daemon processes on the local and remote
server’s CPU that relayed data between the local FPGA and
remote DRAM through a TCP socket. Results show that for
writing 256B data to the remote DRAM, the average end-
to-end latency is ∼51.4µs. The tail latency is in the mil-
liseconds. Using remote DMA instead of TCP may improve
the performance, but in our measurement the average latency
is still ∼20µs due to the CPU involvement (e.g., initiate re-
quest, interrupt). We note that in such an application it is pos-
sible to leverage remote FPGA as a data relay for accessing
remote host DRAM, through direct communication between
FPGAs (e.g., using LTL [11]).

3 Desired Communication Architecture
To overcome the problems outlined in the previous sec-

tion, we design DUA using a familiar and concrete model:
Global names and a common communication interface for
FPGAs and resources regardless their location, where the un-
derlying network automatically routes communication traffic
according to the global name and manages the resource mul-
tiplexing with full utilization of existing stacks.

This communication architecture supports pooling data
center resources for FPGAs to access. Specifically, FPGA
applications can access any resource in data center using a
global name and a common programming interface. The
network provides a globally unified name for various kinds
of resources. When getting a message, the network either
routes the access to the targeted resource if it is available,
or notifies the application if the resource is not available,
automatically without the application being involved. Also,
there is no need for applications to implement multiplexing
between communication stacks or physical interconnections.
DUA utilizes underlying communication when appropriate.
The network automatically manages sharing and contention
according to the desired policy (e.g., fair sharing or priority
scheduling).

App

FPGA

App

App

DUA data plane

NIC

CPU

Datacenter networking fabric

FPGA Host

LTL

FPGA Connect

DMA

DDR

Intra-server networking fabric

QSFP

DUA underlay

DDRPCIe Gen3

Server

DUA control
plane

CPU CA

DUA
overlay

FPGA
CA

QCN

Figure 2: DUA architecture.

Networked systems communicate in exactly this way.
In computer networking systems, programmers use IP ad-
dresses with TCP/UDP ports as a global name to identify a
communication endpoint, and access them using a unified
BSD socket interface. The network (both networking stack
and fabric) automatically route the traffic through the paths
calculated from routing protocols. The network also deals
with resource multiplexing through techniques such as con-
gestion control and flow control.

Of course, the communication architecture must also care-
fully consider security mechanisms, such that the universal
access of FPGAs to resources within the data center does
not damage or crash other hardware/software systems. Since
FPGA-based applications often have high performance re-
quirements, performance and resource overhead of the uni-
fied communication method must be kept low.

4 DUA Overview
Overall, DUA abstracts an overlay network for FPGA on

top of existing data center network fabric. DUA provides a
new communication architecture that has the desired proper-
ties mentioned before, which makes data center resources a
shared pool for FPGA.

In detail, we provide an communication architecture with
such overlay network, including the common communica-
tion interface and the naming scheme suitable for various
applications to access different resources, and the routing,
multiplexing, and resource management scheme correspond-
ingly provided by the network.

Fig. 2 shows the system architecture of DUA. Specifically,
DUA consists of a low-cost hardware data plane residing
in every FPGA’s shell, and a hybrid control plane including
both CPU and FPGA control agents.

The DUA control plane is the brain of the overlay network.
It manages all resources, assigning addresses and calculating
the routing paths to them, and manages the multiplexing of
resources and the network. DUA supports both connection-
based and connectionless communication. The connection

UID

(serverID:deviceID)
Address /port Resource description

192.168.0.2:1 0x00000001CFFFF000 1st block of host DRAM

192.168.0.2:1 0x000000019FFFF000 2nd block of host DRAM

192.168.0.2:2 0x80000000 1st block of FPGA onboard

192.168.0.2:3 8000 1st application on FPGA

192.168.0.2:3 8001 2nd application on FPGA

Figure 3: Example resources address on server 192.168.0.2.

setup and close are processed and managed in the DUA con-
trol plane.

The DUA data plane is the actual executer of FPGA com-
munication traffic. It stays between the FPGA applica-
tions and physical interfaces. The data plane can efficiently
reuse existing communication stacks, as well as support new
stacks, providing the same communication interface for var-
ious applications to access different resources.

5 DUA Communication Interface
We first describe the unified communication interface pro-

vided by DUA for accessing various resources.

5.1 Resource Address Format
DUA provides each resource a unified address, which is

globally unique in the data center. Devising a totally new
address format is not a wise option, since it would require
both a complicated system for managing data-center-scale
address spaces and changes to the existing network fabric
to use that new address format. Instead, DUA leverages the
current naming schemes of various resources, and combines
them into a new hierarchical name.

Specifically, DUA assigns each device a unique
name (UID) that extends the IP address into the
intra-server network. A UID consists of two fields,
serverID:deviceID:resourceINST. serverID is a globally
unique ID for each server. In an Ethernet-based data center
network, we leverage the server IP address as serverID,
which a is already uniquely assigned by the network fabric.
deviceID is a unique ID for each resource within the server
(e.g. FPGA on-board DRAM, GPU, NVMe and etc.), which
is newly assigned by DUA. In our current implementation,
UID is designed to be 48 bits in total (32b serverID (length
of IPv4 address in current data centers) and 16b deviceID).

Within each device, DUA leverages the existing address-
ing scheme of each resource. For example, it can be the
memory address if the targeted resource is host/onboard
memory, or the port number if the targeted resource is a re-
mote FPGA application. Fig. 3 provides some examples of
different resources’ addresses in DUA. In §6.1 and §6.2 we
will describe how it is easy to manage addresses and do rout-
ing using such an UID format.

5.2 API
DUA supports both connection-based and connectionless

communication. Connectionless communication is less ef-
ficient than connection-based communication because it fa-

DUA
valid_out

data_in [255:0]

last_in

valid_in

ready_in ready_out

first_in

Request Response
data_out[255:0]

last_out

first_out

Figure 4: I/O interface for DUA.

cilitates management issues (e.g., access control) and net-
work resource multiplexing (e.g., multiplex underlying stack
tunnels for the messages that have common routing paths).
More details of routing and connection management will be
discussed in §6.2 and §6.3.

5.2.1 Semantic Primitives
For each FPGA communication connection, applications

generate communication primitives similar to BSD socket.
There are two types of primitives:

1. Connection setup/close primitives: These primitives
include CONNECT/LISTEN/ACCEPT and CLOSE,
which are used by applications to setup and close a con-
nection, respectively.

2. Data transmission primitives: These primitives in-
clude SEND/RECV and WRITE/READ. SEND/RECV
are for sending/receiving data to/from computation re-
sources such as other FPGA applications and CPU pro-
cesses, which works as a FIFO between the two sides.
Additionally, DUA supports message-based commu-
nication by adding a PUSH flag in each DUA mes-
sage header. WRITE/READ are one-sided primitives
for write/read data to/from memory/storage resources,
which are different from WRITE/READ in BSD sock-
ets.

