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Fig. 1. Parameter fields for HighRise. Source position varies in 3D; one horizontal slice is shown. The listener is held fixed at the green circle.

Convincing audio for games and virtual reality requires modeling directional

propagation effects. The initial sound’s arrival direction is particularly salient

and derives from multiply-diffracted paths in complex scenes. When source

and listener straddle occluders, the initial sound and multiply-scattered

reverberation stream through gaps and portals, helping the listener navi-

gate. Geometry near the source and/or listener reveals its presence through

anisotropic reflections. We propose the first precomputed wave technique

to capture such directional effects in general scenes comprising millions of

polygons. These effects are formally represented with the 9D directional

response function of 3D source and listener location, time, and direction at

the listener, making memory use the major concern. We propose a novel

parametric encoder that compresses this function within a budget of ~100MB

for large scenes, while capturing many salient acoustic effects indoors and

outdoors. The encoder is complemented with a lightweight signal processing

algorithm whose filtering cost is largely insensitive to the number of sound

sources, resulting in an immediately practical system.
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1 INTRODUCTION
Hearing is directional, complementing vision by detecting where

sound events occur in our environment. Standing outside a hall,

we’re able to locate the open door through which streams a crowd’s

chatter even when the door is obscured or lies behind us. As we walk

inside, the auditory scene wraps around us. Meanwhile the initial

sound’s direction smoothly resolves from the door to each of the

speakers, helping us face and navigate to a chosen individual. While

reflections envelope the listener indoors, partly open spaces yield

anisotropic reflections, reinforcing the visual location of nearby

scene geometry. When source and listener are close (e.g. with foot-

steps), the delay between the initial sound and first reflections can

become audible, strengthening the perception of distance to walls.

Our goal is practical modeling and rendering of such directional

acoustic effects for games and VR applications in scenes containing

millions of polygons. Manual mesh simplification or scene decom-

position must be avoided. Many physical effects are perceivable and

must be simulated accurately and efficiently as the sound diffracts

around obstacles and through portals and scatters many times. Tran-

sient effects are critical. Initial sound arriving in the first 1ms, pos-

sibly through multiple portals, determines its perceived direction.

The directional distribution of later arriving reflections convey ad-

ditional information about the listener’s surroundings.

Ours differs from typical problems in room acoustics [Kuttruff

2000]. We handle real-time movement of both sources and listener,

capturing variation in complex scenes without breaking the fraction-

of-a-core CPU budget typical for games. Effects should be robust

even in occluded cases where conventional path tracing demands
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enormous sampling to produce smooth results, greatly exceeding

what can be computed within budget.

We take a precomputed, wave-based approach that simulates

frequencies up to 1000Hz in our experiments. Paths are not explicitly

traced thus obviating aliasing problems. On-line CPU demands are

modest. The challenge becomes compact encoding of the petabyte-

scale wave fields generated. Comparing to previous work, [Mehra

et al. 2013] capture directional acoustics but handle only outdoor

scenes composed of 10-20 explicitly separated objects like building

facades or boulders. The technique is CPU- and memory-intensive

and doesn’t support general scenes like the ones we demonstrate.

[Raghuvanshi and Snyder 2014] limit memory and computation in

general scenes but neglect directionality.

Directional audio codecs (Surround, Ambisonics, DiRaC) aim to

compactly encode the sound field at a listener due to superposed

propagated signals from many sound sources. They produce an

audio stream for efficient playback, usually to accompany visual

frames. More recent encodings (Dolby Atmos, MPEG-H) add limited

interactivity during decoding with steerable point emitters (“audio

objects”) but the scene’s acoustics are not modeled.

We instead encode the entire 9D spatially-varying directional
impulse response (DIR) field for a static scene as a function of both

source and receiver position, direction, and time. This lets us model

acoustic effects for arbitrarily moving listener and sources that can

emit any signal at runtime. The parameters we encode are shown in

Figure 1: delay, direction, and loudness of the initial sound (where

direction is coded directly as a 3D vector), delay and direction of

the early reflections (where direction is coded in terms of 6 coarse

directional basis functions labeled “above”, “below”, “right”, “left”,

“front”, and “back” in the figure), and 60dB decay time of response

energy after onset of reflections.

No published work has yet exploited the spatial coherence we

show inheres in perceptual coding of DIR fields. Unlike a sound field

which combines multiple baked-in sources and so entangles source

signal content with propagation effects, the DIR separates these. We

show with virtual experiments that arrival directions in the DIR

are independent of frequency to a good approximation, even in the

presence of edge diffraction and scattering. Said another way, for

a given source and listener position, most of the DIR’s energy in

any given transient phase of the response comes from a consistent

set of directions across frequency. This lets us avoid encoding and

rendering frequency-dependent directions.

Our work is close in motivation to DiRaC [Laitinen et al. 2012]

which uses flux density (also called vector intensity) for directional

analysis and harnesses perception to reduce memory. But DiRaC

aims at encoding general sound fields and requires orders of magni-

tude too muchmemory if applied directly to our problem.We reduce

memory demands by specializing perceptual coding to DIR fields

rather than sound fields, extracting only a few salient parameters,

and exploiting their spatial coherence. We also show for the first

time the remarkable agreement flux density achieves with ground

truth (linear) plane wave decomposition, despite its nonlinear for-

mulation and faster computation.

We complement the encoder with a lightweight rendering tech-

nique that applies DIR filters for each sound source with cost largely

insensitive to the number of sources. This results in a system that

can handle large 3D scenes within practical RAM and CPU budget

for games and VR.

2 PRELIMINARIES
We provide brief background on directional sound propagation

needed to understand ours and related work.

2.1 Green’s Function and the DIR Field
Sound propagation can be represented in terms of Green’s func-

tion [Pierce 1989], p, representing pressure deviation satisfying the

wave equation:[
1

c2
∂2

∂t2
− ∇2

]
p
(
t ,x ,x ′

)
= δ (t)δ

(
x − x ′

)
, (1)

where c = 340m/s is the speed of sound and δ the Dirac delta

function representing the PDE’s forcing impulse. Holding (x ,x ′)
fixed, p (t ; x ,x ′) yields the impulse response at a 3D receiver point

x due to a spatio-temporal impulse introduced at point x ′. Thus p
forms a 6D field of impulse responses capturing global propagation

effects like scattering and diffraction determined by the boundary

conditions which comprise the geometry and materials of the scene.

In nontrivial scenes, analytical solutions are unavailable and p must

be sampled via computer simulation or real-world measurements.

The principle of acoustic reciprocity holds that under fairly general

conditions Green’s function is invariant to interchange of source

and receiver: p(t ,x ,x ′) = p(t ,x ′,x).
We confine our attention to omni-directional point sources. The

response at x due to a source at x ′ emitting a pressure signal q̃(t)
can be recovered from Green’s function via a temporal convolution,

denoted by ∗, as

q
(
t ; x ,x ′

)
= q̃(t) ∗ p

(
t ; x ,x ′

)
. (2)

As we discuss in Section 4, p (t ,x ; x ′) in any finite, source-free

region centered at x can be uniquely expressed as a sum of plane

waves, which form a complete basis for free-space propagation.

The result is a decomposition into signals propagating along plane

wavefronts arriving from various directions, called the directional
impulse response (DIR) [Embrechts 2016]. Refer to Figure 2. Applying

this decomposition at each (x ,x ′) yields the directional impulse

response field, denoted d(s, t ,x ,x ′), where s parameterizes arrival

direction. Our goal is to compute and compactly encode the DIR

field so that it can be perceptually reproduced for any number of

sound sources and associated signals, efficiently at runtime.

