
Learning Natural Programs from a Few Examples in Real-Time

Nagarajan Natarajan1 Danny Simmons2 Naren Datha1 Prateek Jain1 Sumit Gulwani2
1Microsoft Research, India 2Microsoft Corporation, Redmond

Abstract

Programming by examples (PBE) is a rapidly
growing subfield of AI, that aims to synthesize
user-intended programs using input-output ex-
amples from the task. As users can provide only
a few I/O examples, capturing user-intent accu-
rately and ranking user-intended programs over
other programs is challenging even in the sim-
plest of the domains. Commercially deployed
PBE systems often require years of engineer-
ing effort and domain expertise to devise ranking
heuristics for real-time synthesis of accurate pro-
grams. But such heuristics may not cater to new
domains, or even to a different segment of users
from the same domain. In this work, we develop
a novel, real-time, ML-based program ranking
algorithm that enables synthesis of natural, user-
intended, personalized programs. We make two
key technical contributions: 1) a new technique
to embed programs in a vector space making
them amenable to ML-formulations, 2) a novel
formulation that interleaves program search with
ranking, enabling real-time synthesis of accu-
rate user-intended programs. We implement our
solution in the state-of-the-art PROSE frame-
work. The proposed approach learns the intended
program with just one I/O example in a vari-
ety of real-world string/date/number manipula-
tion tasks, and outperforms state-of-the-art neu-
ral synthesis methods along multiple metrics.

1 Introduction

Programming by examples (PBE) is an important and
emerging subfield of AI (Parisotto et al., 2016; Balog et al.,
2017; Devlin et al., 2017; Bunel et al., 2018; Kalyan et al.,
2018), where a user-intended program is synthesized au-
tomatically with the help of a few input-output examples

Proceedings of the 22nd International Conference on Artificial In-
telligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan.
PMLR: Volume 89. Copyright 2019 by the author(s).

Input Output
Missing page numbers, 1993 1993

64-67, 1995 ?
2002 (1-27) ?

Table 1: I/O spec provided to a PBE system. Goal is to find
a program that is: a) consistent (maps the first input into the
corresponding output), b) generalizable or accurate (com-
putes desired output on last two inputs). While millions
of programs in the DSL in Figure 1 are consistent, only a
handful of them generalize well to unseen inputs.

(I/O specification, or spec for short). A large fraction of
computer users are not experts in programming, and syn-
thesizing programs automatically enables them to be more
productive. Table 1 describes a typical PBE task.

PBE is essentially a needle-in-haystack problem where the
goal is to search for a consistent program (i.e. one that
satisfies given I/O spec) in a certain Domain Specific Lan-
guage (DSL) that might contain infinitely many programs.
The problem becomes significantly more difficult due to
user-centric focus of the systems — the PBE system has to
be real-time and should be able to synthesize non-trivial
programs; and often in under-specified situations as one
cannot expect a user to provide a large number of I/O ex-
amples. Unfortunately, these requirements are somewhat
contradictory. That is, if the DSL is rich and can support
complicated programs, then a small number of I/O exam-
ples might not be able to uniquely identify a program in the
DSL. For example, for the specification in Table 1, we can
generate several consistent programs in the DSL of Fig-
ure 1, such as “extract the first number” or “extract the last
token”. However, human programmers are typically able
to figure out the correct program using a few I/O exam-
ples. So, the key question is: can we synthesize rich user-
intended programs using a small number of I/O examples,
in real-time?

Starting with the FlashFill PBE system (Gulwani, 2011)
that was commercially deployed in MS Excel (PCWorld,
2012), there has been tremendous progress in this domain
over the past few years. Typical PBE techniques search for
a program in a carefully-designed DSL and can be catego-
rized into: a) symbolic deduction based techniques (Polo-

Learning Natural Programs from a Few Examples in Real-Time

zov and Gulwani, 2015; Gulwani et al., 2017; Alur et al.,
2017; Le et al., 2017), b) neural computation based tech-
niques (Parisotto et al., 2016; Balog et al., 2017; Devlin
et al., 2017; Bunel et al., 2018; Kalyan et al., 2018).

Most neural synthesis (Parisotto et al., 2016; Balog et al.,
2017; Devlin et al., 2017; Bunel et al., 2018) models are
trained on synthetic data and hence in general, do not cap-
ture user-intended programs with a small number of I/O
examples. In contrast, symbolic computation based PBE
systems handcode the structure of programs and domain
knowledge tightly leading to significantly more accurate
programs in certain cases. However, manual engineering
of the system makes it challenging to extend the solution
for even slightly different scenario or a new domain.

Our work alleviates concerns with both the approaches
by carefully combining ML techniques with the symbolic
search techniques well-understood by the PL community.
(1) Our first contribution addresses the fundamental ques-
tion of embedding heterogeneous programs/expressions in
a vector-space which can make programs more amenable to
standard learning techniques (Section 3). In the context of
PBE, a few key learning tasks that are enabled by program
embeddings are: clustering programs/expressions (Padhi
et al., 2017), predicting correct programs (Singh and Gul-
wani, 2015; Ellis and Gulwani, 2017), and ranking pro-
grams (Polozov and Gulwani, 2015; Balog et al., 2017).
Defining program embedding is challenging because pro-
grams are inherently recursive and can be composed of
heterogeneous sub-expressions. Furthermore, semantically
different programs can often behave equivalently on a given
I/O spec, so the embedding should take I/O spec into ac-
count as well.
(2) We show how the proposed embedding can be lever-
aged for learning to rank programs, a crucial component of
PBE systems. However, we cannot apply standard ranking
techniques — we cannot even enumerate all the candidate
programs to rank as there can be millions of consistent pro-
grams. So, we need to interleave synthesis and ranking for
real-time synthesis, which in turn requires comparing het-
erogeneous programs, subprograms, expressions, etc. The
problem is further complicated by unavailability of super-
vision for such intermediate subprograms, and by biased
training data that the bootstrapping process induces. We
propose three novel and successively refined formulations
to address the above mentioned challenges (Section 4).
(3) Finally, we integrate our ranking solution with the state-
of-the-art PROgram Synthesis using Examples, PROSE
(2015) framework. In particular, we show that on real-
world data wrangling tasks, the proposed ranking approach
outperforms baselines, as well as state-of-the-art neural-
synthesis approaches significantly. Our solution is com-
petitive wrt. the ranker tuned over two expert-years that
currently ships in Microsoft products (MS Excel, Power-
shell, Azure ML). Using just one I/O example, our method

@start program := tr | If(cond) Then(tr)
Else(program);

bool cond := Matches(input, r);
string tr := atom | Concat(atom, tr);
string atom := ConstStr(s) | let string x

: input in SubStr(x, pp) | input;
Tuple<int, int> pp := Pair(pos, pos) |

RegexOccurrence(x, r, k);
int pos := AbsPos(x, k);
@input string input; string s; int k;

Regex r; //Terminals

Figure 1: An illustrative subset of the FlashFill DSL (Gul-
wani, 2011). A program takes a string input, and returns
a string, a concatenation of atoms. The operators are self-
explanatory. See Appendix B for the full DSL.

synthesizes a desired program for about 67% of the tasks
while baselines are successful only in at most 44%.

2 Background

In this section, we define the PBE problem formally, intro-
duce various aspects of PBE systems and terminology/no-
tation used in the rest of the paper.

The goal of a PBE system is to generate user-intended pro-
gram(s) where the user intention is specified using input-
output examples (I/O spec): ζ = {σi 7→ ψi}mi=1 ∪
{σi}ni=m+1. σi is the i-th example’s input and ψi is the
corresponding output (when available). Unlabeled inputs
are often available and can be used for doing simple vali-
dation checks on synthesized programs (See Remark 1).

Typically, PBE systems restrict the search for a program to
a domain specific language L that is powerful enough for
solving critical tasks in a certain domain, but is still restric-
tive and structured enough for efficient program synthesis.
A DSL L is a represented as a context-free grammar (CFG)
consisting of terminal symbols T , non-terminal symbols
N , rules that govern how non-terminals are expanded, and
operators F : (N ∪ T)∗ → N that make the production
rules. As an example, consider the popular FlashFill DSL
meant for data wrangling tasks in spreadsheets (Gulwani,
2011; Polozov and Gulwani, 2015). The core DSL is cap-
tured in Table 1 (Appendix B has the full DSL).