5.2.2 I/O interface
We implement DUA in both Verilog and OpenCL.

OpenCL is a high-level programming language for FPGAs
(and GPUs.). DUA implemented in OpenCL can provide
socket-like interface. However, it cost much more FPGA
logic and degrade performance. Thus we only use the Ver-
ilog implementation and add a wrapper on top of it to support
OpenCL. See Appendices A and B for a sample usage of the
DUA interface.

Fig. 4 shows the physical I/O interface of DUA, which is
full-duplex. The request interface is for applications to is-
sue primitives (§5.2). The response interface is for applica-
tions to get primitive responses (completion information or
response data).

The DUA I/O interface is the same in both direction. For
each DUA message, the message header and payload use
the same data wires for transmission. Note that the data
signal has only 256 bits. Although a wider interface could

increase the amount of data transmitted per hardware cy-
cle, it would increase the switch fabric logic complexity and
thus decrease the available clock frequency of corresponding
modules. Consequently, a DUA message may be transmitted
in several cycles. The first 1 or 2 cycles (depends on the
message type) of data bus is message header, followed by
the payload. The first/last bit indicate the first and last cycle
of a message transmission. For each cycle with data to be
sent or received, the valid signal is set. Note that valid can
only be raised when the receiver side set the ready signal.

Next in §6 and §7, we introduce the design and implemen-
tation of control and data plane.

6 DUA Control Plane
The DUA control plane manages all resources, routing and

connections. Since FPGAs are not suitable for implementing
complicated control logic, we put the main control logic in
the CPU control agent (CPU CA). We also implement a con-
trol agent in the FPGA (FPGA CA) which monitors local
resources on its board and delivers control plane commands
to the data plane.

6.1 Resource Management
Logically, the entire DUA control plane maintains the in-

formation of all available resources in data center, and as-
signs each resource with a UID. Thanks to the hierarchical
address format (§5.1), each DUA control agent only needs to
handle its local resources.

Specifically, each FPGA CA monitors all available re-
sources on its FPGA board (e.g., onboard DRAM, FPGA
application). The FPGA CA does not assign addresses for
those resources. Instead, each FPGA CA uploads its local
resource information to the CPU CA in its host server, and
the CPU CA assigns the UIDs all together. The host CPU
CA gathers the resource information from all FPGA CAs, as
well as all other resources such as host memory and GPU in
this server.

It is straightforward to assign UIDs to local resources. As
mentioned, the first UID field, serverID, is the server IP.
Then CPU CA assigns a unique deviceID for each resource
within this server. The CPU CA maintains the mapping from
deviceID to different local resources, and updates the map-
ping once when are any resource changes, plug-in/plug-out
or failures. DUA does not manage the address within each
resource instead letting each device control it.

Currently, DUA does not provide a naming service. Ap-
plications directly use UID to identify resources without a
name resolution service. The design of a naming service is
future work.

6.2 Routing Management
To offer routing capabilities, the DUA control plane calcu-

lates the routing paths. The data plane the forwards the traffic
to the target resource (directly or through other FPGAs’ data
plane) fully transparent to applications.

Src Resource (UID) Dst Resource (UID) / Stack

FPGA 2 (192.168.0.2:2) / FPGA Connect

Host DRAM (192.168.0.2:3) / DMA

Onboard DRAM (192.168.0.2:4) / DDR

FPGA 1 (192.168.0.2:1) / FPGA Connect

Host DRAM (192.168.0.2:3) / DMA

Resources on other servers (*:*) / LTL

FPGA 1 (192.168.0.2:1)

FPGA 2 (192.168.0.2:2)

Figure 5: Example interconnection table on server
192.168.0.2.

Designing and implementing data center scale routing is
challenging [24]. Benefiting from the hierarchical UID for-
mat, we leverage existing data center network routing capa-
bilities. Each DUA control agent only needs to maintain in-
terconnection information and calculate routing paths within
each server.

Specifically, each CPU CA independently maintains an in-
terconnection table for all local resources, as shown in Fig. 5.
The interconnection table records the neighborhood infor-
mation between FPGAs or FPGA and other resources. The
first column records a source FPGA, and the second column
records the local/remote resources that can be directly ac-
cessed from this FPGA through which underlying communi-
cation stack.

The interconnection table’s information is updated as fol-
lows. Besides the resource information, each FPGA CA up-
loads the information about its communication stacks and
physical interfaces to the CPU CA in its own server. Based
on the uploaded information, CPU CA determines the inter-
connection between different FPGAs and updates the inter-
connection table. If an FPGA reports that it has connectivity
through the data center networking fabric, the CPU CA will
insert an entry for this FPGA, withan entry for each legal
destination to any resources on other servers (the last row of
Fig. 5).

According to the interconnection table, it is easy to cal-
culate a routing path to targeted resources. Specifically, if
an FPGA wants to communicate with some resource, DUA
first checks the serverID and deviceID field in the destination
resource UID, to see if this resource has a direct connec-
tion from this FPGA. If yes, DUA uses the stack recorded
in the interconnection table to access the resource. If not,
DUA looks up the interconnection table to find a routing path
through other FPGAs.

For example, in Fig. 5, if FPGA 1 (UID 192.168.0.2:4)
wants to communicate with a remote application on FPGA
3 located on another server (say, UID 192.168.11.5:3), the
calculated routing path is from FPGA 1 to FPGA 2 via FPGA
Connect, and then to FPGA 3 via LTL.

6.3 Connection Management
In DUA, every FPGA communication is abstracted as a

connection. A connection is uniquely identified by a <src
UID:dst UID> pair. The DUA control plane is in charge of
managing all connections.

At the connection setup phase, to ensure security, DUA
first checks the access control policy to see if the source
FPGA application is allowed to access the destination re-
source. If so, the CPU CA will check the dst UID with the
interconnection table to calculate the routing path (§6.2) and
then delivers the forwarding table to the FPGA data planes
along the routing path, so the data plane will forward the ap-
plication traffic to the right stack. Depending on the type of
routing path, CPU CA will deliver different actions to the
data plane and underlying stacks. Specifically:

1) If the destination resource is directly connected, CPU
CA simply delivers the corresponding forwarding table to
the data plane.2) If the destination resource is not directly
connected, but still within the same server, CPU CA calls
the stacks in the local FPGAs along the routing path to setup
a stack connection. For example in Fig. 5, if FPGA 2 initi-
ates a connection to access the onboard DRAM of FPGA 1,
CPU CA first sets up an FPGA Connect connection between
FPGA 2 and FPGA 1. 3) If the destination resource is on a
different server, CPU CA first calls the remote CPU CA to
collaboratively setup a connection tunnel between the two re-
mote FPGAs (e.g., LTL connection). If necessary, CPU CA
also sets up stack tunnels between each sides’ local FPGAs.