2.2 Binaural Rendering with the HRTF
The response of an incident plane wave field δ (t + s · ∆x/c) from
direction s can be recorded at the left and right ears of a person. ∆x
denotes position with respect to the listener’s head centered at x .
Assembling this information over all directions yields the person’s

Head-Related Transfer Function (HRTF), denoted hL/R (s, t). Low-to-
mid frequencies (<1000Hz) correspond to wavelengths much larger

than the head and diffract around it, creating a detectable time dif-

ference between the two ears. Higher frequencies are shadowed,

causing a significant loudness difference. These phenomena, respec-

tively called the interaural time difference (ITD) and the interaural
level difference (ILD), let us localize sources [Blauert 1997]. Both
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Fig. 2. Directional impulse response (DIR). This simplified diagram shows a

pulse emanating from a source at x ′ and two diffracted wavefronts subse-

quently arriving at listener position x from directions s1 and s2. The resulting
IR is plotted in the upper right and the corresponding DIR on the lower

right, parameterizing the response in terms of both time and direction. Our

system aims to encode the DIR’s perceptual properties for all pairs of source

(x ′) and listener (x ) positions. At runtime, given the listener head location,

orientation, source location and emitted sound, we efficiently render the

DIR’s audible effect on the sound as heard by listener.

are functions of direction as well as frequency, and depend on the

particular geometry of the person’s pinna, head and shoulders.

Given the HRTF, rotation matrix R mapping from head to world

coordinate system, and DIR field absent the listener’s body, binaural
rendering reconstructs the signals entering the two ears, qL/R , via

qL/R (t ;x ,x ′) = q̃(t) ∗ pL/R (t ;x ,x ′) (3)

where pL/R is the binaural impulse response

pL/R (t ;x ,x ′) ≡

∫
S2

d
(
s, t ; x ,x ′

)
∗ hL/R

(
R−1(s), t

)
ds . (4)

S2 indicates the spherical integration domain and ds the differential
area of its parameterization, s ∈ S2. Note that in audio literature the

terms “spatial” and “spatialization” refer to directional dependence

(on s) rather than source/listener dependence (on x and x ′).
We use a generic HRTF dataset combining measurements across

many subjects using the setup described in [Bilinski et al. 2014].

It samples binaural responses for NH = 2048 discrete directions

{sj }, j ∈ [0,NH − 1] uniformly spaced over the sphere. Any HRTF

dataset may be used with our technique.

3 RELATED WORK
Room acoustics has intensively studied sound propagation, with

special focus on single-chamber indoor spaces such as concert

halls [Kuttruff 2000]. Such spaces can be auralized in real-time [Vor-

länder 2007] but canmonopolize desktop scale computation, suitable

for walk-through auralizations in architectural acoustics. Games

and VR applications require techniques that are faster, with ap-

proximations motivated by more general scenes including outdoor

and multi-chamber spaces. Occluded cases such as diffracted sound

arriving around doorways are of central importance.

3.1 Geometric and wave solvers
Room acoustics usually takes a geometric/Lagrangian approach [Kut-

truff 2000; Rindel and Christensen 2013], propagating rays in a

high-frequency approximation to the wave equation. Handling sub-

wavelength geometric features (in practice, smaller than a few me-

ters) necessitates user-guided scene simplification. Modeling all

physical paths containing edge diffractions and surface scattering

of arbitrary order remains an unsolved problem; see [Savioja and

Svensson 2015, Table 1] for a survey.

Time-domain wave solvers take an Eulerian approach [Hamilton

et al. 2017; Murphy et al. 2007; Raghuvanshi et al. 2009a], producing

a 4D slice of Green’s function p(t ,x ; x ′) for a given source location

x ′. Aliasing is eliminated by bandlimiting the source signal. All

propagation paths of length less than the simulation duration are

included without being generated explicitly. Directional information

must be extracted with careful processing, as we will describe in

Section 7. Complex scene geometry can be treated without user

intervention by voxelizing it into the simulation grid.

Computation scales as ν4mwhere νm is the upper limit on simula-

tion frequency. While this cost motivates the traditional preference

for geometric approximations in room acoustics [Siltanen et al.

2010a], wave methods have seen increasing interest as CPU/GPU

computing power has grown and algorithms improved. Time-domain

simulations on desktop machines can now handle up to middle fre-

quencies (~1000Hz) on concert hall sized scenes [Hamilton et al.

2017; Mehra et al. 2012]. These solutions are usually extrapolated to

higher frequencies as we do here or can be combined with geometric

techniques [Yeh et al. 2013].

3.2 Precomputed simulation
Precomputed approaches analyze static scene geometry offline and

store a compressed encoding of some portion of Green’s function.

Increased memory is thus traded for reduced runtime computation.

[Tsingos 2009] describes one of the first practical precomputed

techniques for approximating reflections and directional reverbera-

tion in games. Diffraction is ignored so that correct initial arrival

direction or attenuation due to occlusion cannot be modeled. Re-

liance on the image source method means input geometry must

consist of a few large planar facets. Acoustic radiance transfer [An-

tani et al. 2012; Siltanen et al. 2010b] is analogous to radiosity for

light transport. Under the geometric approximation, it efficiently

models diffuse energy transport in complex scenes, compressing the

global operator using singular value decomposition (SVD). The tech-

nique is designed for coarsely directional late reverberation but not

the (highly directional) initial sound or specular early reflections.

The Equivalent Source Method (ESM) approximates p(t ,x ,x ′) as
a linear superposition of elementary multipole solutions individu-

ally satisfying (1) with free-field boundary conditions. [James et al.

2006] introduced ESM to computer graphics to model directional

radiation including self-shadowing and self-scattering from an iso-

lated vibrating object. Extensions focus on accelerating runtime

cost of summing multipole evaluations [Chadwick et al. 2009] and

reducing data size [Li et al. 2015].

ESM has also been applied to global sound propagation [Mehra

et al. 2013, 2015]. The latter supports directional effects for a moving

source and listener but is limited to sparse outdoor scenes consist-

ing of a few well-separated objects. Scene acoustics are encoded as

a per-frequency global transport operator using SVD-based lossy

compression similar to [Antani et al. 2012]. Runtime memory usage
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increases with the frequency limit and number of objects, taking

15GB for 5 objects (rock faces) at νm = 1000Hz [Mehra et al. 2015,

Fig. 4 middle, Table 3]. Typical game scenes we target include in-

door/mixed spaces that do not admit such decomposition or outdoor

spaces containing thousands of such objects. At runtime, the global

transport matrix must be applied per frequency. This is expensive,

requiring 100ms of computation that saturates the GPU and all CPU

cores for just one sound source.

Volumetric approaches [Raghuvanshi and Snyder 2014; Raghu-

vanshi et al. 2010] offload nearly all computation by precomputing

Green’s function for a discrete set of probes {x ′}. Instead of rep-

resenting the highly oscillatory Green’s function p directly, it is

perceptually coded in terms of its frequency-averaged energy and

decay in each transient phase. The resulting perceptual parameter

fields are smooth and highly compressible. Initial sound is rendered

in the line-of-sight direction; reflections and reverberation are ren-

dered as arriving isotropically at the listener. Our work extends this

technique by extracting and perceptually encoding the Directional

Impulse Response (DIR) field.

3.3 Online simulation
Online techniques compute the directional response at runtime

and so handle dynamic geometry. For single-scattering, the Kirchoff

approximation can be applied [Tsingos et al. 2007] but most methods

use geometric acoustics.

RAVEN [Schröder 2011] is perhaps the most complete geometric

acoustic system, allowing real-time architectural walkthroughs for

appropriately simplified (few thousand polygon) scenes using mul-

tiple desktop machines. Closer to our application, path tracing has

been used for sound propagation [Chandak et al. 2008; Schissler et al.