A program or an expression L 3 P : σ → ψ is a struc-
tured entity with precise syntax and semantics defined by
the DSL.

Remark 1 (Unlabeled inputs). Using unlabeled inputs (i.e.
{σi}ni=m+1) can be often helpful in characterizing program
behavior; for example, programs that map many of the un-
labeled inputs to nulls or empty strings can be indicative
of unintended behavior.

For a PBE system to be usable in an interactive setting, it

Nagarajan Natarajan1 Danny Simmons2 Naren Datha1 Prateek Jain1 Sumit Gulwani2

should satisfy three key requirements:
(R1) be consistent (see Definition 1), i.e., return pro-
gram(s) that satisfy the user-provided I/O spec,
(R2) be generalizable, i.e., the synthesized program(s)
should give desired output on unseen inputs; for severely
underspecified problems (say m = 1 I/O example) there
can be millions of consistent programs (see Table 1), and
(R3) be real-time, i.e., the synthesise generalizable pro-
grams on consumer-class devices.

Definition 1 (Consistent Program). A program P ∈
L is “consistent” on a given input-output specification
{σi, ψi}mi=1, if P (σi) = ψi, for i = 1, 2, . . . ,m. Other-
wise, P is inconsistent.

While consistency (R1) is essentially a search problem,
(R2) is more critical and interesting from a machine learn-
ing perspective — often there can be millions of programs
that satisfy (R1), but the user would find most of the con-
sistent programs unusable because they do not generalize
to new inputs. It is not possible to formally specify “natu-
ralness” of programs with symbolic logic. Typically, (R2)
is addressed by means of a ranking function that can help
choose the “best” program from possibly many consistent
programs. One way to address this is to first synthesize all
the consistent programs, and then rank them (Ellis and Gul-
wani, 2017). Unfortunately, the naı̈ve approach cannot be
done in real-time — it can take hours to even enumerate the
consistent programs, thus contradicting (R3). State-of-the-
art neural-network based synthesis approaches are trained
on synthetic datasets/programs, so they fail to capture the
structure in the domain. As a result, neural synthesis ap-
proaches suffer in the quality of synthesized programs, es-
pecially for underspecified synthesis tasks (See Section 5).

It is therefore crucial to look at the search and the rank-
ing problem as a whole (i.e., (R1)-(R3)). Success-
ful, commercially-deployed PBE systems (Gulwani, 2011;
Gulwani et al., 2015; Alur et al., 2013) use symbolic logic
and deductive synthesis techniques to efficiently address
(R1) and (R3). In particular, the symbolic PBE systems
use a top-down deductive synthesis strategy based on the
divide-and-conquer paradigm. Here, the search problem
for a given I/O spec is reduced into smaller subproblems
with suitably modified specs1. For e.g., the synthesis prob-
lem ζ = {“New York” 7→ “NY”} is broken down into
finding a set of subprograms P1 with spec ζ1 = {“New
York” 7→ “N”} and a set of subprograms P2 with spec
ζ2 = {“New York” 7→ “Y”}, i.e., programs in P1 gener-
ating “N” and those in P2 generating “Y”. Then the final
program set is given by P = {Concat(P1, P2) s.t. P1 ∈
P1, P2 ∈ P2}. Each of the synthesis subproblems is solved
recursively using the same strategy.

1it is beyond the scope of the paper to describe how spec for
the subproblems are obtained. See Polozov and Gulwani (2015)
for details of search. The key idea is to leverage inverse semantics
of the involved operators.

However, the aforementioned PBE systems rely on heuris-
tics for (R2), i.e. ranking (Polozov and Gulwani, 2015;
Rolim et al., 2017; Wang et al., 2017) (such as choos-
ing smaller programs/expressions over larger ones). Sim-
ple heuristics may result in bad failures even in sim-
ple cases. For illustration, consider the data format-
ting task with just one I/O example: {“[CCC-0001” 7→
“[CCC-0001]”}. Adopting naive heuristics such as “pre-
fer programs with fewer constants” or “prefer shorter pro-
grams” leads to the incorrect program: Concat(input,
ConstStr("]")), which would fail on an already for-
matted input, say “[CCC-002]”. On the other hand, de-
veloping carefully-tuned ranking heuristics often takes one
to two expert-years; and requires continual effort to keep
up with domain changes, let alone scaling to new domains.
Also, it can be challenging to personalize the heuristics to
user segments with unique biases/preferences.

The primary goal of our work is to develop an ML-based
ranking solution for real-time synthesis of natural pro-
grams. Programs are difficult objects to analyse/rank, so
we need to be able to embed them in a suitable feature
space. To this end, we first address the problem of em-
bedding heterogeneous programs/expressions in a common
vector space. Defining an embedding that handles the het-
erogeneity is non-trivial, and it turns out that we need to
learn the embeddings themselves. Existing embedding
techniques (Ellis and Gulwani, 2017) do not work because
they are defined for homogeneous programs. We address
the embedding challenges and our solution in Section 3.
Subsequently, we consider the problem of doing program
ranking and search jointly. Apriori, it is unclear how to
set up/formulate the machine learning problem, or what
loss function to optimize. Ranking programs/expressions
is challenging for multiple reasons: 1) classical ranking
techniques (Liu et al., 2009) do not work, as we do not
even have a clean supervised dataset to begin with, and 2)
search for user-intended programs is a sequential decision
making problem, therefore a mistake at any point in the
search may be irrevocable; this necessitates a novel rank-
ing formulation that admits interleaved search and ranking
during synthesis. We address these challenges and propose
ranking solutions in Section 4.

3 Program-Spec Embedding

Informally, the problem is to find a representation for
programs/expressions P ∈ L together with the I/O
spec ζ, such that the embedding captures syntactic and
semantic structure (defined by DSL), as well as behavioral
properties (defined by I/O spec). Defining a feature
vector for programs/expressions that captures the complex
structure/properties is not obvious. Simple techniques like
using the abstract syntax tree (AST) directly do not suffice.
Programs with very similar ASTs can differ arbitrarily in
their semantics. Consider two programs from the FlashFill

Learning Natural Programs from a Few Examples in Real-Time

DSL for the task in Table 1, P1 = let x : input in
SubStr(x, RegexOccurrence(x, "Number",
1)) and P2 = let x : input in SubStr(x,
RegexOccurrence(x, "Number", -1)); P1 and
P2 have identical ASTs but different semantics (extracting
the first number vs the last number in the input). On the
other hand, two programs with very different ASTs can
produce identical outputs on given inputs.
(1) It is crucial to embed I/O spec along with the pro-
gram/expression itself. The utility of a program can
vary drastically based on the I/O spec. For e.g., the
program P = let x : input in SubStr(x,
Pair(1,3)) has the outcome of extracting first three
digits of SSN in ζ1 = {“123-45-6789” 7→ “123”, “555-
21-9012” 7→ “555”} vs an undesirable outcome of
extracting first three letters of name in ζ2 = {“Joe
Smith” 7→ “Joe”}. So the embedding must be defined on
the tuple (P, ζ) rather than just P .
(2) The embedding should facilitate comparisons be-
tween expressions and programs of different sizes,
types and complexities. For e.g., we want the ex-
pressions Concat(Concat(ConstStr("@"),
ConstStr("gmail")), ConstStr(".com"))
and ConstStr("@gmail.com") to yield similar rep-
resentations. This is highly non-trivial; existing embedding
techniques do not impose/satisfy such a requirement.
(3) Programs are compositional, e.g.
Concat(Concat(P1, P2), P3). We want the
embedding to be recursive, thereby preserving the
compositional structure. The embedding of a program
should respect and conform to the embeddings of its
subprograms/expressions.

Often domain knowledge can help us define features for in-
dividual operators in the DSL. Concretely, let ΦOp(P, ζ) ∈
RdOp be the set of given dOp features for an operator Op.
For e.g., for the Concat operator, the length of its pre-
fix string argument is a feature (note that the feature may
depend on the spec ζ). See Appendix B.3 for features in
FlashFill DSL.

Define the dimensionality d to be d =
∑
Op∈CFG(L) dOp.

Definition 2 (Program-Spec embedding). For any given
program/expression P ∈ L, operator features ΦOp ∈
RdOp for all operators Op ∈ CFG(L), and I/O spec ζ, we
want an embedding Φ(P ; ζ) ∈ Rd that satisfies the afore-
mentioned three requirements.