If the above procedures all succeed, the DUA connection
is established and the application is notified. Also, the active
DUA connection is maintained in the control plane. Note
that some underlying stacks do not support a large number
of concurrent connections (e.g., LTL currently only supports
64). For multiple DUA connections with common routing
paths, DUA supports connections multiplexing the same tun-
nel connection (e.g., two DUA connections share an LTL
tunnel connection) to solve this problem. Moreover, DUA
sets up multiple tunnels for each traffic class to simplify traf-
fic scheduling.

When an application closes a connection, the DUA con-
trol plane closes the stack tunnel connections along the path
(if no one is multiplexing them), and deletes the correspond-
ing forwarding tables in data plane. If any failures of the
data path (e.g., targeted resource, physical interface, com-
munication stack) is detected, the control plane immediately
disconnects all affected DUA connections, and notifies the
application.

7 DUA Data Plane

As shown in Fig. 2, the DUA data plane resides between
FPGA applications and the physical interfaces. It consists of
three components: overlay, stack, and underlay. DUA over-
lay acts as a router, transferring data between different appli-
cations and communication stacks. Below the overlay, DUA
leverages all existing (or future new) stacks to efficiently ac-
cess target resources. DUA underlay connects between the
stacks and physical interfaces, which provides efficient mul-
tiplexing on physical interfaces for different stacks.

DUA
overlay

LTL DDR
FPGA

Connect
Host DMA

Connector Connector Connector Connector

App App

Switch Fabric

Connector Connector

LTL
Translator

DDR
Translator

Host DMA
Translator

FPGA CA

App

Connector

Connect
Translator

Figure 6: DUA overlay components.

devID (2B)
Sequence (4B)

devID (2B)IP (4B) IP (4B)

Flag
(1B)

Length
(2B)

Type
(1B)

Param (12B)

Src UID (6B) Dst UID (6B)

Figure 7: DUA message header format.

7.1 DUA Overlay
To efficiently transfer data between multiple different ap-

plications and stacks, we use an “Internet-router-like” archi-
tecture to implement the DUA overlay module. Specifically,
there are three components inside the overlay, connector,
switch fabric and stack translator, as shown in Fig. 6.

7.1.1 Connector
Connectors reside between application/stack and switch

fabric, playing a role similar to line cards in Internet routers.
Specifically, connector performs the following tasks:

1) Translating data (from application or stack) from/to
I/O interface to/from DUA messages: The I/O interface de-
scribed in §5.2 is actually implemented in connectors, receiv-
ing data both from applications or stacks. A DUA message
is the data transmission unit inside the overlay (like IP pack-
ets). Its header format is shown in Fig. 7. Connector encap-
sulates data into DUA messages in cut-through mode with
the corresponding header fields filled. Also, when connecter
receives a DUA message from the switch fabric, it translates
it back to the I/O interface signals. One thing to note is that
for connection setup/close primitives passed from the I/O in-
terface, connector encapsulates a special message and passes
it to the FPGA control agent, notifying the control plane to
setup/close the connection.

2) Maintaining and looking up the forwarding table: The
forwarding table stores the mapping of destination UID to
the switch output port. After message encapsulation, the
connector needs to lookup the forwarding table to determine
the switch output port to forward the message to the desti-
nation connector through the switch fabric. The forwarding
table is computed by the control plane and delivered to DUA
connector (§6.2). To eliminate the contention between con-
nectors during forwarding table lookup, each connector only
maintains its own forwarding table and performs lookups in-
dependently. Note that only entries for active connections
and permitted connectionless message routes are delivered
to the data plane, so this table is not large. In our current im-

plementation, the table can store 32 forwarding entries and
the area cost is very low (see §8.1).

3) Access control: Connector is also responsible for se-
curity checks whenever there is data coming in. Specifi-
cally, for connection-based communications, after a connec-
tion has passed the security check and has been successfully
setup by the control plane (see §6.3), the control plane adds
this connection to the routing control table in the connec-
tors along the path. For connectionless communications, the
control plane sets the routing table according to polices that
determine which path is allowed for these messages. Only
data from these legal connections or paths are transmitted by
DUA connectors.

4) Transport Control: DUA adopts an end-to-end transport
control design. Thus this feature is only enabled for connec-
tors that attach to applications. We do not reimplementing
TCP or RDMA on FPGA, instead, DUA leverages LTL [11]
as the transport protocol.
7.1.2 Switch Fabric

The switch fabric performs the same role as its counterpart
in Internet routers, switching messages from the incoming
connecter to the destination connector. Specifically, DUA
overlay adopts a crossbar switch fabric. To minimize mem-
ory overhead, we do not buffer any application or stack data
in the switch fabric. Instead, we make our switch fabric
lossless, and utilize the application data buffer or stack data
buffer to store data that is going to be transmitted. Once the
output is blocked, the switch fabric will back pressure to the
input connector, and unset the Ready signal of I/O interface.

In our current implementation, the underlying stacks
(LTL, FPGA Connect, DMA, FPGA Host and DDR) are all
reliable, as such, the lossless fabric ensures the DUA data
transmission primitives (§5.2) are also reliable. Note that in
real hardware implementations, although we do not buffer
data, in order to achieve full pipelining, we need to cache
256b data (one cycle of data from the I/O interface) at each
input port. And to remove head-of-line blocking among dif-
ferent ports, we implement a Virtual Output Queue (VOQ) as
in elastic router [11] at each input port of the switch fabric.

7.2 Communication Stacks
In our current implementation, we integrate four existing

communication stacks (LTL, DMA, FPGA-Host and DDR)
into the DUA data plane using stack translators. Note that
DUA leverages LTL as its end-to-end transport protocol.
LTL here only provides reliable communication in data cen-
ter network, its end-to-end congestion control protocol is dis-
abled. In addition, we design and implement a new stack
called FPGA Connect that provides high-performance intra-
FPGA communication through PCIe for improving the com-
munication efficiency mentioned in §2.2.
7.2.1 Stack Translators

Stack translators translate between DUA interface (§5.2)
and the actual interface of underlying stacks. After control

plane sets up the connection, it delivers the corresponding
translation tables to the stack translators along the routing
path. Translation tables record the mapping of DUA mes-
sage header and underlying stack header. Whenever receiv-
ing data from connector, the translator encapsulates the data
into stack interface according to the translation table. If con-
trol plane decides to multiplex stack tunnels, stack translator
encapsulates multiple DUA connections’ data into the same
stack connection. On the other end, when receiving data
from stacks, translator translates it back into DUA interface
and passes it to the connector for further routing.

Taking stack translator for memory stacks DDR/DMA as
example, it converts DUA operations to memory operations.
For instance, when the stack translator receives data with
Type READ from DUA connector (i.e., DMA/DDR read ini-
tiated by applications), it calls the DMA/DDR stack to issue
a read request, with the memory address set accordingly to
the address in DUA message header. Also, the DUA mes-
sage header is stored for sending the READ response back
to the application through DUA. After it gets the response,
stack translator calls DUA interface to send data back.