2014; Taylor et al. 2009], where the challenge is to obtain consistent,

aliasing-free results while staying within CPU budget. Compared

to light transport, convergence is needed for the sum within each

time bin of the energy response, making path length an additional

search dimension. Terminating path search too soon yields inco-

herent “pivots” in source direction that perceptually derives from

the shortest path direction, or “pops” in loudness as the source or

listener moves. Convergence issues are studied in [Cao et al. 2016].

3.4 Sound field coding
Ambisonics [Gerzon 1973] represents the sound field around a point

using spherical harmonic coefficients and independently of the re-

production setup (speakers or headphones). Parametric surround

approaches, such as MPEG-Surround [Breebaart et al. 2005], assume

a known speaker configuration around the listener. The encoder’s

input is a multi-channel signal: raw waveforms meant to be played

back on corresponding speakers. These channels are summed into

one or two downmix streams to generate an aggregate sound com-

ing from all directions, and compressed using standard waveform

coding. In parallel, time-frequency processing is performed to ex-

tract a stream of perceptual parameters describing the directional

properties of each input channel relative to the downmix. These pa-

rameters are based on binaural directional perception, such as level

difference, phase difference and inter-aural coherence (diffuseness)

in each time-frequency bin.

MPEG-H [Herre et al. 2015] extends these ideas to allow encoding

agnostic to the reproduction setup and support higher-order Am-

bisonics and binaural rendering. A few point source locations can

also be specified along with their mono-aural signals. Environmen-

tal acoustics is outside the standard’s scope and must be supplied

explicitly in the form of binaural responses [Herre et al. 2015, Fig.3].

Computing these is the focus of our paper.

3.5 Directional Impulse Response (DIR) coding
Existing techniques encode directional responses at one or few

points (see [Embrechts 2016] for a survey); ours is the first work to

compress the entire response field d(s, t ,x ,x ′) and exploit its spatial
coherence once transformed to directional parameters.

The Spatial Decomposition Method (SDM) [Tervo et al. 2013] fits

an image source model to responses measured with a microphone

array, approximating it at a point with multiple delayed spherical

wavefronts. The intent is analysis rather than compact encoding.

Closer to our work, [Laitinen et al. 2012] propose Directional Audio

Coding (DiRaC). The input is the directional sound signal at a lis-

tener, which is a superposition of all sound source signals in a scene

convolved with the corresponding DIRs. DiRaC computes direction

and a diffuseness parameter for each of many time-frequency bins,

using the same flux density formulation we apply. Since the input

signal can contain many sound events at arbitrary times, time is

discretized uniformly to adequately capture each event’s onset. The

time bin size must be determined carefully (usually ~10ms). Finer

bins better resolve sound event onsets, but increase encoded size

and limit frequency resolution via Fourier uncertainty.

The techniques underlying DiRaC generalize to DIR encoding

because a DIR is a special directional sound signal generated by a

single, impulsive point source. This application of DiRaC is Spatial

Impulse Response Rendering (SIRR) [Merimaa and Pulkki 2005].

Our approach instead specializes to DIRs, resulting in two advan-

tages. First, as we show in Section 4.4, while frequency-dependent

directions are necessary to encode directional sound signals that

mix multiple sources, directional information is largely frequency-

independent in DIRs. This reduces memory use and rendering cost.

Second, we focus temporal resolution where it matters by explicitly

locating the first arrival time, and recording the initial direction

with high (1ms) temporal resolution matching human auditory per-

ception, and coarser resolution later.

4 DIRECTIONAL ANALYSIS
We describe directional analysis of sound fields, comparing a refer-

ence solution (plane wave decomposition or PWD), to the approxi-

mation our encoder actually employs (flux density).

4.1 Plane Wave Decomposition (PWD)
Let ∆x denote relative position in a volume centered around the

listener at x where the local pressure field is to be directionally

analyzed. For any source position x ′ (hereafter dropped), we de-
note the local IR field by p(∆x , t) and the Fourier transform of the

time-dependent signal for each ∆x by P(∆x ,ω) ≡ F [p(∆x , t)]. In
general, we denote the Fourier transform ofд(t) asG(ω) ≡ F [д(t)] ≡∫ ∞
−∞

д(t) eiωtdt , assuming time-harmonic dependence of the form
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e−iωt . We drop angular frequency ω from the notation in the fol-

lowing; it is understood that the directional analysis we describe

must be performed for each value of ω.
Parameterizing in terms of spherical coordinates, ∆x = r s(θ ,ϕ)

where s(θ ,ϕ) ≡ (sinθ cosϕ, sinθ sinϕ, cosθ ) represents a unit di-
rection and r ≡ ∥∆x ∥. This coordinate system yields orthogonal

solutions (modes) of the Helmholtz equation, allowing representa-

tion of the solution P in any source-free region via

P(∆x) =
∑
l,m

Pl,m bl (κ r ) Yl,m (s), (5)

where the mode coefficients Pl,m determine the field uniquely. The

function bl is the (real-valued) spherical Bessel function; κ ≡ ω/c ≡
2πν/c is the wavenumber where ν is the frequency. The notation∑
l,m ≡

∑n−1
l=0

∑l
m=−l indicates the sum over all integer modes

where l ∈ [0,n − 1] is the order,m ∈ [−l , l] the degree, and n the

truncation order. Lastly,Yl,m are the n2 complex spherical harmonic

(SH) basis functions defined as

Yl,m (s) ≡

√
2l + 1

4π

(l −m)!

(l +m)!
Pl,m (cosθ ) e

imϕ
(6)

where Pl,m is the associated Legendre function.

Diffraction limit. Suppose the sound field is observed by an ideal

microphone array within a spherical region ∥∆x ∥ ≤ ro free of

sources and boundary. The mode coefficients can be estimated by

inverting the linear system represented by (5) to find the unknown

(complex) coefficients Pl,m in terms of the known (complex) coeffi-

cients of the sound field, P(∆x). The angular resolution of any wave

field sensor is fundamentally restricted by the size of the observation
region, which is the diffraction limit. This manifests mathematically

as an upper limit on the SH order n dependent on r0 to keep the

linear system well-conditioned.

Such analysis is standard in fast multipole methods for 3D wave

propagation [Gumerov and Duraiswami 2005] and for processing

output of spherical microphone arrays [Rafaely 2015]. One must

compensate for the scattering that real microphone arrays introduce

in the act of measuring the wave field. Our synthetic case avoids

these difficulties since “virtual microphones” simply record pressure

without scattering. Nevertheless, prior work is sparse on directional

analysis of sound fields produced by wave simulation. Low-order

decomposition is proposed in [Southern et al. 2012], while [Sheaffer

et al. 2015] propose high-order decomposition that samples the

synthetic field over the entire 3D volume ∥∆x ∥ ≤ ro rather than

just its spherical surface, estimating the modal coefficients Pl,m via

a least-squares fit to the over-determined system (5).

We follow a similar technique using a frequency-dependent SH

truncation order of

n(ω, ro ) ≡
⌊κ ro e

2

⌋
, (7)

where e ≡ exp(1); see Eq. 10 in [Zhang et al. 2010].

Solution. We found unnecessary the regularization in [Sheaffer

et al. 2015]. We speculate this is because the solver we employ

is different from FDTD. We simply solve the linear system in (5)

using QR decomposition to obtain Pl,m . This recovers the (complex)

directional amplitude distribution of plane waves that best matches

the observed field around x , known as the plane wave decomposition,

Dl,m =
il

4π
Pl,m . (8)

Assembling these coefficients over all ω and transforming from

frequency to time domain reconstructs the directional impulse re-

sponse (DIR), d(s, t) = F −1[D(s,ω)] where

D(s,ω) ≡
∑
l,m

Dl,m (ω)Yl,m (s). (9)

Binaural impulse responses for our PWD reference are generated

by (4), performing convolution in frequency space. For each angular

frequency ω, we compute the spherical integral multiplying the

frequency-space PWDwith each of theNH (=2048, Sec. 2.2) spherical

HRTF responses transformed to the frequency domain via

PL/R (ω) =

NH−1∑
j=0

D
(
R(sj ),ω

)
HL/R (

sj ,ω
)
, (10)

where HL/R ≡ F [hL/R ] and PL/R ≡ F [pL/R ], followed by a trans-

form to the time domain to yield pL/R (t).