To handle the recursive nature of programs (in the require-
ment (3) above), and the grammar itself, we critically ex-
ploit the fact thatL is represented as an unambiguous gram-
mar that has a unique parse T (P) for P . Let Op(P) be the
operator at the top of T (P), and let C(P) denote the imme-
diate children nodes of P in T (P). We obtain embedding
for P by combining the given features for the top opera-
tor in T (P) with a weighted combination of embeddings
of each child node of P in T (P). We define embedding

Figure 2: Parse-tree and embedding for the program: let
x : input in SubStr(x, PosPair(1, 3)).
The types of nodes (variables/operators) are color-coded.

Φ(P) of P recursively as:

Φ(P ; ζ) = ΦOp(P)(P, ζ;w)+
∑

P ′∈C(P)

w(P ′)Φ(P ′, ζP ′ ;w) ,

(1)
where ΦOp(P)(P ; ζ) are the given features for the root op-
erator Op(P) of P , ζP ′ is the spec for subprogram P ′

defined as {σi 7→ P ′(σi) | σi ∈ ζ}, and w(P ′) is the
weight assigned to the operator at child P ′, i.e. w(P ′) :=
w(Op(P ′)), in the parse tree of P (see Figure 2). Thus,
in addition to the given features, the embeddings are char-
acterized by children operator weights w(P ′) as well, i.e.,
w ∈ R|LOp| where |LOp| is the number of operators in L.

Remark 2. Note that although the definition of the embed-
ding is recursive, we can compute it once weights w are
fixed. Observe that the leaf nodes in T (P) have only the
given features and hence the embeddings are well-defined
and immediately obtained; thus, the embedding for the pro-
gramP can be computed efficiently in a bottom-up fashion.

Thus we have a homogeneous embedding Φ(P, ζ;w) of the
program P in the same d-dimensional space as that of its
constituent expressions. The weights w(.) can be learned
based on the end task that the embedding will be used for,
addressed in Section 4.

Remark 3. Our program embedding technique is also an
independent technical contribution, as it enables key learn-
ing tasks such as clustering programs/expressions (Padhi
et al., 2017), predicting correct programs (Singh and Gul-
wani, 2015; Ellis and Gulwani, 2017), and ranking pro-
grams in code-completion task (Balog et al., 2017).

4 Program Ranking

The goal of program ranking is to learn a ranking function
s that provides the highest score to user-intended programs;
and to facilitate synthesis of a user-intended program from
a few I/O examples. However, as mentioned in Section 2, a

Nagarajan Natarajan1 Danny Simmons2 Naren Datha1 Prateek Jain1 Sumit Gulwani2

standard approach (Ellis and Gulwani, 2017) of generating
all the consistent programs and then ranking them using
standard formulations (Liu et al., 2009) is not feasible for
real-time systems.

Instead, a key motivating observation for our solution is
that the search process of the synthesis algorithm parti-
tions the program generation into multiple smaller program
synthesis sub-problems. So, the ranking algorithm should
be able to generate “correct” subprograms for each of the
smaller sub-problems as well; we call a program correct if
it produces the desired output on unseen inputs as well.

That is, say a program P = Op(P1, . . . , Pr), {Pj ∈ Pj} is
generated for specification ζ with operator Op in the DSL
L. Each Pj ∈ Pj , 1 ≤ j ≤ r, is in turn generated by solv-
ing a smaller PBE problem with “refined” specification ζj
(discussed briefly in Section 2). Now, we require the rank-
ing function s to be such that it not only scores P higher
than other programs P ′ ∈ L for specification ζ but it also
scores each Pj above other programs P ′j ∈ L for specifica-
tion ζj . That is the ranking function is monotonic.

Definition 3 (Program ranking). Let ζ = {σi 7→ ψi}mi=1 ∪
{σi}ni=m+1 denote I/O spec given to the PBE system. We
want to learn a ranking function s : Rd → R as well as the
embedding function Φ(·, ·) such that below hold:
1. Correctness: s(Φ(P ; ζ)) > s(Φ(P ′; ζ)), for correct
programs P ∈ L and incorrect programs P ′ ∈ L.
2. Monotonicity: Let P1, . . . ,Pr denote the top-K pro-
grams returned for each subproblem with specification ζj ,
1 ≤ j ≤ r and let the final set of programs be P =
{P, s.t.P = Op(P1, . . . , Pr), Pj ∈ Pj}. Then, the fol-
lowing holds:

∀P ∈ P,∀P ′ ∈ L \ P, s(Φ(P ; ζ)) ≥ s(Φ(P ′; ζ))⇒
∀Pj ∈ Pj ,∀P ′j ∈ L \ Pj , s(Φ(Pj ; ζj)) ≥ s(Φ(P ′j ; ζj)).

To learn the ranking function, we use a benchmark of real-
world programming tasks that should capture the typical
user-intent. Each task has a set of input-output examples;
while we provide a small number of them for synthesizing
the program, the remaining I/O examples are used for test-
ing if a synthesized program succeeds on the task. Design-
ing such a function requires further solving the following
two key challenges:

(1) Biased training data: Learning a ranking function re-
quires generating data from the PBE system itself (by ap-
plying it to a few tasks in the benchmark). To bootstrap
and to generate training data, we supply the PBE system
with a baseline ranker s0 (e.g., a ranker that generates ran-
dom scores); generated training data is used to learn a new
ranker s1. When we deploy s1, the distribution of the sub-
programs generated itself changes based on s1’s rankings,
hence the accuracy can be arbitrarily poor as s1 was trained
on data generated from s0.
(2) Distant supervision: Though the ranking function s

Algorithm 1 Algorithm for training ML-PROSE.
function ML-PROSE(L, θ0, T = {ζi, i ∈ [|T |]},Γ)
1: w(P ′)0 = 1 for all P ′ ∈ CFG(L)
2: for all 0 ≤ τ ≤ Γ do
3: Pj = Synthesis(hτ , ζj), 1 ≤ j ≤ |T |, Syn-
thesized programs by applying sτ to spec ζj
4: Assign yP = 1 for each correct P ∈ Pj , ∀j
5: Assign yP = −1 for each incorrect P ∈ Pj , ∀j
6: θ = θτ , w = wτ
7: while not converged do
8: Compute Φ(P, ζj ;wτ) using (1), P ∈
Pj , ∀j
9: Update θ by solving (3) with fixed w

10: Update w by solving (3) with fixed θ and
s(P, ζ;w) computed recursively using (2)

11: wτ+1 = w, θτ+1 = θ

12: return sΓ = (wΓ, θΓ)

is applied to rank smaller subprograms as well as the final
programs, the feedback (correctness label) is available only
for final programs; i.e., we can apply the final set of synthe-
sized programs on unseen inputs to measure their accuracy,
but we cannot get similar feedback for their subprograms.

4.1 Learning to Rank Programs/Subprograms

In this section, we describe three methods to generate
ranking problems; successive methods capture the prob-
lem structure better and try to address the above mentioned
challenges more directly. In this work, we focus on lin-
ear scoring functions over the embedding Φ (parameterized
by w) defined in (1) (see Remark 4 for discussion on non-
linear functions), i.e., the score s(P, ζ;w) for program P
with spec ζ is given by: s(P, ζ;w) := θTΦ(P, ζ;w), θ are
the weights. If P = Op(P1, . . . , Pr) then,

s(P, ζ;w) = θTOpΦOp(P, ζ;w) +
∑
j

w(Pj)s(Pj , ζj ;w),

(2)
is a recursive scoring (ranking) function as desired, where
θOp is the projection of θ onto given features for operator
Op. Note that w(Pj) ≥ 0 is a necessary condition for sat-
isfying monotonicity (Definition 3). Now, we want to learn
weights w(.) ≥ 0 as well as θ in (2) such that the rank-
ing problem in Definition 3 is feasible and can be solved
accurately. For a DSL L, let T = {ζ1, ζ2, . . . , ζ |T |} de-
note a set of tasks, where each task corresponds to an I/O
spec ζτ = {στi 7→ ψτi }

mτ
i=1 ∪ {στi }

nτ
i=mτ+1. For task ζτ , let

Pζτ denote the set of programs synthesized. It is always
possible to generate at least one correct program for off-
line training tasks by providing sufficiently many I/O ex-
amples (as search returns only consistent programs). Note
that correctness of a program (if it produces the desired out-
put on all unseen inputs as well) can be easily determined

Learning Natural Programs from a Few Examples in Real-Time

for training data. Let y(P) = 1 if P ∈ Pζτ is correct for
task ζτ , else y(P) = −1.