Similar to the forwarding table, the translation table also
only stores entries for active connections. Currently we im-
plement a table with size for 32 entries.

7.2.2 FPGA Connect Stack
FPGA Connect Stack enables direct communication be-

tween multiple applications on different FPGAs through
PCIe within a single server. Here we introduce the design
and implementation details of FPGA Connect Stack.

Challenge: There are three major challenges. 1) Dif-
ferentiating different inter-FPGA connections: One naive
solution is to use a large number of physical memory ad-
dresses to receive packets of each connection. That not
only needs a large amount of memory address space but
also introduces address management overhead. 2) Head-
of-line (HOL) blocking: PCIe is a lossless fabric and back
pressure is adopted. Due to application processing limita-
tions and PCIe bandwidth sharing, the available rates of each
connection can be different. Without an explicit flow con-
trol, the slower connection will saturate the buffer on both
sender HIPs and receiver which will delay other transmis-
sions. 3) Bufferbloat: If packets are sent to PCIe HIP in a
best-effort manner, the buffer inside HIP will quickly fill up
which causes further delays.

Design: FPGA Connect provides SEND and RECV oper-
ations to users. In order to differentiate different connections
and minimize physical memory address waste, FPGA Con-
nect adds a packet header in PCIe packet’s payload contain-
ing both sender’s and receiver’s port, and uses one identity
single-packet-size 1 physical memory address as receive ad-
dress for each board.

1The packet size mentioned in this paper is the PCIe TLP layer payload
size.

0

2

4

6

8

80 112 144 176 208 240

G
o

o
d

p
u

t
(G

B
/s

)

Packet Size (Bytes)

Root Complex

PCIe Switch

(a) Throughput

1.0

1.1

1.2

1.3

1.4

80 112 144 176 208 240

La
te

n
cy

 (
u

s)

Packet Size (Bytes)

Root Complex

PCIe Switch

(b) Latency

Figure 8: Performance of FPGA connect stack using differ-
ent TLP packet sizes.

We provide a simple token-based flow control to avoid
HOL blocking and bufferbloat. FPGA connect sends one
token request, which is a normal data packet with a special
bit, in each RTT to ask the receiver for the available token
if it keeps sending. Receiver responds with an ACK that in-
cludes the available token for this connection once it receives
this request. The sender uses this token to set the size of the
sending window for the next RTT. The receiver only keeps
the available connection number and assigns the available
token based on the algorithm of [25] to keep low buffer in
HIPs.

PCIe provides WRITE and READ operation primitives
for data transmission. According to our measurements,
PCIe peer-to-peer READ throughput is 20%-40% lower than
WRITE because of hardware limitations. Therefore, FPGA
Connect only uses WRITE as the data transmission primitive
for performance reason.

Implementation: In our implementation, FPGA Connect
has a 16 bits header including 8 bits destination connection
ID, 2 bits type and 6 reserved bits. Packets with Type = 0x01
are token requests, and those with Type = 0x11 are ACKs.
Other packets are normal data packets. We leverage CPU
software for connection setup, release and fail-over.

Evaluation: The typical PCIe network topology is a tree
structure. The root node is called root complex which is in
the CPU. Devices (e.g. FPGA, GPU and NVMe) are directly
connected to it. As the number of PCIe lanes provided by
root complex is limited, the number of devices connected to
root complex and the peer to-peer bandwidth among devices
is limited. Thus, some data center servers use PCIe switch to
support more devices and improve peer-to-peer performance
which provides high density of heterogeneous computation
capacity. Thus we test the performance of FPGA Connect on
two platforms. One provides connection through the PCIe
switch and the other through the root complex. For our
testbed, the maximum packet payload size is 256B. Although
the FPGA can send 256B packets, Root complex forces seg-
mentation of packets to align in 64B units (the PCIe switch
does not segment packets). We have measured the perfor-
mance of FPGA Connect with different packet sizes using
our testbed described in §8.1. Fig. 8 shows the results.
FPGA Connect achieves 6.66 GB/s peak throughput when

the packet size is 240B (the peak throughput is limited by
TLP implementation issues in our FPGA shell). Conse-
quently, in order to reduce the header overhead and achieving
higher throughput, we choose 240B as our maximum packet
size. As for latency, FPGA Connect provides latency as low
as 1.1∼1.33 us. In our testbed, PCIe switch offers better
throughput but slightly higher latency than root complex.

7.3 DUA Underlay
The DUA underlay resides between the stacks and phys-

ical interfaces, managing hard IPs and resource sharing
among stacks, protecting DUA stacks against outside at-
tacks and avoiding failed stacks sending packets outside the
FPGA. All these features are managed by policies config-
ured by the control plane. Each physical interface has a
separate underlay module. The upstream and downstream
interface are the same to provide seamless integration with
stacks. Therefore, existing stacks need no modification when
attached to DUA underlay.

The DUA underlay achieves these goals by setting up a
virtual transaction layer, which provides multiplexing and
security protection without proscribing a stack interface ab-
straction. The virtual transaction layer works by checking,
modifying, and, if necessary, dropping traffic generated by
or routed to the stacks to prevent causing a physical interface
(or even the whole network) into an error condition.

When data flows into DUA underlay from stacks, all pack-
ages are passed through a filter which validates them as well-
formed per the rules configured by the control plane. If stack
traffic violates any security rules or physical interface re-
strictions, the packet is dropped and the violation is reported
to FPGA CA. Then, when data flows from virtual transac-
tion layer to physical interfaces, the DUA underlay works as
a multiplexer, take the responsibility of managing multiple
connections for supporting multiple users. DUA underlay
scheduling the data to the physical interface using polices
like fair-sharing, weighted sharing, strict priority etc. In our
implementation, we use fair-sharing. To avoid wasting band-
width, we implement a shallow input FIFO for each stack in
the underlay. The scheduler fairly schedules data from non-
empty FIFOs only.

When receiving data from a physical interface, the DUA
underlay works as a demultiplexer. It demultiplexes the in-
coming data to the corresponding stack through virtual trans-
action layer according to the data header.