4.2 Acoustic Flux Density
Suppressing source location x ′, the impulse response is a function of

receiver location and time representing (scalar) pressure variation,

denoted p(x , t). The flux density, f (x , t), is defined as the instanta-

neous power transport in the fluid over a differential oriented area,

analogous to irradiance in optics. It follows the relation

f (x , t) = p(x , t)v(x , t), v(x , t) = −
1

ρ0

∫ t

−∞

∇p(x ,τ )dτ (11)

where v is the particle velocity and ρ0 is the mean air density

(1.225kg/m
3
). We use central differences on immediate neighbors

in the simulation grid to compute spatial derivatives for ∇p, and
midpoint rule over simulated steps for numerical time integration.

Flux density (or simply, flux) estimates the direction of a wave-

front passing x at time t . When multiple wavefronts arrive simul-

taneously, PWD is able to tease apart their directionality (up to

angular resolution determined by the diffraction limit) while flux

is a differential measure, necessarily merging their directions. This

merging is not as problematic as it might seem. Wavefronts arriv-

ing within 1ms are fused in human perception anyway. We do an

explicit comparison in the next section.

To reconstruct the DIR from flux for a given time t (and suppress-

ing x ), we form the unit vector
ˆf (t) ≡ f (t)/∥ f (t)∥ and associate the

corresponding pressure value p(t) to that single direction, yielding

d(s, t) = p(t)δ (s − ˆf (t)). (12)

Note that this is a nonlinear function of the field, unlike (9). We

compute binaural responses using the spherical integral in (4), by

plugging in the DIR d(s, t) from (12) and doing a temporal Fourier

transform, which simplifies to

PL/R (ω) =

∫ ∞
0

p(t) eiωt HL/R
(
R−1

(
ˆf (t)

)
,ω

)
dt . (13)

The time integral is carried out at the simulation time step, and

HRTF evaluations employ nearest-neighbor lookup. The result is
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then transformed back to binaural time-domain impulse responses

used for comparing flux with PWD. Section 7 details howwe use flux

to extract DIR perceptual parameters actually used by our system

at runtime.

4.3 Directional Analysis Comparison
The two alternatives we’ve presented for the directional IR in (9) and

(12) are not equivalent physically, mathematically, or computation-

ally. Plane wave decomposition is diffraction-limited, requiring a

finite 3D ball of the wave field around the receiver point and solving

a large compute-intensive linear system for eachω. Flux is nonlinear,
working in the time domain on a differential neighborhood around

the receiver point. It can be computed using finite difference, mak-

ing it suitable for fast, streaming encoding. We present controlled

virtual experiments to test how well the two match based on wave

simulation with νm = 2000Hz.

The leftmost column of Figure 3 shows the six scenes in our ex-

periment. They introduce complexity incrementally: scene1 begins

with a single wall between source and listener; scene2 further com-

pletes that wall to form a window; scene3 adds a ground plane;

scene4 opens a second window; scene5 adds a back wall; and finally

scene6 adds side walls and a ceiling to form an enclosure of size

10m×15m×6m.

In all six scenes, the source (red sphere) is outside the front wall

at a distance of 5m while the listener (green sphere) is inside it

at the same distance of 5m. Windows are square openings of size

1m×1m. Wall thickness is 0.25m. Acoustic energy absorptivity of

all geometry is 0.1. The first window (to the right as the listener

faces it) provides a fairly direct but still occluded geodesic path from

source to listener bending 15
◦
at the window’s left edge. The second

window (to the listener’s left) yields a longer, more diffracted and

thus weaker path bending an angle of 45
◦
at the window’s center. For

PWD, we use a microphone array of radius ro = 1m (drawn to scale

as the green sphere in the scene renderings). This is conservatively

large to contain human head and shoulders.

The truncation order for PWD results (n at top of Figure 3) is

determined by (7) applied at the center frequency of each of the

three Bark bands. For flux, we match SH order to the highest Bark

band used for PWD. Energy distribution sums |D(s,ω)|2 from (9)

over all frequencies ω in the Bark band, followed by a square root

to emphasize low-amplitude directions.

4.4 Directional Analysis Results
Results from our experiment are shown in Figure 3 (directional

energy) and Figure 4 (binaural responses). The listener directly faces

the source in all cases. Directional energy is visualized using an

orthographic “twin hemispheres” spherical plot. The left hemisphere

shows arrivals from behind the listener’s head and right shows front.

Arrivals to the left or right of the listener map as such to the images.

In Figure 3, energy distribution forms a single spot for scene1

and scene2, corresponding to the direct path diffracting around the

edge of the wall or single window, and becoming elongated due to

scattering off the right edge of the window in scene2. Adding a

ground plane yields an additional, dim spot near the bottom of the

right hemisphere in scene3. scene4’s additional window introduces

another spot to the left, while scene5 and scene6 increase the

number of reflection spots including ones behind the listener.

Results confirm our two main hypotheses.

First, IR directionality is similar for different frequencies. This is

best demonstrated when we integrate directionality over perceptual

frequency intervals (Bark bands, see Section 7) just as human hear-

ing does. Compare spherical plots for the three PWD Bark bands

in Figure 3: lower frequency bands are just a blurrier version of

the higher frequency ones, with peaks centered around the same

directions. This blurriness is a consequence of the diffraction limit,

rather than being a physical property of the field. Obtaining direc-

tional detail at lower frequencies with PWD requires an array much

bigger than the human head.

0.07 0.08 0.09 0.1

mono PWD (left) flux (left)Second, flux matches PWD

surprisingly well. Spherical en-

ergy diagrams show a good

match; binaural impulse responses

match even better. Note that the

“mono” curves in Figure 4 repre-

sent the original IR for reference;

i.e., p rather than pL/R . PWD re-

sults are plotted with a thicker line and grayer color than flux so

that the two can be compared, as shown in the inset. As expected,

the two methods start to diverge a little when wavefront arrival

gets chaotic/simultaneous, as in the dimmer reflection spots in the

spherical energy distribution of scene5 and scene6, or their cor-

responding binaural responses after about 40ms. The inset figure

details the later, more chaotic transients from the left ear’s binaural

impulse response for scene6, showing these minor differences. An

aural comparison is available in the supplemental video.

Note that the arriving energy in each perceptual frequency band

varies over frequency due to scattering and shadowing. Our encod-

ing in Section 7 thus loses audible detail by averaging energy over all

simulated frequencies to save RAM as in [Raghuvanshi and Snyder

2014]). What these results support is that frequency-independent

encoding of directions derived from flux loses little audible detail.

5 PRECOMPUTATION
Our framework is based on [Raghuvanshi and Snyder 2014] hence-

forth cited as [2014]. Ordinary restrictions on listener position (such

as atop walkable surfaces) can be exploited by reciprocal simulation
to significantly shrink precompute time, runtime memory and CPU.

Such simulation exchanges source and listener position between

precomputation and runtime so that runtime source and listener

correspond respectively to (x ,x ′) in (1). The first step is to generate

a set of probe points {x ′} with typical spacing of 3-4m. For each

probe point in {x ′}, we perform 3D wave simulation using a wave

solver [Raghuvanshi et al. 2009b] in a volume centered at the probe

(90m × 90m × 30m in our tests), thus yielding a 3D slice p(x , t ;x ′)
of the full 6D field of acoustic responses. The constrained runtime

listener position reduces the size of {x ′} significantly. We extend

this framework to extract and encode directional responses.