(I) Basic formulation (ML-PROSE): In the first formu-
lation, we avoid the challenges mentioned in the previous
section by starting with a random ranker and by compar-
ing only the final programs. That is, the goal is to learn a
scoring function that ranks any correct program above all
incorrect programs, i.e. θTΦ(Pa, ζ;w) > θTΦ(Pb, ζ;w),
for programs Pa, Pb ∈ P(ζτ) generated for a task τ , such
that y(Pa) = 1 and y(Pb) = −1. More generally, we
want to penalize the difference between their scores using
a suitable loss function `. The corresponding optimization
problem is written as:

min
θ,w

|T |∑
τ=1

∑
P∈Pζτ ,
y(P)=1

∑
P ′∈Pζτ ,
y(P ′)=−1

`
(
s(P, ζτ ;w)− s(P ′, ζτ ;w)

)
(3)

+C1

∥∥θ∥∥2

2
+ C2

∑
Op∈CFG(L)

w2
Op, s.t. wOp ≥ 0,∀Op,

where s(.) is defined in Equation (2) and the loss function
`(a) penalizes negative a; we use standard hinge loss for `
in our experiments. We solve the above given problem by
alternating over θ andw; note that each of the sub-problems
for θ and w is individually convex and easy to optimize.
Remark 4 (Non-linearity). We can capture non-linearity
in the ranking model by generating polynomial features
for the local features ΦOp. This enables learning complex
scoring functions like the one in Figure 4 (See Appendix).

(II) Handling distant supervision (ML-PROSE-
SubPRG): The above formulation ignores the fact that
subprograms are generated by solving smaller synthesis
problems. So, even if the scoring function s is accurate
for final programs, it can be arbitrarily poor for the
subprograms. We alleviate this issue partially by sampling
subprograms in the training data to solve Problem (3). We
use a baseline ranker to generate both the final programs
as well as the subprograms and include a sample from
the subprograms in Problem (3). We address the issue of
distant supervision by fixing “correctness” of a subpro-
gram P ′ as follows: y(P

′
) = 1 if P ′ appears as part of

at least one correct program for a given task, or else we
assign y(P ′) = −1. Table 2 clearly shows that the ranking
function can be improved significantly by inclusion of
subprograms when solving (3).

(III) MinMax formulation: Problem (3) does not directly
address the crucial requirement of deductive program syn-
thesis (even if we include sampled subprograms as in ML-
PROSE-SubPRG) — we want all the subprograms of a
given correct program to be ranked correctly during syn-
thesis. Furthermore, it suffices to rank any one correct pro-
gram above all incorrect programs for a given task. For the

subprograms of given correct program P for task ζ, i.e.,
Pj ∈ T (P), let ζj , j = 1, 2, . . . , |T (P)| denote their re-
spective subproblem specification. Let Pζj denote the set
of all programs in L that satisfy ζj , for each j. Of course, it
is impossible to enumerate the entire set, but we can sam-
ple many such subprograms for each subproblem specifi-
cation. We determine the label for the subprograms in Pζj
as before (+1 if the subprogram is part of at least one cor-
rect program for the task, or else -1). Define the loss on
a correct program P as the max over the losses of all the
comparisons during its synthesis:

∆(P) = max
Pj∈T (P)

max
P ′
j∈Pζj

y(P ′
j)=−1

`
(
s(Pj , ζj ;w)− s(P ′j , ζj ;w)

)
.

(4)
We solve:

min
θ,w≥0

|T |∑
τ=1

min
P∈Pζτ ,
y(P)=1

∆(P) + C1

∥∥θ∥∥2

2
+ C2

∑
Op

w2
Op. (5)

The above optimization problem is non-convex even in θ,
however, we can still define sub-gradient for the problem.
In particular, we implement stochastic sub-gradient descent
method for this problem using the widely-used Tensorflow
framework (www.tensorflow.org).

4.2 Iterative Training

The above formulations still do not address the biased train-
ing data challenge. In fact, even if we have a good ranker s0

to bootstrap with, the bias of baseline ranker still persists.
To alleviate this concern, we use an iterative scheme to en-
sure that the train-test distribution for our ranking function
matches while we improve the ranking function itself. Us-
ing a base ranker we synthesize programs for the training
tasks, sample programs and solve problem (3) (or (5), for
training the MinMax model). We then deploy the learned
ranker in the PBE system, synthesize (possibly different set
of) programs for the tasks, sample programs afresh again to
re-learn the ranking model, and repeat. The iterative pro-
cedure is described in Algorithm 1 (and in Figure 3 of Ap-
pendix) and is able to handle the biased training data issue
effectively. In order to ensure smooth refinement of s, we
combine data from a few recent iterationsD1∪D2 . . .∪DΓ;
here Dτ is the training dataset generated using sτ . This
also helps us avoid poor local minima and helps the ranker
converge to a reasonable stationary point.

5 Experiments

We have implemented our learning approach in the PROSE
(2015) framework, which is the state-of-the-art PBE sys-
tem for data wrangling tasks, and is publicly available for
academic use.

Nagarajan Natarajan1 Danny Simmons2 Naren Datha1 Prateek Jain1 Sumit Gulwani2

Benchmark tasks. We use 740 real-world string/date/-
time manipulation tasks obtained from Polozov and Gul-
wani (2015). Each task in the benchmark consists of a list
of input strings and their corresponding outputs (See Ap-
pendix C). The available number of I/O examples per task
varies from two to a few hundreds. We use 100 tasks for
training, and the remaining 640 for testing. Permuting the
order of I/O examples in each training task, and varying
the spec size m, we get several variants of a single training
task. Results are reported on the 640 test tasks used as-is
from the benchmark.

Performance Metrics. We want the PBE system to get an
intended program in top-K. We report results for K = 1
(ACC@1) as well as K = 10 (ACC@10).

Initial Ranking Model. In our experiments, we use the
ranking function that prefers shorter programs as the initial
ranking function in Algorithm 1. Natural programs tend
to be terse and often short, so this is a reasonable starting
point. Here, s(P ; ζ) = 1

|C(P)|
∑
P ′∈C(P) s(P

′; ζ)− 1.

Training Data. At each iteration of Algorithm 1, we take
the top-1000 programs for each task generated with the
ranking model of the previous iteration. This ensures we
have good mix of correct and incorrect programs to sample
from. With 100 tasks (and their variants) in the training set,
sampling about 40 correct and 40 incorrect programs from
each task results in about 1.2M data points in total per iter-
ation for learning the ML-PROSE model (3). To train the
MinMax model, we sample 50 correct programs from each
training task, to compute the inner min in (5); on average
there are about 20 subprograms per program corresponding
to the outer max in (4) and about 20 (incorrect) subpro-
grams corresponding to the inner max in (4); this sampling
strategy leads to about 2M training data points. ACC@1
for training tasks flattens after about 5 iterations, as shown
in Figure 5 (in Appendix A); so we use the ranking function
at the end of 6 iterations to report results on test data.

5.1 Results on FlashFill benchmark

Compared methods. Our three proposed ranking algo-
rithms are (i) ML-PROSE where we use only top-level
programs for training, (ii) ML-PROSE-SubPRG where
we use both programs as well as subprograms for learning
the ranking model in the objective (3), and (iii) MinMax
model that uses the more directed objective in (5). We
compare our methods against four baseline ranking func-
tions: (i) RANDOM ranking function where each weight
θi ∼ Uniform([−1, 1]); (ii) the initial ranking model out-
lined earlier, that prefers shorter programs, which we call
SHORTEST-PROGRAM (Wang et al., 2017; Osera and
Zdancewic, 2015); here, we discard trivial ConstStr pro-
grams (which is by definition the shortest program, when
the I/O spec has only one example), (iii) a ranking score
model that prefers fewer and shorter constants, which we

call FEWER-CONSTANTS; good constants like delimiters
tend to be short, so this is a reasonable heuristic; (iv) com-
bining the ranking models of SHORTEST-PROGRAM and
FEWER-CONSTANTS (i.e. prefer programs that are short
as well as with fewer, shorter constants).
Accuracy. The results for accuracy at top-1 and at top-10
for the different methods are presented in Table 2 (columns
1-4). The best performing method in terms of ACC@1 is
ML-PROSE-SubPRG, which retrieves the intended pro-
gram at the top in 67% test tasks, using just one I/O ex-
ample. Note that the hand-designed PROSE ranker (that
comes with PROSE (2015) SDK, and is shipped as part of
Microsoft products including MS Excel, Powershell, and
Azure ML), tuned using the entire benchmark, i.e. train-
ing as well as test tasks, achieves 0.72 top-1 accuracy with
m = 1. However, its top-10 accuracies are comparable
to ML-PROSE-SubPRG. In terms of ACC@10, the Min-
Max model is the clear winner, in both m = 1 and m = 2
cases; this suggests that the ∆(P) loss (4) effectively cap-
tures the synthesis-time “competitions” among potential
subprograms. Another important takeaway from the results
is that the synthesis problem becomes significantly easier
with m = 2 compared to m = 1. This is evident from ob-
serving the lift in performance of all the baseline methods,
especially the fourth one.
Synthesis time. Our ranking models are competitive com-
pared to the optimized PROSE ranker in terms of synthesis
times (i.e. elapsed CPU time to synthesize top-1 program
for a given I/O spec). See Figure 5 in Appendix A.