8 Evaluation
Testbed Setup: As shown in Fig. 9, we build a testbed

consisting of two Supermicro SYS-4028GR-TR2 servers, 20
FPGAs and one Arista 7060X switch. Every 5 FPGAs are in-
serted under the same PCIe switch and only one FPGA under
each PCIe switch is connected to the Arista switch. All FP-
GAs in the testbed are the same as in [11], which is an Altera
Stratix V D5, with 172.6K ALMs of programmable logic,
one 4 GB DDR3-1600 DRAM channel, two PCIe Gen 3 x8

SuperMicro - 1

PCIe Switch

CPU1 CPU2
Root

Complex

QPI

S uperMi cro - 2

FPGA 1*
Root

Complex

PCIe Switch

FPGA 5

FPGA 6

FPGA 7

FPGA 8

FPGA 9

FPGA 5

FPGA 6

FPGA 7

FPGA 8

FPGA 9

FPGA 0

FPGA 1

FPGA 2

FPGA 3

FPGA 4

FPGA 0

FPGA 1

FPGA 2

FPGA 3

FPGA 4

Arista 7060X switch

PCIe Switch

CPU1 CPU2
Root

Complex

QPI

Root
Complex

PCIe Switch

FPGA 5

FPGA 6

FPGA 7

FPGA 8

FPGA 9

FPGA 0

FPGA 1

FPGA 2

FPGA 3

FPGA 4

Figure 9: DUA experiment testbed

2 ports 1272 0.74%

4 ports 3227 1.88%

8 ports 9366 5.45%

3011 1.75%

FPGA Connect 138.4 0.08%

LTL 255.4 0.15%

DMA 115.7 0.07%

DDR 190.3 0.11%

431.7
Stacks: FPGA Connect, LTL, DMA, DDR

PHY interfaces: PCIe, DDR, QSFP

ALMs

0.25%

Switch fabric

Component

DUA

overlay

Stack translator

Connector

DUA

underlay

Figure 10: FPGA area cost of different components in DUA
data plane.

HIPs and two independent 40 Gb Ethernet QSFP+. Note that
in all the following experiments, we only enable one HIP and
one QSFP+ in each FPGA shell. In addition, because Super-
Micro does not provide two PCIe slots directly connected to
the root complex, we use a Dell R720 server to test the per-
formance under root complex (experiments in §7.2.2). Other
experiments are on the SuperMicro servers. Servers’ OS is
Windows Server 2012 R2, and each server has a 40Gbps NIC
connected to the switch.

8.1 System Micro Benchmark
We first show that DUA only consumes little FPGA area.

Then we show that the DUA switch fabric and routing table
achieve high throughput and low latency. Finally we show
that DUA incurs little latency overhead and handles the mul-
tiplexing of communication stacks and applications well.

8.1.1 FPGA Area Cost
Fig. 10 shows the FPGA resource consumption for imple-

menting DUA. Here we only list logic resource overhead (in
ALMs) since DUA does not buffer data and BRAM cost is
negligible. When connecting four stacks and no application,
the total ALMs consumed by DUA overlay (including 4-port
switch, 4 connectors and 4 stack translators) is only 9.29%.
When increasing the number of switch ports to 8 (4 ports
for applications), the overlay still only costs 19.86% logic
area in our middle-end FPGA. The underlay consumes only
0.25% logic resources when connecting 4 stacks and 3 phys-
ical interfaces. Compared to the logic resources consumed
by the existing underlying communication stacks and phys-
ical interfaces (in total >17%), such overhead incurred by

Table 2: Throughput and latency of switch fabric.
Number Latency (ns)

Throughput (GBps)
of ports min avg max

4 53 326 1086 9.6
8 56 649 1903 9.6

Table 3: Area cost and max frequency of routing table.
Number of entries ALMs (per port) Fmax (MHz)

32 1435 0.83% 490.20
64 2810 1.63% 423.91

128 5571 3.23% 378.93

DUA is moderate and acceptable. With more advanced FP-
GAs, such logic area cost will become negligible (e.g., latest
Stratix 10 5500 FPGA has 10x logic resource [26]).

8.1.2 Switch Fabric Performance
We conduct an experiment to evaluate the performance of

the switch fabric in DUA overlay. In this test, all switch ports
are attached to an application which acts as traffic generator
and result checker. All applications send messages to a single
port to construe a congested traffic scenario. Message length
is varied from 32B to 4KB. The switch fabric works at 300
MHz, thus the ideal throughput is 9.6 GBps. We measure
the latency and output throughput during a test lasting for
2 hours. Table 2 shows the result with different number of
switch ports. Throughput achieves the theoretical maximum
and Latency is low.

8.1.3 Routing Table Performance
We implement parallel matching engines for each table

entry. Each entry comparison takes 1 cycle, and the match-
ing result is calculated by a priority selector in another cycle.
Note that this implementation has a two cycles constant la-
tency. On the other hand, the routing table is well pipelined,
so in every cycle it can accept a message and look up its
output port. Thus, the message-per-second throughput is the
same as the clock frequency. Table 3 shows the area cost
and max frequency of the routing table with different number
of entries. Our implementation with typical 32 entries con-
sumes 0.83% of ALMs, that is 3.3%-6.6% for a typical 4-8
port implementation. The max frequency is high enough for
serving the shortest DUA message at a rate of over 10GBps
per port. As the number of entries increases to 64 and 128,
area cost increases linearly and the frequency dose not de-
crease much.

8.1.4 Latency Overhead
We use FPGA 1 to send data through DUA to FPGA 1*

in Fig. 9. Specifically, DUA first transmits data from FPGA
1 to FPGA 4 through FPGA Connect, and then to FPGA
4* (the 4th FPGA on Server 2) through LTL, and then to
FPGA 1* through FPGA Connect. We measure the end-
to-end communication latency including DUA and all the
traversing stacks, as well as the break-down latency for each
stack.

Fig. 11(a) shows the average latency of each part. Un-
der various packet sizes, DUA only incurs less than 0.2µs

0.153 0.176 0.196

1.266 1.266 1.316

2.444 2.479 2.545

0

1

2

3

4

5

64 128 256

La
te

n
cy

 (u
s)

Packet Size (B)

DUA LTL FPGA Connect

(a) Latency overhead

0

2

4

6

8

0 1 2 3 4

Th
ro

u
gh

p
u

t
(G

B
/s

)

Time (s)

App 1 App 2
App 3 Total

(b) Handling multiplexing

Figure 11: DUA only adds little latency overhead and han-
dles multiplexing well.

SPMV

SPMV

SPMV

SPMV

SPMV

SPMV

D
M
V

DMV DMV DMV

49292 × 640
640 × 64

64 × 640

640 × 128
128 × 640

OFFLOAD

Figure 12: Deep Crossing Model in our experiment

latency, which is a negligible overhead compared with the
other stacks’ latency in the end-to-end communication. Note
that DUA is fully pipelined and can achieve line rate, incur-
ring no throughput overhead.
8.1.5 Handling Multiplexing

We build three applications (App 1,2,3) on the same
FPGA all using DUA, to test whether DUA can handle multi-
plexing well. Specifically, App 1 starts from second 0, keeps
writing data to host DRAM. At second 1, App 2 also starts
to write data to host DRAM. At second 2, App 3 starts to
send data to another local FPGA through FPGA Connect. In
this scenario, all three applications multiplex the same PCIe
physical interface, App 1 and 2 multiplex the same DMA
stack, and DMA stack and FPGA Connect stack multiplex
the same physical PCIe interface. DUA adopts fair schedul-
ing policy for all DUA connections, and changes to weighted
share scheduling (share ratio 1:1:2) starting from second 3.