Reciprocal Dipole Simulation. We use flux (Section 4.2) to com-

pute the directional response, requiring the spatial derivative of

the pressure field for the runtime listener at x ′. But the solver
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PWD PWD PWD Flux

[400,510]Hz, n = 11 [770,920]Hz, n = 21 [1270,1480]Hz, n = 34 n = 34

scene1

scene2

scene3

scene4

scene5

scene6

Fig. 3. Spherical energy distribution of the DIR, d , in six example scenes. Visual renderings on left show listener with green sphere, looking at the source in

red. Simulation domain is shown with translucent box. Left hemisphere shows arrivals from behind listener and right hemisphere from the front.

mono PWD (left) flux (left)

mono PWD (right) flux (right)

scene1 scene2 scene3

scene4 scene5 scene6

Fig. 4. Binaural impulse responses, pL/R , for the six scenes above with listener looking at the source. Showing initial 80ms of response.
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yields p(x , t ;x ′); i.e., the field varies over runtime source positions

(x) instead. We present a solution that lets us compute flux at

the runtime listener location while retaining the benefits of re-

ciprocal simulation. For some grid spacing h, we wish to compute

∇x ′p(x ,x
′) ≈ [p(x ;x ′+h)−p(x ;x ′−h)]/2h via centered differencing.

Due to the linearity of the wave equation, this can be obtained as

response to the spatial impulse [δ (x −x ′ −h) − δ (x −x ′ +h)]/2h. In
words, flux at a fixed runtime listener (x ′) due to a 3D set of runtime

source locations (x ) is obtained by simulating discrete dipole sources

at x ′. The three Cartesian components of the spatial gradient require

three separate dipole simulations. The above argument extends to

higher-order derivative approximations but we have found centered

differences sufficient.

Time integration. To compute particle velocity via (11), we need

the time integral of the gradient

∫
t ∇p which commutes to ∇

∫
t p.

Since the wave equation is linear,

∫
t p can be computed by replacing

the temporal source factor in (1) with

∫
t δ (t) = H (t), the Heav-

iside step function. The full source term is therefore H (t)[δ (x −
x ′ + h) − δ (x − x ′ − h)]/2ρ0h, for which the solver’s output di-

rectly yields particle velocity, v(t ,x ;x ′). The three dipole simula-

tions are complemented with a monopole simulation with source

term δ (t)δ (x − x ′), resulting in four simulations to compute the

response fields {p(t ,x ;x ′), f (t ,x ;x ′)}.

Bandlimiting. Discrete simulation must bandlimit the forcing

impulse in space and time. We set the cutoff at νm = 1000Hz in

most of our experiments, requiring a grid spacing of h = 3

8
c/νm ≡

1

2
c/νM = 12.75cm. This discards the highest 25% of the simula-

tion’s entire Nyquist bandwidth νM due to its large numerical error.

DCT spatial basis functions in our solver (adaptive rectangular de-

composition [Raghuvanshi et al. 2009b]) naturally convert delta

functions into sincs bandlimited at wavenumber κ = π/h, simply

by emitting the impulse at a single discrete cell. The source pulse

must also be temporally bandlimited, denoted
˜δ (t). Temporal source

factors are modified to
˜δ (t) and H (t) ∗ ˜δ (t) for the monopole and

dipole simulations respectively;
˜δ will be defined precisely in Sec-

tion 7. Quadrature needed for the convolution H (t) ∗ ˜δ (t) can be

precomputed to arbitrary accuracy and input to the solver.

Streaming. Past work on precomputedwave simulation uses a two

stage approach in which the solver writes a massive spatio-temporal

wave field to disk which the encoder then reads and processes. Disk

I/O bottlenecks the processing of large game scenes, becoming

impractical for mid-frequency (νm = 1000Hz) simulations. It also

complicates cloud computing and GPU acceleration.

Our new streaming encoder executes entirely in RAM. Processing

for each runtime listener location x ′ proceeds independently across

machines. For each x ′, four instances of the wave solver are run
simultaneously to compute monopole and dipole simulations. The

time-domain wave solver naturally proceeds as discrete updates to

the global pressure field. At each time step t , 3D pressure and flux

fields are sent in memory to the encoder coprocess which extracts

the parameters. The encoder is SIMD across all grid cells. It cannot

access field values beyond the current simulation time t , unlike prior
work where the entire time response was available. Furthermore,

the encoder must retain intermediate state from prior time steps

(such as accumulators); this per-cell state must be minimized to

keep RAM requirements practical. In short, the encoder must be

causal with limited history. Section 7 shows how to design such an

encoder for the parameters we propose.

Cost. Typical simulations we perform for νm = 1000Hz have

|{x}|=120 million cells. The total size of the discrete field across a

typical simulation duration of 0.5s is 5.5TB which would take 30

hours just for disk I/O at 100MB/s. Our system executes in 5 hours

taking 40GB RAM with no disk use. Compared to [2014, Table 2],

our precompute on Citadel at νm = 500Hz is 3 times faster despite

our three additional dipole simulation and directional encoding.

6 DIRECTIONAL ACOUSTIC PERCEPTION
We briefly describe human auditory perception relevant to encoding

directional impulse responses [Gade 2007; Litovsky et al. 1999]. The

directional impulse response can usefully be divided into three suc-

cessive phases in time: initial arrivals, followed by early reflections,

which smoothly transition into late reverberation.

Precedence. In the presence of multiple wavefront arrivals carry-

ing similar temporal signals, our perception non-linearly favors the

first to determine the primary direction of the sound event. This is

called the precedence effect [Litovsky et al. 1999]. Referring to Fig. 2,

if the mutual delay (l2−l1)/c is less than 1ms we perceive a direction

intermediate between the two arrivals, termed summing localization
and representing the temporal resolution of directional hearing. Di-

rections from arrivals lagging beyond 1ms are strongly suppressed

and must be as much as 10dB louder to move the perceived direction

significantly, called the Haas effect.
Extracting the correct direction for the potentially weak and

multiply-diffracted first arrival is thus critical for faithfully render-

ing perceived direction of the sound event. It forms the primary

cue guiding the listener to visually occluded sound sources. Our

encoder is designed to extract the onset time robustly and uses a

short 1ms window after onset to integrate the first arrival direction.

Panning. Summing localization is exploited by traditional speaker

amplitude panning, which plays the same signal from multiple (usu-

ally four to six) speakers surrounding the physical listener. By ma-

nipulating the amplitude of each signal copy, the perceived direction

moves smoothly between the speakers. The downside is that the

arrival acquires a perceptible angular extent, lacking the crispness

of a single plane wavefront. We adapt this idea and exploit summing

localization to efficiently encode and render directional reflections,

which we assume are less crisp directionally than the initial arrival.

Echo threshold. When a sound follows the initial arrival after a

delay called the echo threshold, it is perceived as a separate event;

otherwise it is fused. The echo threshold varies between 10ms for

impulsive sounds, through 50ms for speech, to 80ms for orchestral

music [Litovsky et al. 1999, Tbl.1]. We conservatively fuse using a

10ms window to aggregate loudness for initial arrivals.

Initial time delay gap. Initial arrivals are followed by stronger

reflections reflected off big features like walls, mixed with weaker

arrivals scattered from smaller, more irregular geometry. If the first
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Fig. 5. Equalized pulse ˜δ (t ) for νl =125Hz, νm=1000Hz and νM=1333Hz. The pulse is designed to have a sharp main lobe (~1ms) to match auditory perception

(left), while having limited energy outside [νl , νm ] (middle) with smooth falloff to minimize ringing in time domain. Within these constraints, it is designed to

have matched energy (to within ±3dB) in equivalent rectangular bands centered at each frequency (right).

strong reflection arrives beyond the echo threshold, its delay be-

comes audible. Its delay is called the initial time delay gap, with
perceptual just-noticeable-difference of about 10ms [Gade 2007].