5.2 Comparison to state-of-the-art ML methods

Two important neural synthesis techniques in PBE context
are the RobustFill framework (Devlin et al., 2017) and
the DeepCoder framework (Balog et al., 2017). For fair
comparison, we conduct experiments on a simpler DSL
that Devlin et al. (2017) use. In particular, we use 73
tasks from the FlashFill benchmark, which is an exact sub-
set of our 640 test tasks, on which the results are reported
in Kalyan et al. (2018). We summarize the results in Table
1 of Kalyan et al. (2018) as well as present comparisons to
our method in Table 3 of Appendix A. We find that even the
SHORTEST-PROGRAM baseline achieves 32% ACC@1
with m = 1, about 7% better than RobustFill with m = 1,
on the exact 73 tasks. The simple baseline performs reason-
ably well because, in this subset of tasks, 2 or 3 I/O exam-
ples are sufficient for the search strategy to find consistent
programs that also generalize very well; on the other hand,
RobustFill cannot even guarantee consistent programs. Our
ranker ML-PROSE-SubPRG performs the best on the 73
tasks, achieving 70% ACC@1 with m = 1. We exclude
comparisons to Menon et al. (2013) as it requires additional
information beyond I/O spec for synthesis.

Learning Natural Programs from a Few Examples in Real-Time

RANKING METHOD ACC@1 ACC@10
m = 1 m = 2 m = 1 m = 2

RANDOM 0.22 0.60 0.38 0.67
(A) SHORTEST PROGRAM 0.37 0.69 0.49 0.80
(B) FEWER CONSTANTS 0.38 0.60 0.59 0.80

(A) and (B) 0.44 0.72 0.60 0.87
ML-PROSE 0.63 0.78 0.73 0.87

ML-PROSE-SubPRG 0.67 0.83 0.75 0.89
MinMax 0.65 0.81 0.79 0.92

Table 2: Performance on the FlashFill benchmark. The number of I/O examples given to the PBE system for each of the
640 test tasks is m. The proposed methods, especially ML-PROSE-SubPRG and MinMax, perform significantly better
than the baselines. The expert-designed ranker, currently shipped as part of several Microsoft products, tuned using training
as well as test tasks, gets 0.72 ACC@1 with m = 1, and 0.85 with m = 2; though its ACC@10 is worse than MinMax.

5.3 Personalization

A single ranking function may not cater to all types of
users, even within the same domain. A significant advan-
tage of our ranking solution is that we can re-train the scor-
ing model in order to capture the unique biases/preferences
for different user segments. For e.g, geography often deter-
mines date/time formats; we want the ranking function to
prefer the default formatting style for the specific user lo-
cale, unless additional I/O examples overrule the assumed
preferences. One simple and effective way to capture these
biases is to repeat the task, on which the ranker deviates
from the desired behavior, multiple times (or equivalently,
weigh the loss associated with this task higher). Below, we
present two scenarios for personalized ranking.

Rounding Numbers. Say we want to induce the following
preference for rounding a number: “Nearest” > “Toward-
sZero” > “Down”. The preference that our method (us-
ing MinMax ranking formulation) learns from the training
data is “TowardsZero”> “Nearest”> “Down” (See Figure
7, Appendix D). Learning this preferential order from the
randomly sampled training data is likely because in many
number transformation tasks where “Nearest” rounding op-
eration applies, “TowardsZero” also leads to correct pro-
grams (and “Down” is the least representative rounding op-
eration in the entire benchmark). By replicating three train-
ing tasks that induce the preferred rounding behavior 10
times and re-training, the (MinMax) ranking model learns
“Nearest” as the most-preferred rounding operation (See
Figure 8 and Example 1, Appendix D).

Formatting Dates. In many tasks, the intended output
format is ambiguous unless one looks at several I/O ex-
amples. Say, some users prefer “m/d” to “M/dd” (2/3 vs
02/03 for 3rd Feb) for date, or “h:mm:ss” to “hh:mm:ss”
for time. Our (MinMax) ranker learns a preference towards
“mm/dd” and “hh:mm:ss” formats which are representa-
tive of the training data. By replicating 2 tasks that induce
the desired formatting behavior in the training data and re-

training, the ranking model learns the desired formatting
preferences (See Example 2, Appendix D).

Remark 5 (Maintenance and Debugging). The personal-
ization scenarios above also imply another significant ad-
vantage of our ML-based ranking solution over neural syn-
thesis approaches — transparency. It is crucial for an ML-
based PBE system to be maintainable and debuggable.

6 Related Work

As mentioned in Section 1, there are two lines of work
on program synthesis, symbolic and ML/neural-synthesis
based approaches. For symbolic techniques, Gulwani
(2010) and Gulwani et al. (2017) provide extensive sur-
veys. State-of-the-art neural program synthesis techniques
have already been mentioned/discussed earlier. See Gul-
wani and Jain (2017) for recent results that are at the inter-
section of ML and PL. Statistical learning techniques for
PBE have also received some attention. Ellis and Gulwani
(2017) try to improve the accuracy of existing PROSE im-
plementations, by learning to re-rank the top K consistent
programs for given I/O spec, assuming a “good” ranking
function is already in place unlike our approach. The statis-
tical learning framework of Menon et al. (2013) employs a
log-linear model for inferring likelihood of consistent pro-
grams from a probabilistic CFG. In addition to I/O spec, it
also needs “clues” to be able to narrow down the rules to
consider for enumeration, so that synthesis time is not pro-
hibitive. Singh and Gulwani (2015) learn a ranking function
(that prefers generalizable programs) using only top-level
programs but apply the learned function recursively to rank
subprograms during synthesis; their method has not been
implemented in a PBE system to demonstrate real-time
synthesis. Raychev et al. (2016) focus on the synthesis set-
ting where one has access to many, and potentially noisy,
I/O examples. Christakopoulou and Kalai (2017) specify
intent through a “glass-box” scoring program that evaluates
candidate programs; they do not use any I/O spec.

Nagarajan Natarajan1 Danny Simmons2 Naren Datha1 Prateek Jain1 Sumit Gulwani2

References

Alur, R., Bodı́k, R., Juniwal, G., Martin, M. M. K.,
Raghothaman, M., Seshia, S. A., Singh, R., Solar-
Lezama, A., Torlak, E., and Udupa, A. (2013). Syntax-
guided synthesis. In Formal Methods in Computer-Aided
Design (FMCAD), pages 1–8.

Alur, R., Radhakrishna, A., and Udupa, A. (2017). Scaling
enumerative program synthesis via divide and conquer.
In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 319–
336. Springer.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,
and Tarlow, D. (2017). Deepcoder: Learning to write
programs. International Conference on Learning Repre-
sentations (ICLR).

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and
Kohli, P. (2018). Leveraging grammar and reinforcement
learning for neural program synthesis. In International
Conference on Learning Representations.

Christakopoulou, K. and Kalai, A. T. (2017). Glass-box
program synthesis: A machine learning approach. arXiv
preprint arXiv:1709.08669.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A.-r., and Kohli, P. (2017). Robustfill: Neural program
learning under noisy i/o. In International Conference on
Machine Learning, pages 990–998.

Ellis, K. and Gulwani, S. (2017). Learning to learn pro-
grams from examples: Going beyond program structure.
IJCAI.