Fig. 11(b) shows the results. During the experiments, the
total throughput of all applications always achieves the max-
imum throughput of the PCIe physical interface (§7.2.2).
When new applications join, DUA successfully balances the
throughput between them. Specifically, App 1 and 2 each
achieve ∼3.2GBps between second 1 and 2, all three appli-
cations get ∼2.2GBps between second 2 and 3. Also, when
we change the scheduling policy to 1:1:2 weighted share at
second 3, the three applications quickly get their respective
expected throughput.
8.1.6 Deep Crossing
8.2 Applications Built With DUA

In this section, we present two applications built on DUA,
demonstrating that DUA can ease the process of building
high-performance multi-FPGA applications.

Deep crossing, a deep neural network, was proposed in
[27] for handling web-scale application and data sizes. The
model trained from the learning process is deployed in Bing

Table 4: ALMs cost (%) of different dense part
Base D1 D2 D3 D4 All

Parall = 32
26.0

11.0 9.4 11.0 9.8 67.2
Parall = 64 20.8 19.1 20.8 19.6 106.3

Table 5: Latency (µs) of the dense part in FPGA.
D1 D2 D3 D4 Comm. E2E

Single FPGA 7.27 6.58 13.30 12.96 N/A 40.12

Two FPGAs 4.17 3.48 7.22 7.09 1.419 (FC) 23.38
3.354 (LTL) 25.32

to provide web services. The critical metric for the deep
crossing model is latency since it impacts service response
time.

Fig. 12 shows the structure of the deep crossing
model in our experiments. There are three sparse matrix-
vector (SPMV) multiplications and four dense matrix-vector
(DMV) multiplications. Each input data to the whole model
is a 49,292 dimensional vector, as in [27]. The sparse part is a
memory-intensive task while the dense part is computation-
intensive, and the vector between each dense part is small.
Therefore, we offload the dense parts to FPGA to reduce la-
tency.

We implement all dense parts inside FPGA using
OpenCL. In our implementation, for each matrix multiplica-
tion, there is an adjustable parameter called parallel degree
(Parall), which determines the number of concurrent multi-
plications being done in one cycle. The larger Parall, the
fewer cycles are needed to complete this matrix multiplica-
tion; meanwhile, the larger parall, the more FPGA logic re-
sources are consumed. As shown in Tab. 4, if we implement
the whole four DMVs in a single FPGA board, we can only
offload the model with Parall = 32 because of FPGA resource
limitations.

To achieve better latency, we use DUA to build a two-
FPGA deep crossing accelerator. Specifically, we implement
all the DMVs in the model with Parall = 64, and down-
load the first two DMVs on one FPGA, and the other two
DMVs into another FPGA. The two FPGAs are physically
connected through both the intra-server PCIe network and
Ethernet, with underlying stack FPGA Connect / LTL en-
abled. We use DUA interface to connect the DMVs logic on
the two FPGA boards.

It only incurs 26 extra lines of OpenCL code to call the
DUA interface to connect the two FPGA boards. Moreover,
changing the communication method only requires changing
the routing table, without any change to OpenCL code and
thus eliminates hours of hardware recompilation time. Table
5 shows the latency results of the FPGA offloading (count-
ing only the FPGA-related latency). The results show that
the two-FPGA version built with DUA reduces the latency
by ∼42% (through FPGAConnect, FC for short in table) or
∼37% (through LTL) compared to the single-FPGA version.

0

1

2

3

4

5

64 256 1024 4096 16384

Th
ro

u
gh

p
u

t
(G

B
/s

)

Input String Length (Byte)

through DUA

through CPU

Pure CPU

(a) Throughput

1.E+0

1.E+2

1.E+4

1.E+6

1.E+8

64 256 1024 4096 16384

La
te

n
cy

 (
u

s)

Input String Length (Byte)

through DUA

through CPU

Pure CPU

(b) Latency

Figure 13: Performance of multi-regular-expression match-
ing system.

8.2.1 Fast Multi-Regular-Expression Matching

A network intrusion detection system (IDS) [28–31] lies
between the network and the host, intercepting and scanning
the traffic to identify patterns of malicious behaviour. Typi-
cally, these patterns in IDS are expressed as regular expres-
sions. Each pattern is denoted as a rule, and all patterns in
the different stages together are called the rule set.

We have built a fast multi-regular-expression matching
prototype which consists of three FPGAs over DUA. The
boards are physically connected through PCIe within the
same server. Each regular expression is translated into one
independent NFA, and the NFA is translated into matching
circuit logic using methods in [32]. We use DUA with un-
derlying FPGA Connect stack to transfer data between these
three FPGAs. Connecting the DUA interface only costs less
than 30 lines of OpenCL code on each FPGA. We implement
the whole core rule set [33] of ModSecurity in our system.
The rule set contains 219 different regular expression rules in
total. We randomly divide these 219 rules into three pattern
stages with each stage containing 73 rules, and implement
each stage in a single FPGA.2 For each stage in each FPGA,
we implement 32 parallel matching engines, with each en-
gine matching one 8-bit character in one cycle. An input
string goes to the next FPGA only after it finishes the match-
ing in this stage.

For comparison, we also let these three FPGAs exchange
data through CPU, without the direct communication method
provided by DUA FPGA Connect. Also, we compare with
the baseline performance, which uses a single 2.3GHz Xeon
CPU core and the widely used PCRE [34] regular expression
engine.

We generate different length of input strings for matching,
to evaluate the throughput and latency of the whole regular
expression matching system. String lengths vary from 64 to
16K byte, with contents randomly generated. In our exper-
iment, we use a single CPU core to DMA the input string
into the matching system instead from the network. We get
the matching results back using DMA and count the perfor-
mance in the same CPU core.

2Note that the number of rules in each FPGA does not affect the match-
ing speed, since all rules are matched in parallel.

Fig. 13 shows the result. Enabled by direct communi-
cation through DUA, our regular expression matching sys-
tem (denoted as “through DUA”) achieves about three times
higher throughput and lower latency compared to FPGAs ex-
changing data through CPU (denoted as “through CPU”).
Benefitting thus from the direct communication through pure
hardware, our system almost reaches the maximum possible
throughput of input string DMA when the string length ex-
ceeds 8KB. On the contrary, when exchanging data through
CPU, the CPU needs to frequently read matching results
from former-stage FPGAs and send strings to next-stage FP-
GAs, which becomes the performance bottleneck. Also, we
can see that for such a complex rule set, pure CPU can only
achieve very low performance. Note that our throughput
is slightly lower than the maximum FPGA Connect speed
(§7.2.2) due to the following reasons: 1) software libraries
for DMA incur overhead compared with pure physical inter-
face; 2) although the data paths through PCIe are different
for DMA input/output data to CPU and exchanging data be-
tween FPGAs, they all use the same PCIe HIP to issue oper-
ations which incurs some contention.