Audible gaps arise easily, e.g. when the source and listener are close

but far from surrounding geometry. Prior work has extracted this

parameter for a few responses semi-manually [Fujii et al. 2004]. We

require a fully automatic technique that produces smooth fields.

Reflections. Once reflections begin arriving, they typically bunch

closer than the echo threshold due to environmental scattering and

are perceptually fused. We use a value of 80ms following the initial

time delay gap as the duration of early reflections. Their aggre-

gate directional distribution conveys important detail about the

environment around the listener and source. The ratio of energy

arriving horizontally and perpendicular to the initial sound is called

lateralization and conveys spaciousness and apparent source width.

Anisotropy in reflected energy arising from surfaces close to the

listener provides an important proximity cue [Paasonen et al. 2017].

When source and listener are separated by a portal, reflected energy

arrives mostly through the portal and is strongly anisotropic, local-

izing the source to a different room than the listener’s. We encode

this anisotropy in the aggregate reflected energy.

Reverberation. As time progresses, scattered energy gets weaker

but arrives more frequently so that the response’s tail resembles

decaying noise. This characterizes the (late) reverberation phase. Its

decay rate conveys overall scene size, typically measured as RT60

or the time taken for energy to decay by 60dB. The aggregate direc-

tional properties of reverberation affect listener “envelopment”. We

simplify by assuming that the directional distribution of reverbera-

tion is the same as that for reflections.

7 ENCODING
At each time step t , the encoder receives {p(t ,x ;x ′), f (t ,x ;x ′)}
representing the pressure and flux at runtime listener x ′ due to a 3D
field of possible runtime source locations, x , for which it performs

independent, streaming processing. We suppress positions below.

Notation. tk ≡ k ∆t denotes the kth time sample with time step

∆t , where ∆t = 0.17ms for νm = 1000Hz. First-order Butterworth

filtering with cutoff frequency ν in Hz is denoted Lν . A signal д(t)
filtered through L is denoted L ∗ д. Its cumulative time integral is

denoted

∫
д ≡

∫ t
0
д(τ )dτ .

7.1 Equalized Pulse

Encoder inputs {p(t), f (t)} are responses to an impulse
˜δ (t) pro-

vided to the solver. Response properties are typically computed

by deconvolving out this impulse, a costly operation requiring the

entire response. But the streaming encoder has access only to the

current and few past samples in time. We show it’s possible to de-

sign an impulse function (Figure 5) to conveniently estimate the

IR’s energetic and directional properties without undue storage or

costly convolution. The pulse must satisfy several properties:

(1) equalized to match energy in each perceptual frequency

band.

∫
p2 thus directly estimates perceptually weighted en-

ergy averaged over frequency.

(2) abrupt in onset, critical for robust detection of initial arrival.

We need an accuracy of about 1ms or better when estimating

the initial arrival time, matching auditory perception.

(3) sharp in main peak with a half-width of less than 1ms. Flux

merges peaks in the time-domain response; this property

ensures such mergers happen only when they would undergo

summing localization in our perception anyway.

(4) anti-aliased to control numerical error, with energy falling

off steeply in the frequency range [νm ,νM ].
(5) mean-free. Sources with substantial DC energy yield resid-

ual particle velocity after curved wavefronts pass, making

flux inaccurate. Reverberation in small rooms can also settle

to a non-zero value, spoiling energy decay estimation.

(6) quickly decaying to minimize interference between flux

from neighboring peaks. Abrupt cutoffs at νm for (4) or at DC

for (5) cause non-compact ringing and should be avoided.

Human pitch perception can be roughly characterized as a bank

of frequency-selective filters, with frequency-dependent bandwidth

known as Equivalent Rectangular Bandwidth (ERB). The same no-

tion underlies the Bark psychoacoustic scale consisting of 24 bands

equidistant in pitch and utilized by our PWD visualizations in Sec-

tion 4.4.

A simple model for ERB around a given center frequency ν in

Hz is given by B(ν ) ≡ 24.7 (4.37ν/1000 + 1) [Moore and Glasberg

1996]. Condition (1) above can then be met by specifying the pulse’s

energy spectral density (ESD) as 1/B(ν ) but this violates properties
(4) and (5). We therefore substitute the modified ESD

E(ν ) =
1

B(ν )

1��
1 + 0.55 (2iν/νh ) − (ν/νh )

2

��4 1

|1 + iν/νl |
2

(14)

where νl = 125Hz is the low and νh = 0.95νm the high frequency

cutoff. The second factor is a second-order low-pass filter designed

to attenuate energy beyond νm per (4) while limiting ringing in the

time domain via the tuning coefficient 0.55 per (6). The last factor

combined with a numerical derivative in time attenuates energy

near DC, as explained more below.
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Fig. 6. Initial delay estimation. D is scaled to span the y axis.

We then design a minimum-phase filter [Smith 2007] with E(ν )
as input. Such filters manipulate phase to concentrate energy at the

start of the signal, satisfying properties (2) and (3). To make DC

energy 0 per (5), we compute a numerical derivative of the pulse

output by minimum-phase construction. The ESD of the pulse after

this derivative is 4π 2 ν2 E(ν ). Dropping the 4π 2
and grouping the

ν2 with the last factor in (14) yields ν2/|1 + iν/νl |
2
, representing

the ESD of a first-order high-pass filter with 0 energy at DC per (5)

and smooth tapering in [0,νl ] to control the negative side lobe’s

amplitude and width per (6). The output is passed through another

low-pass Lνh to further reduce aliasing, yielding the final pulse

shown in Figure 5.

7.2 Initial Delay (Onset), τ0
Figure 6 illustrates processing with an actual response from the

HighRise scene. The solver fixes the emitted pulse’s amplitude so

the received signal at 1m distance in the free field has unit energy,∫
p2 = 1. Initial delay could be computed by comparing incoming

energy p2 to an absolute threshold, as in [2014]. But in occluded

cases, a weak initial arrival can rise above threshold at one location

and stay below at a neighbor, causing distracting jumps in rendered

delay and direction at runtime.

We design a more robust detector D. Initial delay is computed as

its first moment, τ0 ≡
∫
tD(t)/

∫
D(t), where

D(t) ≡

[
d

dt

(
E(t)

E(t − ∆t) + ϵ

)]n
, (15)

E(t) ≡ Lνm/4 ∗
∫
p2, and ϵ = 10

−11
. E is a monotonically increasing,

smoothed running integral of energy in the pressure signal. The

ratio in (15) looks for jumps in energy above a noise floor ϵ . The
time derivative then peaks at these jumps and descends to zero

elsewhere, as shown in the figure. For the detector to peak, energy

must abruptly overwhelm what has been accumulated so far. We

use n = 2 to control the detector’s peakedness.

This detector is streamable.

∫
p2 is implemented as a discrete

accumulator. L is a recursive filter, requiring internal history of one

past input and output. One past value of E is needed for the ratio,

and one past value of the ratio kept to compute the time derivative

via forward differences. However, computing onset via first moment

poses a problem as the entire signal must be processed to produce a

converged estimate.

Fig. 7. Reflections delay estimation. αr ∈ [0, 1] is scaled to span the y axis.

We observe that the detector is allowed some latency, namely 1ms

for summing localization. We keep a running estimate of the mo-

ment, τk
0
=
∫ tk
0

t D(t)/
∫ tk
0
D(t), and commit a detection τ0 ← τk

0

when it stops changing; that is, it’s latency satisfies tk−1 − τ
k−1
0
<

1ms and tk − τ
k
0
> 1ms (dotted line in figure). This detector can

trigger more than once, indicating the arrival of significant energy

relative to the current accumulation in a small time interval and let-

ting us treat the last as definitive. Each commit resets the subsequent

processing state as necessary.