Gulwani, S. (2010). Dimensions in program synthesis. In
Proceedings of the 12th international ACM SIGPLAN
symposium on Principles and practice of declarative
programming, pages 13–24. ACM.

Gulwani, S. (2011). Automating string processing in
spreadsheets using input-output examples. In ACM SIG-
PLAN Notices, volume 46, pages 317–330. ACM.

Gulwani, S., Hernández-Orallo, J., Kitzelmann, E., Mug-
gleton, S. H., Schmid, U., and Zorn, B. (2015). Inductive
programming meets the real world. Communications of
the ACM, 58(11):90–99.

Gulwani, S. and Jain, P. (2017). Programming by exam-
ples: PL meets ML. In Asian Symposium on Program-
ming Languages and Systems, pages 3–20. Springer.

Gulwani, S., Polozov, O., Singh, R., et al. (2017). Program
synthesis. Foundations and Trends R© in Programming
Languages, 4(1-2):1–119.

Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P.,
and Gulwani, S. (2018). Neural-guided deductive search
for real-time program synthesis from examples. Interna-
tional Conference on Learning Representations (ICLR).

Le, X.-B. D., Chu, D.-H., Lo, D., Le Goues, C., and Visser,
W. (2017). S3: syntax-and semantic-guided repair syn-
thesis via programming by examples. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 593–604. ACM.

Liu, T.-Y. et al. (2009). Learning to rank for information
retrieval. Foundations and Trends R© in Information Re-
trieval, 3(3):225–331.

Menon, A., Tamuz, O., Gulwani, S., Lampson, B., and
Kalai, A. (2013). A machine learning framework for pro-
gramming by example. In International Conference on
Machine Learning, pages 187–195.

Osera, P.-M. and Zdancewic, S. (2015). Type-and-
example-directed program synthesis. In ACM SIGPLAN
Notices, volume 50, pages 619–630. ACM.

Padhi, S., Jain, P., Perelman, D., Polozov, O., Gul-
wani, S., and Millstein, T. (2017). Flashprofile: In-
teractive synthesis of syntactic profiles. arXiv preprint
arXiv:1709.05725.

Parisotto, E., Mohamed, A.-r., Singh, R., Li, L., Zhou, D.,
and Kohli, P. (2016). Neuro-symbolic program synthe-
sis. In International Conference on Learning Represen-
tations (ICLR).

PCWorld (2012). Microsoft Office 2013 Preview: Hands
On.

Polozov, O. and Gulwani, S. (2015). Flashmeta: A frame-
work for inductive program synthesis. ACM SIGPLAN
Notices, 50(10):107–126.

PROSE (2015). Microsoft SDK.

Raychev, V., Bielik, P., Vechev, M., and Krause, A. (2016).
Learning programs from noisy data. In ACM SIGPLAN
Notices, volume 51, pages 761–774. ACM.

Rolim, R., Soares, G., D’Antoni, L., Polozov, O., Gulwani,
S., Gheyi, R., Suzuki, R., and Hartmann, B. (2017).
Learning syntactic program transformations from exam-
ples. In Proceedings of the 39th International Confer-
ence on Software Engineering, pages 404–415. IEEE
Press.

Singh, R. and Gulwani, S. (2015). Predicting a correct pro-
gram in programming by example. In International Con-
ference on Computer Aided Verification, pages 398–414.
Springer.

Wang, X., Dillig, I., and Singh, R. (2017). Program syn-
thesis using abstraction refinement. Proceedings of the
ACM on Programming Languages, 2(POPL):63.

Learning Natural Programs from a Few Examples in Real-Time

A Ranking: Details

A.1 Iterative Training

Training the ranking model in our ML-based PBE system
(Algorithm 1) is depicted in Figure 3.

A.2 Training Accuracy with Increasing Iterations

Figure 5 shows how the training accuracy (at top 1) im-
proves and stabilizes with the number of iterations when
training ML-PROSE. The first iteration corresponds to the
initial ranking function SHORTEST-PROGRAM described
in Section 5. In the second iteration, the accuracy on the
training tasks increases significantly. After about 5 itera-
tions, the accuracy stabilizes (we also observe that other
metrics stabilize as well — such as percentage of correct
programs in the top-1000 programs retrieved for each task,
though not shown in the plot). We deploy the ranking func-
tion obtained after 6 iterations for evaluating the perfor-
mance of our methods on test tasks, in Section 5.

A.3 Hand-Tuned PROSE Ranker

Figure 4 serves to illustrate the complexity of the ranking
function in the PROSE implementation PROSE (2015).
This manually-devised ranking heuristic scoring function
for the AbsPos operator in the FlashFill grammar is pro-
vided in the opensource PROSE framework. Clearly the
heuristic has been carefully tuned manually with domain
insights. The engineering effort required to design such
scoring functions for the entire grammar is conceivably
quite high, and requires re-engineering the solution for ev-
ery new operator or new domain.

A.4 Comparison to State-of-the-Art Neural Synthesis
Methods

Here, we report results on a subset of 73 tasks from the
Flashfill benchmark used in Kalyan et al. (2018). This is a
strict subset of our 640 test tasks that we report results on in
Section 5. For neural synthesis methods, we simply quote
results presented in Table 1 of Kalyan et al. (2018). We run
the baseline SHORTEST-PROGRAM and our method ML-
PROSE-SubPRG on the exact 73 test tasks and present
comparisons in Table 3.

A.5 Synthesis Times

A scatter plot of synthesis times of test tasks, compar-
ing our ML-PROSE method and the highly-optimized
PROSE ranker are presented in Figure 5. By synthesis
time, we mean the wall-clock time elapsed between invok-
ing the PBE system with an I/O spec and the system return-
ing the synthesized (top-1) program. The ranking functions

learned using ML-PROSE-SubPRG and MinMax formu-
lations yield very similar synthesis times, and are not pre-
sented. It is extremely important to be able to do synthe-
sis in real-time in several end-user applications, especially
in an interactive setting. We observe from the figure that
the times taken to synthesize the top-1 program for the two
ranking functions are comparable. Furthermore, both the
ranking functions take less than a second for a majority of
the tasks.

B FlashFill DSL

The complete FlashFill DSL we work with is presented in
Table 6. In the following, we give descriptions of the oper-
ators and the data types of the DSL.

B.1 Operators

The operators IfThenElse,Concat,ConstStr,SubStr,
ToUppercase,ToLowercase,ToTitlecase are self-
explanatory. Kth simply returns the kth string in the
input array inputs.

• Matches checks if the given string s is generated by
the given regular expression r.

• RegexOccurrence finds the kth occurrence of
regex r in x and returns its boundaries. e.g.
RegexOccurrence(x,“number”, 2), on input x =
“12th Ave, Seattle 98003” returns the beginning and
the ending indices of the substring “98003”.

• AbsPos directly indexes into a given position of the
input string.

• RegexPosition indexes into the kth occurrence of a
pair of regular expressions in the input string. e.g.
RegexPosition(x,std.Pair(“CommaOrWhiteSpace”,
“NumberOrWhiteSpace”), 1), on input x = “12th
Ave, Seattle 98003” returns the beginning and the
ending indices of the substring “Seattle”.

• Lookup searches for the input string in the specified
dictionary. e.g. Lookup(x, { “Male”: “M”, “Female”:
“F” }) returns “M” or “F” depending on the input
string, and null if the input string is neither “Male”
nor “Female”.

• ParsePartialDateTime parses the input string using
the specified date/time format(s), and instantiates an
object of type PartialDateTime.

e.g. ParsePartialDateTime(x, [“d MMM yyyy”, “dd
MMM yyyy”, “d-MMM-yyyy”, “dd-MMM-yyyy”])
parses input strings like “17 Dec 1999”, “1-Jan-2001”
as expected, but not “17 12 1999” or “1-Jan-01”.

(See Appendix B.2 for a description of
PartialDateTime type)

Nagarajan Natarajan1 Danny Simmons2 Naren Datha1 Prateek Jain1 Sumit Gulwani2

Figure 3: End-to-End training of the PBE system: At each iteration, new programs are synthesized based on the ranking
function learned during the previous iteration, which are then fed into training the ranking model and so on.