9 Related Work and Conclusion
While prior work has aimed to provide abstractions and

simplified FPGA communications, to the best of our knowl-
edge, DUA is the first unified communication architecture
for FPGAs to access all available data center resources, re-
gardless of their location and type. Catapult shell [10, 11],
Amazon F1 [2] and its derivatives provide an abstract in-
terface between FPGA logic, software and physical inter-
faces, but it remains far from being the unified communica-
tion architecture provided by DUA. The Altera/Intel Avalon
bus [35] and the AXI bus [36] used by Xilinx provide a uni-
fied interface for FPGA applications, but they are designed
solely for on-chip buses, not the scale of data center net-
work. TMD-MPI [37] provides a general MPI-like commu-
nication model for multi-FPGA systems, but it only targets
communication between FPGAs rather than general resource
access. Also, it is implemented in software and requires
the CPU. The recent LTL [11] work targets the communica-
tion between FPGAs in data center through Ethernet. DUA
can leverage and support all these works as communication
stacks to improve connectivity.

Providing a communication architecture with unified nam-
ing and common interface has proven widely successful in
IP networks. In this paper, DUA takes a first step to bring
this communication architecture into the FPGA world. Our
experiments show that DUA has negligible impact on perfor-
mance and area, and greatly eases the programming of dis-
tributed FPGA applications that access data center resources.
Note that though this work is targeted to FPGAs, there is no
reason why it cannot be applied to other devices as well.

References
[1] Microsoft Goes All in for FPGAs to Build Out AI Cloud.

https://www.top500.org/news/microsoft-goes-all
-in-for-fpgas-to-build-out-cloud-based-ai/.

[2] Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/
instance-types/f1/.

[3] Intel, Facebook Accelerate Datacenters With FPGAs. https:
//www.enterprisetech.com/2016/03/23/intel-fac
ebook-accelerate-datacenters-fpgas/.

[4] Data Engine for NoSQL - IBM Power Systems Edition White Pa-
per. https://www-01.ibm.com/common/ssi/cgi-bin/s
sialias?htmlfid=POW03130USEN.

[5] Baidu Takes FPGA Approach to Accelerating SQL at Scale.
https://www.nextplatform.com/2016/08/24/baid
u-takes-fpga-approach-accelerating-big-sql/.

[6] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and
Yuanzheng Wang. Sdf: Software-defined flash for web-scale internet
storage systems. ACM SIGPLAN Notices, 49(4):471–484, 2014.

[7] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu, and Song
Jiang. Sda: Software-defined accelerator for large-scale dnn systems.
In Hot Chips 26 Symposium (HCS), 2014 IEEE, pages 1–23. IEEE,
2014.

[8] Alibaba, Intel introduce FPGA to the Cloud. https://luxeelec
tronicscomblog.wordpress.com/2017/03/13/alibab
a-intel-introduce-fpga-to-the-cloud/.

[9] Tencent FPGA Cloud Computing. https://www.qcloud.com
/product/fpga.

[10] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Gopi Prashanth Gopal, Jan Gray, et al. A reconfigurable
fabric for accelerating large-scale datacenter services. In Computer
Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium
on, pages 13–24. IEEE, 2014.

[11] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, et al. A Cloud-Scale Acceleration
Architecture. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on, pages 1–13. IEEE, 2016.

[12] Microsoft demonstrates the world’s ’first AI supercomputer,’ using
programmable hardware in the cloud. https://www.geekwire
.com/2016/microsoft-touts-first-ai-supercomp
uter-using-programmable-hardware-cloud/.

[13] Ray Bittner, Erik Ruf, and Alessandro Forin. Direct gpu/fpga commu-
nication via pci express. Cluster Computing, 17(2):339–348, 2014.

[14] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[15] Nick McKeown. Software-defined networking. INFOCOM keynote
talk, 17(2):30–32, 2009.

[16] Jian Gong, Tao Wang, Jiahua Chen, Haoyang Wu, Fan Ye, Songwu
Lu, and Jason Cong. An efficient and flexible host-fpga pcie com-
munication library. In Field Programmable Logic and Applications
(FPL), 2014 24th International Conference on, pages 1–6. IEEE,
2014.

[17] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Al-
kalay, Michael Haselman, et al. Serving dnns in real time at datacenter
scale with project brainwave. IEEE Micro, 38(2):8–20, 2018.

[18] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Mas-
sengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
Logan Adams, Mahdi Ghandi, et al. A configurable cloud-scale dnn
processor for real-time ai. In Proceedings of the 45th Annual Interna-
tional Symposium on Computer Architecture, pages 1–14. IEEE Press,
2018.

[19] Michael Johannes Jaspers. Acceleration of read alignment with coher-
ent attached fpga coprocessors. 2015.

[20] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. KV-Direct:
High-Performance In-Memory Key-Value Store with Programmable
NIC. In Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, 2017.

[21] Katayoun Neshatpour, Maria Malik, Mohammad Ali Ghodrat, and
Houman Homayoun. Accelerating big data analytics using fpgas.
In Field-Programmable Custom Computing Machines (FCCM), 2015
IEEE 23rd Annual International Symposium on, pages 164–164.
IEEE, 2015.

[22] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and An-
dreas Herkersdorf. Enabling fpgas in hyperscale data centers. In
Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl
Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl
Conf on Scalable Computing and Communications and Its Associated
Workshops (UIC-ATC-ScalCom), 2015 IEEE 12th Intl Conf on, pages
1078–1086. IEEE, 2015.

[23] Malte Vesper, Dirk Koch, Kizheppatt Vipin, and Suhaib A Fahmy.
JetStream: an open-source high-performance PCI express 3 stream-
ing library for FPGA-to-host and FPGA-to-FPGA communication. In
Field Programmable Logic and Applications (FPL), 2016 26th Inter-
national Conference on, pages 1–9. IEEE, 2016.

[24] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy M Bannon, Seb Boving, Gaurav Desai, Bob Felderman,
Paulie Germano, et al. Jupiter Rising: A Decade of Clos Topologies
and Centralized Control in Google’s Datacenter Network. SIGCOMM,
45(4):183–197, 2015.

[25] Jiao Zhang, Fengyuan Ren, Ran Shu, and Peng Cheng. Tfc: token
flow control in data center networks. In Proceedings of the Eleventh
European Conference on Computer Systems, page 23. ACM, 2016.

[26] Stratix 10 - Overview. https://www.altera.com/product
s/fpga/stratix-series/stratix-10/overview.htm
l.

[27] Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu,
and JC Mao. Deep crossing: Web-scale modeling without man-
ually crafted combinatorial features. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 255–262. ACM, 2016.

[28] Snort - Official Site. https://www.snort.org/.

[29] The Bro Network Security Monitor. https://www.bro.org/.

[30] ModSecurity: Open Source Web Application Firewall. https://
www.modsecurity.org/.

[31] Application Layer Packet Classifier for Linux. http://l7-filte
r.sourceforge.net/.

[32] Reetinder P S Sidhu and Viktor K Prasanna. Fast regular expression
matching using fpgas. pages 227–238, 2001.