7.3 Initial Loudness and Direction, (L, s0)
Initial loudness and its 3D direction are estimated via

L ≡ 10 log
10

∫ τ ′′
0

0

p2(t)dt , s0 ≡

∫ τ ′
0

0

f (t)dt (16)

where τ ′
0
= τ0 + 1ms and τ ′′

0
= τ0 + 10ms. We retain only the (unit) di-

rection of s0 as the final parameter. This assumes a simplified model

of directional dominance where we suppress directions outside a

1ms window but let their energy contribute to loudness for 10ms.

7.4 Reflections Delay, τ1
Reflections delay is the arrival time of the first significant reflection.

Its detection is complicated by weak scattered energy almost always

present after onset. A binary classifier based on a fixed amplitude

threshold performs poorly. We instead aggregate the duration of

silence in the response, where “silence” is given a smooth definition

discussed shortly. Silent gaps are usually concentrated right after

the initial arrivals but before reflections from surrounding geometry

have become sufficiently dense in time from repeated scattering.

The combined duration of this silence is a new parameter roughly

paralleling the notion of initial time delay gap discussed in Section 6.

Figure 7 shows estimation which starts after initial arrivals end

at τ ′′
0
. The duration of silence is initialized as ∆τ̃1 = 10ms. The

reflections delay estimate is defined as τ̃1 ≡ τ0 + ∆τ̃1. We define

a threshold for silence relative to the initial sound’s peak energy

as ϵr = -40dB + 10 log
10

(
max{p2(t)}, t ∈ [0,τ ′′

0
]

)
. The incoming

energy is smoothed and loudness computed as 10 log
10

(
L250 ∗ p

2
)

then passed through the linear mapping [ϵr , ϵr + 20dB] → [1, 0].
This produces a weight, αr that is clamped to [0, 1], with αr = 1

indicating complete silence. The silence duration estimate is then

updated as∆τ̃1 ← ∆τ̃1+αr ∆t . The estimate is considered converged
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Fig. 8. Runtime signal processing. Per-emitter processing is limited to two (optional) variable delay lines, directional rendering for the initial-arriving sound,

and scale-and-sum at the inputs to global canonical filters. These are mono filters whose output is rendered as incoming from fixed axial directions in world

space while accounting for dynamic listener head pose.

when the latency t − τ̃1 increases above 10ms for the first time, at

which point we set τ1 ← τ̃1.
In cases of fast energy decay, later arriving reverberant energy

can get classified as silence. We bias estimation to the beginning

of the response by modifying the silence threshold to fall off as

ϵr ← ϵr + dr (t − τ
′′
0
) with a fast decay rate of dr = -120dB/s.

7.5 Directional Reflection Loudnesses, R J

We aggregate loudness and directionality of reflections for 80ms

after the reflections delay (τ1). Waiting for energy to start arriving

after reflecting from proximate geometry gives a more consistent

energy estimate than [2014], which collects energy for a fixed in-

terval after direct sound arrival (τ0). We collect directional energy

using coarse cosine-squared basis functions fixed in world space

and centered around the coordinate axes S J , yielding six directional
loudnesses indexed by J

R J ≡ 10 log
10

∫ τ1+80ms

τ0+10ms

p2(t)max
2

(
ˆf (t) · S J , 0

)
dt . (17)

Since | ˆf (t)| = 1, this directional basis forms a partition of unity

which preserves overall energy, and does not ring to the opposite

hemisphere like low-order spherical harmonics.

Our approach allows flexible control of RAM and CPU rendering

cost not afforded by spherical harmonics. For example, elevation

information could be omitted by summing energy in ±z equally in

the four horizontal directions. Alternatively, one could preferentially

increase azimuthal resolution with suitable weights.

7.6 Decay Time, T
Impulse response decay time is usually computed as a backward

time integral of p2 but a streaming encoder lacks access to future

values. With appropriate causal smoothing, robust decay estimation

can be performed via online linear regression on the smoothed

loudness 10 log
10

(
L20 ∗ p

2
)
. We avoid estimation of separate early

and late decays, instead computing an overall 60dB decay slope

starting at the reflection delay, τ1.

7.7 Spatial Compression
The preceding processing results in a set of 3D parameter fields

varying over x for a fixed runtime listener location x ′. As in [2014],

each field is spatially smoothed and subsampled on a uniform grid

with 1.5m resolution. Fields are then quantized and each z-slice sent
through running differences followed by a standard byte-stream

compressor (Zlib). The novel aspect is treating the vector field of

primary arrival directions, s0(x ;x
′).

Singularity. s0(x ;x ′) is singular at |x − x ′ | = 0. Small numerical

errors in computing the spatial derivative for flux yield large angular

error when |x − x ′ | is small. Denoting the line of sight direction

as s ′
0
≡ (x ′ − x)/|x ′ − x |, we replace the encoded direction with

s0(x ;x
′) ← s ′

0
when the distance is small and propagation is safely

unoccluded; i.e., if |x − x ′ | < 2m and L(x ;x ′) > -1dB. When inter-

polating, we use the singularity-free field s0 − s
′
0
, add back s ′

0
to the

interpolated result, and renormalize to a unit vector.

Compressing directions. Since s0 is a unit vector, encoding its 3D

Cartesian components wastes memory and yields anisotropic angu-

lar resolution. This problem also arises when compressing normal

maps for visual rendering. We tailor a simple solution to our case

which first transforms to an elevation/azimuth angular representa-

tion: s0 → (θ ,ϕ). Simply quantizing azimuth, ϕ, results in artificial

incoherence when ϕ jumps between 0 and 2π . We observe that

only running differences are needed for compression and use the

update rule ∆ϕ ← argminx ∈{∆ϕ,∆ϕ+2π ,∆ϕ−2π } |x |. This encodes

the signed shortest arc connecting the two input angles, avoiding

artificial jumps.

Quantization. Discretization quanta for {τ0,L, s0,τ1,R∗,T } are
given by {2ms, 2dB, (6.0◦, 2.8◦), 2ms, 3dB, 3}. The primary arrival

direction, s0, lists quanta for (θ ,ϕ) respectively. Decay time T is

encoded as log
1.05(T ) as in [2014].

8 RENDERING
Figure 8 diagrams our runtime signal processing. Note the middle

partition separating per-emitter processing from global. Per-emitter
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processing is determined by dynamically decoded values for the

parameters based on runtime source and listener location. Decom-

pression and spatial interpolation operate similarly as [2014]. Al-

though the parameters are computed on bandlimited simulations,

rendering applies them for the full audible range, thus implicitly

performing frequency extrapolation.

Initial sound. Starting at the top left of Fig. 8, the mono source

signal is sent to a variable delay line [Smith 2007] to apply the initial

arrival delay, τ0. This also naturally captures environmental Doppler

shift effects based on the shortest path through the environment.

Next we apply a gain driven by the initial loudness, L (as 10
L/20

)

and send the resulting signal for rendering at the primary arrival

direction, s0.

Directional canonical filters. To avoid the cost of per-source convo-
lution, we extend the idea of canonical filters [2014] to incorporate

directionality. For all combinations of the world axial directions S J
and possible RT60 decay times {TI } = {0.5s, 1.5s, 3s}, we build a

mono canonical filter as a collection of delta peaks whose ampli-

tude decays exponentially, mixed with Gaussian white noise that

increases quadratically with time. We match the peak delays across

all {S J } to allow coloration-free interpolation and, as discussed

shortly, ensure summing localization. The same pseudo-random

signal is used across {TI } with S J held fixed. However, we use inde-
pendent noise signals across directions {S J } to achieve inter-aural

decorrelation that aids in natural, enveloping reverberation.