RANKING METHOD ACC@1

PROSE (m = 1) 0.67
DC (m = 1) 0.36
DC (m = 2) 0.47
DC (m = 3) 0.63
RF (m = 1) 0.25
RF (m = 2) 0.40
RF (m = 3) 0.56

NGDS (m = 1) 0.68
SHORTEST-PROGRAM (m = 1) 0.32

ML-PROSE-SubPRG (m = 1) 0.70

Table 3: Performance on a subset of FlashFill benchmark consisting of 73 tasks used in Kalyan et al. (2018), which is a
strict subset of our 640 test tasks. The results corresponding to rows 1 through 8 are quoted from Table 1 of Kalyan et al.
(2018); RF stands for RobustFill (Devlin et al., 2017), and DC stands for DeepCoder (Balog et al., 2017). The last two
rows correspond to results we obtain by running the baseline and our method on the exact set of 73 tasks. Note that when
m = 1, i.e. only 1 I/O example case, even the SHORTEST-PROGRAM baseline is comparable to or outperforms neural
synthesis methods. Our method ML-PROSE-SubPRG achieves the best accuracy in this setting (we get one more test
task correct compared to NGDS). See Section 5 for discussion.

Learning Natural Programs from a Few Examples in Real-Time

static double Score_AbsPos(double k)
{
k = 1 / k - 1;
// Prefer absolute positions to regex positions if k is small
return Math.Max(10 * Token.MinScore - (k

- 1) * 3 * Token.MinScore, 1 / k);
}

Figure 4: Scoring function for the AbsPos operator of the
FlashFill DSL presented in Table 1. This is part of Mi-
crosoft’s PROSE (2015) SDK, made available for academic
use. The scoring function is opaque from a software main-
tenance pespective, and can be very challenging to engineer
even for relatively straight-forward operators.

• RoundPartialDateTime performs the specified round-
ing on the input PartialDateTime object and re-
turns a new instance of the same type.

e.g. RoundPartialDateTime(ParsePartialDateTime(x, [
“d MMM yyyy HH:mm”, “dd MMM yyyy HH:mm”
]), “(, 30, Minute, Down, , 0)”) first parses in-
put string “17 Dec 1999 03:55” into appropriate
PartialDateTime object; and rounds the minutes part
from “55” to “30”, which is the closest multiple of 30
that is less than or equal to the specified minutes, and
returns the updated object.

(See Appendix B.2 for a description of
DateTimeRoundingSpec type)

• FormatPartialDateTime formats the input
PartialDateTime object in the specified
output format.

e.g. FormatPartialDateTime(ParsePartialDateTime(x, [
“d MMM yyyy”, “dd MMM yyyy”, “d-MMM-yyyy”,
“dd-MMM-yyyy”]), “dd/MM/yyyy”) returns
“01/01/2001” for the input string “1-Jan-2001”.

• FormatDateTimeRange formats the input
PartialDateTime object as a range: the
lower end of the range is specified in the first
DateTimeRoundingSpec argument and the
upper end of the range is specified in the second
DateTimeRoundingSpec argument, and s is
used as the range delimiter string in the output.

e.g. FormatDateTimeRange(ParsePartialDateTime(x, [
“htt”]), “h:mmtt”, “-”,

“(,2,Hour,Down,,0)”,
“(,2,Hour,UpOrNext,Minute,1)”) formats the in-
put string “2PM” as “1:00PM-2:59PM”.

• AsDecimal casts the input as decimal type (has
more precision and smaller range, and is appropriate
for computations arising in spreadsheets such as in the
financial domain).

• ParseNumber parses the input string using the given
number format specification, and returns the number
as decimal type. e.g. ParseNumber(x, “(‘,’, , ,‘.’,
)”) parses the input string as a number using ‘.’ as the
separator between the decimal and the integral parts
and ‘,’ as the separator for segments before the deci-
mal (e.g. x = “4, 999.99”).

(See Appendix B.2 for a description of
NumberFormatDetails type)

• RoundNumber performs the specified rounding op-
eration (of type RoundingSpec) on the input
decimal number.

e.g. RoundNumber(ParseNumber(x, “(‘,’, , ,‘.’,)”),
“(0, 1000, Nearest)”), on input x = “1, 954” returns
number 2000, and on x = “458” returns 0.

(See Appendix B.2 for a description of
RoundingSpec type)

• FormatNumber formats the input number in the
specified output format (of type NumberFormat).
e.g. FormatNumber(ParseNumber(x, “(‘,’, , ,‘.’,)”),
“(2U, 2U, , , , (, , ,‘.’,))”), on input x = “123.4567”
returns “123.46”, and on x = “102” returns “102.00”
(i.e. the format ensures a minimum and a maximum
of 2 digits in the decimal part).

(See Appendix B.2 for a description of
NumberFormat type)

• FormatNumericRange formats the input number as a
range: the lower end of the range is specified in the
first RoundingSpec argument and the upper end of
the range is specified in the second RoundingSpec
argument, and s is used as the range delimiter string
in the output.

e.g. FormatNumericRange(ParseNumber(x, “(‘,’, ,
,‘.’,)”), “(2U, 2U, , , , (, , ,‘.’,))”, “-”, “(1,25,Down)”,
“(0,25,Up)”) formats the input string “46” as the nu-
meric range “26.00-50.00”.

B.2 Data Types

The custom-defined data types are as follows:

• NumberFormatDetails type has 5 members:

1. DecimalMarkChar that separates decimal
from integral part of a number,

2. SeparatorChar that separates segments in
the integral part of a number,

3. Scale factor to apply before formatting a num-
ber (usually a power of 10); used for handling
percentages

Nagarajan Natarajan1 Danny Simmons2 Naren Datha1 Prateek Jain1 Sumit Gulwani2

Figure 5: (Left) Mean percentage accuracy at top-1 for the training tasks with increasing iterations of Algorithm 1. The first
iteration ranker is the SHORTEST-PROGRAM ranking function; with just one iteration, we see that the accuracy increases
significantly. (Right) Comparison of synthesis time on test tasks for hand-tuned PROSE ranker for FlashFill grammar with
the ranker learned using our approach ML-PROSE. We observe that ML-PROSE ranking model is also as efficient as the
manually-optimized ranker, and is faster in certain cases. The ranking functions learned using ML-PROSE-SubPRG and
MinMax formulations yield very similar synthesis times as ML-PROSE, hence not shown.

// Nonterminals
@start program := transform |
If(cond) Then(transform) Else(program)
bool cond := let s : Kth(inputs, k) in Matches(s, r)
string transform := atom | Concat(atom, transform)
string atom := ConstStr(s) | let string x : Kth(inputs, k) in conv
string conv := substring |
ToLowercase(substring) | ToUppercase(substring) |
ToTitlecase(substring) | Lookup(x, lookupDictionary) |
FormatPartialDateTime(datetime, oDtFormat) |
FormatNumber(number, oNumberFormat) |
FormatDateTimeRange(iDateT ime, oDtFormat, s, dtRoundingSpec, dtRoundingSpec) |
FormatNumericRange(iNumber, oNumberFormat, s, roundingSpec, roundingSpec)

string substring := x | SubStr(x, pp)
Tuple<int, int> pp := Pair(pos, pos) | RegexOccurrence(x, r, k)
int pos := AbsPos(x, k) | RegexPosition(x, Pair(r, r), k)
PartialDateTime datetime := iDateT ime | RoundPartialDateTime(iDateT ime, dtRoundingSpec)
PartialDateTime iDateT ime := ParsePartialDateTime(substring, iDtFormats)
decimal number := iNumber | RoundNumber(iNumber, roundingSpec)
decimal iNumber := AsDecimal(x) | ParseNumber(substring, numberFormatDetails)

// Terminals
@input string[] inputs; string s; int k; Regex r;
NumberFormatDetails numberFormatDetails;
NumberFormat oNumberFormat;
RoundingSpec roundingSpec;
DateTimeRoundingSpec dtRoundingSpec;
DateTimeFormat oDtFormat;
DateTimeFormat[] iDtFormats;
IReadOnlyDictionary<Optional<string>,string> lookupDictionary;

Figure 6: The FlashFill DSL Gulwani (2011). A program takes as input a list of strings inputs, and returns a string, a
concatenation of atoms. See Appendix B.1 for description of the Operators and Appendix B.2 for data types. A
simpler version of the DSL is given in Section 2, Figure 1 for clarity.