[33] OWASP ModSecurity Core Rule Set (CRS). https://modsecur
ity.org/crs/.

[34] PCRE - Perl Compatible Regular Expressions. http://www.pcre
.org/.

[35] Avalon Interface Specifications. https://www.altera.com/c
ontent/dam/altera-www/global/en_US/pdfs/liter
ature/manual/mnl_avalon_spec.pdf.

https://www.top500.org/news/microsoft-goes-all-in-for-fpgas-to-build-out-cloud-based-ai/
https://www.top500.org/news/microsoft-goes-all-in-for-fpgas-to-build-out-cloud-based-ai/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.enterprisetech.com/2016/03/23/intel-facebook-accelerate-datacenters-fpgas/
https://www.enterprisetech.com/2016/03/23/intel-facebook-accelerate-datacenters-fpgas/
https://www.enterprisetech.com/2016/03/23/intel-facebook-accelerate-datacenters-fpgas/
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=POW03130USEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=POW03130USEN
https://www.nextplatform.com/2016/08/24/baidu-takes-fpga-approach-accelerating-big-sql/
https://www.nextplatform.com/2016/08/24/baidu-takes-fpga-approach-accelerating-big-sql/
https://luxeelectronicscomblog.wordpress.com/2017/03/13/alibaba-intel-introduce-fpga-to-the-cloud/
https://luxeelectronicscomblog.wordpress.com/2017/03/13/alibaba-intel-introduce-fpga-to-the-cloud/
https://luxeelectronicscomblog.wordpress.com/2017/03/13/alibaba-intel-introduce-fpga-to-the-cloud/
https://www.qcloud.com/product/fpga
https://www.qcloud.com/product/fpga
https://www.geekwire.com/2016/microsoft-touts-first-ai-supercomputer-using-programmable-hardware-cloud/
https://www.geekwire.com/2016/microsoft-touts-first-ai-supercomputer-using-programmable-hardware-cloud/
https://www.geekwire.com/2016/microsoft-touts-first-ai-supercomputer-using-programmable-hardware-cloud/
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.snort.org/
https://www.bro.org/
https://www.modsecurity.org/
https://www.modsecurity.org/
http://l7-filter.sourceforge.net/
http://l7-filter.sourceforge.net/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
http://www.pcre.org/
http://www.pcre.org/
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf

[36] AXI Reference Guide. https://www.xilinx.com/support
/documentation/ip_documentation/axi_ref_guide/
v13_4/ug761_axi_reference_guide.pdf.

[37] Manuel Saldana and Paul Chow. TMD-MPI: An MPI implementa-
tion for multiple processors across multiple FPGAs. In Field Pro-
grammable Logic and Applications, 2006. FPL’06. International Con-
ference on, pages 1–6. IEEE, 2006.

Appendices
A OpenCL sample code to use DUA API

Figure 15 shows an example Verilog code for application
using DUA interface to initiate a connection and send data.
It first generates a CONNECT primitive and then waits for
the response. If the connection is successfully established,
it records the source UID and port number, then enters the
sending data state. If the connection setup fails, it will gen-
erate another CONNECT primitive. Note that the source ad-
dress and port is not available before the connecting setup,
thus this field is reserved when issuing a CONNECT com-
mand. And the response of CONNECT command will con-
tain the corresponding fields.

B OpenCL sample code to use DUA API
Fig, 14 shows an OpenCL sample code pieces to use DUA

API. DUA Msg is a union storing DUA messages to be sent
in current clock (see Fig. 7). dua tx is a reserved channel that
automatically connects to the request interface of our DUA
I/O interface (Fig. 4). simple write () function writes 32B
data to address DST ADDR of the resource whose UID is
DST UID through DUA interface.

void simple_write () {
DUA_Msg msg;
bool is_header = true;
while (1) {
if (is_header) {

msg.header.length = 32;
msg.header.type = WRITE;
msg.header.src_uid = SRC_UID;
msg.header.dst_uid = DST_UID;
msg.header.dst_addr = DST_ADDR;
is_header = false;

}
else {

msg.raw = data;
}
write_channel_altera(dua_tx, msg.raw);

}
}

Figure 14: OpenCL sample code to use DUA API

assign rx_header = rx_data_in;

assign connect_header.type = CONNECT;
assign connect_header.dst_uid = dst_uid;
assign connect_header.dst_port = dst_port;

assign send_header.dst_UID = dst_UID;
assign send_header.src_UID = src_UID;
assign send_header.type = SEND;
assign send_header.length = 48;
assign send_header.src_port = src_port;
assign send_header.dst_port = dst_port;

always @(posedge clk) begin
tx_valid_out <= 1’b0;
tx_first_out <= 1’b0;
tx_last_out <= 1’b0;
case (state)
SETUP_CONNECTION: begin

if (tx_ready_in) begin
tx_data_out <= connect_header;
tx_valid_out <= 1’b1;
state <= WAITING_RESPONSE;

end
end
WAITING_RESPONSE: begin

if (rx_valid_in
&& rx_data.type == CONNECT) begin

if (rx_data_in.status == SUCCESS) begin
src_UID <= rx_data_in.src_UID;
state <= SENDING_HEADER;

end
else begin
state <= SETUP_CONNECTION;

end
end

end
SENDING_HEADER: begin

if (tx_ready) begin
tx_data_out <= send_header;
tx_valid_out <= 1’b1;
tx_first_out <= 1’b1;
state <= SENDING_DATA_0;

end
end
SENDING_DATA_0: begin

if (tx_ready) begin
tx_valid_out <= 1’b1;
tx_data_out <= data_0;
state <= SENDING_DATA_1;

end
end
SENDING_DATA_1: begin

if (tx_ready) begin
tx_valid_out <= 1’b1;
tx_data_out <= {128’h0, data_1}; // 128bits
tx_last_out <= 1’b1;
state <= CLOSE_CONNECTION;

end
end
CLOSE_CONNECTION: begin

// close connection logic
end
endcase

end

Figure 15: DUA API usage example

https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf

	Introduction
	Background
	FPGA Deployments in Data Centers
	Existing Problems

	Desired Communication Architecture
	DUA Overview
	DUA Communication Interface
	Resource Address Format
	API
	Semantic Primitives
	I/O interface

	DUA Control Plane
	Resource Management
	Routing Management
	Connection Management

	DUA Data Plane
	DUA Overlay
	Connector
	Switch Fabric

	Communication Stacks
	Stack Translators
	FPGA Connect Stack

	DUA Underlay

	Evaluation
	System Micro Benchmark
	FPGA Area Cost
	Switch Fabric Performance
	Routing Table Performance
	Latency Overhead
	Handling Multiplexing
	Deep Crossing

	Applications Built With DUA
	Fast Multi-Regular-Expression Matching

	Related Work and Conclusion
	Appendices
	Appendices
	OpenCL sample code to use DUA API
	OpenCL sample code to use DUA API