For each direction S J , the output across filters for various decay
times {TI } is summed and then rendered as arriving from world

direction S J . This is different from multi-channel surround encod-

ings where the canonical directions are fixed in the listener’s frame

of reference rather than in the world. Because all canonical filters

share time delays for peaks, interpolating between them across

{S J } results in summing localization, creating the perception of

reverberation arriving from an intermediate direction. This exploits

summing localization in the sameway as speaker panning, discussed

in Section 6.

Reflections and reverberation. The output of the onset delay line

is fed into a reflection delay line that renders the variable delay

τ1 − τ0, thus realizing the net reflection delay of τ1 on the input

signal. The output is then scaled by the gains {10R J /20} to render

the directional amplitude distribution. To incorporate the decay

timeT , we compute three weights corresponding to canonical decay

times {TI } as in [2014], which further multiply the directional gains.

The results are summed into the inputs of the 18 canonical filters

(6 directions × 3 decay times). To reduce the cost of scaling and

summing into 18 filter inputs, we observe that only 12 of these are

nonzero, corresponding to the two decay times in {TI } that bracket
the actual decay time T decoded.

Spatialization. Directional rendering (Figure 8, right) is device

dependent and our technique is agnostic to its details. It renders the

impression that an input mono signal arrives from its associated

input world direction, producing multiple signals for playback on

the user’s output hardware. Recall that directions arise either from

the per-emitter primary arrival direction, s0, or the fixed canonical

Citadel HighRise

Fig. 9. Demo scenes.

directions, S J . These incoming world directions, denoted sw , are

first transformed into the listener’s reference frame, sl = R
−1(sw ).

Our results binaurally render using generic HRTFs for head-

phones. We perform nearest-neighbor look up in the HRTF dataset

to the direction sl , and then convolve (using partitioned, frequency-

domain convolution) the input signal with the per-ear HRTFs to

produce a binaural output buffer at each audio tick. To avoid popping

artifacts, the input signal’s audio buffer is cross-faded with comple-

mentary sigmoid windows and fed to HRTFs corresponding to sl at
the previous and current audio tick. Other spatialization approaches

can easily be substituted. Instead of HRTFs, one could compute pan-

ning weights given sl to produce multi-channel signals for speaker

playback in a stereo, 5.1 or 7.1 surround, or with-elevation setups.

9 RESULTS
Our approach produces smooth auralizations in complex game

scenes shown in Figure 9 that can be heard in the supplemental

video. Both scenes were precomputed at νm = 1000Hz. Citadel had

780 listener (probe) samples, with a total data size of 80MB. High-

Rise had 1350 listener samples with data size of 160MB. Each listener

probe centers a simulation around x ′ of dimension 90m×90m×30m.

Probes can be computed in parallel with each one taking 5-6 hours

at 1kHz and 20 minutes at 500Hz on a single 8-core machine.

We visualize the encoder’s raw output estimating parameters

independently at each cell in Figures 1 and 10. These raw parameter

fields are quite smooth, affording spatial coherence and good com-

pression. In Figure 10, the listener is located inside the cathedral,

shown with a green dot, with two doors leading outside. Observing

the initial delay field (τ0), arrivals take a circuitous route to get

behind the cathedral and are extremely attenuated, yet our delay

estimation stays robust and produces smooth values.

To interpret the initial direction field (s0), recall that we perform
reciprocal dipole simulations. The figure visualizes arrival direction

of the sound emanating from a field of possible runtime source loca-

tions x , with runtime listener held fixed at x ′ located symmetrically

with respect to the two doors. The field demonstrates our modeling

of the precedence effect. Directions show a piecewise constant, sym-

metric distribution in the upper and lower halves of the parameter

image. Sources in the top half of the figure pass through the portal at

the top, and sources at the bottom through the bottom portal. In the

middle, within the 1ms summing localization window, the directions

smoothly merge to an intermediate. A piecewise constant distribu-

tion of directions occurs frequently when the runtime listener is

indoors: the sound for any source outside must choose between di-

rections to one of the portals to get to the listener first. The resulting

compression is an additional advantage of using reciprocity.
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Fig. 10. Parameter fields for Citadel.

The reflection delay field shows little variation in Citadel be-

cause geometry close to the listener causes dense scattering. In a

more open environment like HighRise (Figure 1) we can see large

reflection delays when the source and listener are close together

but far from scene geometry. We observed in our experiments that

reflection delay is most easily heard when sounds emanate from

near the listener, like footsteps.

In Figure 10, the main chamber of the cathedral is bright only for

the “reflections left” (R3) field: reflected energy for any source in

the main chamber must arrive through the door to the listener’s

left in the figure. When source and listener occupy different spaces,

intervening portals cause marked anisotropy as reflections must

funnel through them. Rendering isotropic reverberation [2014] in

such cases creates the incorrect perception of source and listener

being enclosed in the same room, especially when the listener is

outdoors. In the last two plots (“reflections top”, R2, and “reflections
bottom”, R4), brightness is mirrored in the top and bottom halves of

the plots; i.e., when the sound source is in the entrance towards the

top, reflected energy arrives from the same direction, and similarly

for the bottom. In open spaces, anisotropy from geometry close to

the source can be pronounced as seen in the last two plots in Figure 1

(R2 vs. R4). Anisotropy also arises near archways and corners which
act as local reservoirs of energy with directional output.

Experimental auralization. The supplemental video compares our

reference PWD and flux binaural results for νm = 2000Hz (Section 4)

with our system’s fully encoded/decoded runtime result based on a

lower frequency simulation of νm = 1000Hz. PWD and flux sound

virtually identical on all scenes. The simplest experimental scenes

(scene1-scene4) lack geometry to hold sound and so don’t rever-

berate. We auralize scene4 in the video as representative. Note the

strong precedence effect: even though sound comes through both

windows (and is rendered as such in the reference auralization), the

perceived direction is that of the closer window. Our rendering pro-

duces too much reverberation in this extremely simple scene: some

of the later arriving sound from the farther window contributes to a

small amount of reflected energywhich is then rendered through our

shortest canonical filter which is still 0.5s. In scene5, flutter echoes

are distinctly audible as sounds bounce back and forth between the

scene’s parallel walls. While flux generally agrees with PWD, in

this case, flux merges directions for overlapping reflections from

the two walls, creating the incorrect perception of reverberation

progressing to between the walls. Such detailed temporal structure

is lost entirely by our system, but it does reproduce the directional

cues for the initial sound and reflection from the back wall. Our

system’s result in scene6 matches well.

10 CONCLUSION
We present the first system to capture 9D directional acoustics in

large, complex but static scenes in real time for moving sources and

listener. Our perceptual encodingmakesmemory usemanageable by

extracting a few parameters from each directional impulse response

in a precomputed wave simulation. A novel streaming encoder

allows feasible precomputation up to 1kHz on large game scenes.

Our results demonstrate many directional effects, including correct

initial sound direction in occluded cases and anisotropic reflections

that provide immersive auditory cues about surrounding geometry.

We show for the first time how well the flux approximation matches

ground truth plane wave decomposition, and how well our system

matches these references, in a controlled virtual experiment.

In future work, we’re interested in improving realism especially

outdoors and investigating other parameters including echo den-

sity, more directional detail in early reflections, and independently

directional late reverberation. Our system’s use of dipole sources to

introduce a listener’s head into an impulsive sound field after the

fact could be similarly exploited to handle directional sources which

can rotate at runtime. We note that our underlying wave solver

can be improved in many ways, e.g. to handle frequency-dependent

absorption and sound transmission through geometry.
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