4. SeparatedSectionSizes, a list of the
number of digits in the segments before the deci-
mal (e.g. [1,3] in “4,022,111.22”); the first num-
ber is the section closest to the decimal point; the

last number is used repeatedly for all the remain-
ing sections, and

5. CurrencySymbol, an optional currency sym-
bol to be output before the number but after the

Learning Natural Programs from a Few Examples in Real-Time

sign (if any)

• NumberFormat type has the following members:

1. MinTrailingZeros, mininum number of
digits after the decimal,

2. MaxTrailingZeros, maximum number of
digits after the decimal,

3. MinLeadingZeros, mininum number of dig-
its before the decimal,

4. MaxTrailingZeros, maximum number of
digits after the decimal,

5. MinTrailingZerosAndWhitespace,
mininum number of characters after the decimal
including whitespace padding,

6. MinLeadingZerosAndWhitespace, mini-
mum number of characters before the decimal in-
cluding whitespace padding,

7. FormatDetails, format specification of type
NumberFormatDetails

• RoundingSpec has 3 members:

1. Zero, the zero-point of the set of numbers to
round to; numbers are rounded to some multiple
of Delta from this value,

2. Delta, the increment between numbers to
round to

3. Mode, one of {Nearest, Up, Down} (self-
explanatory)

• DateTimeRoundingSpec has the following
members:

1. Zero, the zero-point of the set of numbers to
round to; numbers are rounded to some multiple
of Delta from this value,

2. Delta, the increment between numbers to
round to

3. Mode, one of {Up, UpOrNext, Down} (where
“UpOrNext” increases the value by Delta, even
if already rounded),

4. Unit, the unit of measurement for Delta

• PartialDateTime has the following members:

1. [Year, Month, Day]

2. DayOfWeek (one of {Sunday, Monday, ...})
3. [Hour, Minute, Second]

4. Period (one of {AM, PM})

• DateTimeFormat

1. Parts (of type DateTimeFormat[])

• DateTimeFormatPart has the following mem-
bers:

1. MatchedPart, one of {Year, Month, Day,
Hour, Minute, Second, Period, DayOfWeek}

2. FormatChar, the character for this format part
(repeated)

3. MinimumLength, the minimum number of
characters for a number this parses/outputs

4. MaximumLength, the maximum number of
characters for a number this parses/outputs

5. MinValue, the least valid value this may
parse/output

6. MaxValue, the greatest valid value this may
parse/output

7. StringLookup, a dictionary encoding the cor-
respondence between matched strings and parsed
values

B.3 Domain-Specific Features

In Table 4, we give a comprehensive list of domain-specific
features for the operators of the FlashFill DSL (i.e., the
ΦOp(.) in Equation (2)). The state-of-the-art implementa-
tion of the PROSE framework essentially uses the same
set of features in the hand-crafted, heuristic ranking func-
tion for the FlashFill grammar.

C FlashFill Benchmarks

A few representative training and test tasks from the Flash-
Fill benchmark are given in Tables 5 through 11. In each of
the tasks, the benchmark specifies the order and the num-
ber of I/O examples (m) required or provided for synthe-
sis (the remainder of the examples m + 1,m + 2, . . . , n
are given to the system as unlabeled examples, i.e. with-
out their output). In most cases, the number of I/O exam-
ples m = 1, and in some cases it varies all the way up to
m = 6. In fact, tasks that require conditional programs
(if-then-else) by definition need at least m = 2 ex-
amples to generate a desired program. We vary the order of
examples and the size m within each training task, in order
to create many variants of the same task, thereby increasing
the training data as well as better capturing the distribution
of programs.

C.1 Examples of synthesized programs

For the input-output specification { “52” 7→ “50”, “65” 7→
“70” }, the (correct) program generated at the top using the
learned ranker is:

let x: Kth(inputs, 1) in
FormatNumber(RoundNumber(ParseNumber(x, "(’

,’, , , ’.’,)"), "(0, 10, Nearest)"),
BuildNumberFormat(null, null, null,
null, null, "(, , , ’.’,)"))

Nagarajan Natarajan1 Danny Simmons2 Naren Datha1 Prateek Jain1 Sumit Gulwani2

OPERATOR FEATURE DESCRIPTION

AbsPos AllSameLength Are all the input strings of same length?
RegexPosition ProportionNull What fraction of inputs is null?

NullPenalty A fixed penalty if ProportionNull is above a threshold
RegexIsConstant Is regex just a constant expression?
ConstRegexPenaltyFactorBias A fixed penalty for using regex extraction if RegexIsCon-

stant is true
RegexOccurrence RegexBonusBias Fixed bonus when RegexIsConstant is false

ProportionNull What fraction of inputs is null?
NotMatchedFactor A fixed penalty if ProportionNull is above a threshold

AsDecimal CastingInputStringToNumber Casting a non-number to number?
BothSidesConstant Concatenating constant strings?
ConcatNumbers Concatenating numbers?
ValueLenLeft Length of 1st argument
ValueLenRight Length of 2nd argument

Concat RepeatWholeColumnsCount Is a whole column used multiple times?
BothSidesConstant Are both the arguments constant strings?
ContainsCommonDelimLeft Left argument has common delimiters?
ContainsCommonDelimRight Right arg. has common delimiters?
ConstStrLength String length

ConstStr LogConstStrLength Log of ConstStrLength
IsCommonDelimiter Part of a commonly-used delimiter set?
ExamplesCount How many I/O examples are provided?
ConstantInInput Is the constant string part of input?
numInputDateFormats Length of iDtFormats array
SameDateFormat numInputDateFormats == 1 ∧ iDtFormats[0] ==

oDtFormat?
FormatPartialDateTime SameNumberPenalty Are date formats used to reformat a number?

ExtractionMatches A relaxation of SameDateFormat (instead of exact equal-
ity, look for overlap)

SepContainsDigit Does the separator s contain a digit?
SepIsSymbolsAndPunctuation Does s contain a symbol (as defined by Unicode standards)

or a punctuation?
FormatDateTimeRange SepIsWhitespace Does s contain a whitespace character?

SepIsWrappedByWhitespace Does s begin and end with whitespace characters?
IsCommonDateTimeSeparator Is s a commonly used range separator?

FormatNumericRange RoundToMultipleOf5 Is roundingSpec.Delta a multiple of 5?

Table 4: Domain-specific features for the operators in the FlashFill DSL (given in Table 6). For a description of the
operators, see Appendix B.1. In addition to the features above, a) we include a bias feature for all the operators, and b)
second and third order features (pairwise and triplet-wise products within each operator) to capture non-linearities.

Input Output
John Smith\n111 Main St.\nBellevue\nWA\n90111 WA
Frank Thomas\n222 Main St.\nRedmond\nCA\n90112 CA
Mike Myers\n333 Main St.\nKirkland\nMA\n90113 MA

Table 5: Extract states from addresses.

Input Output
2015-11-08T17:39:24Z Nov 2015
U$Yvf#@tuy#@!eD3 Not a date.
2015-06-17T08:45:04Z Jun 2015
2014-08-30T15:07:32Z Aug 2014

Table 6: Format dates; and handle exceptions.

Learning Natural Programs from a Few Examples in Real-Time

Input Output
“col1”:“d”, “col2”:“e”, “col3”:“f” def
“col1”:“x”, “col2”:“y”, “col3”:“z” xyz

Table 7: Combine data from multiple columns.

Input Output
syed e abbas Abbas, S.
catherine r. abel Abel, C.
kim abercrombie Abercrombie, K.
kim b abercrombie Abercrombie, K.
...

...
victoria c bailey Bailey, V.

Table 8: Format names.

Input Output Input Output
-234.52 -243.50 -243 -2.43

-12.5 -12.50 -12.5 -0.125
-2345.23292 -2345.20 -2345.23292 -23.4523292
-1202.3433 1202.30 -1202.3433 12.023433
1202.3433 1202.30 1202.3433 12.023433

23224.1 23224.10 23224.1 232.241

Table 9: (Left) Round numbers; (Right) Scale numbers.

Input Output Input Output
6:54:00 PM 18:54 17:10:52 Between 4PM and 6PM
1:12:00 AM 1:12 16:10:52 Between 4PM and 6PM
4:18:00 AM 4:18 18:10:52 Between 6PM and 8PM

12:12:00 PM 12:12
0:01:00 AM 0:01

12:02:00 AM 0:02 AM

Table 10: (Left) Normalize times; (Right) Format time range.

Input Output Input Output
225-706-7709 225-706-7709 123 Privet Drive 123.Privet.Drive
(225) 706 7709 225-706-7709 31 Thomas Rd 31.Thomas.Rd
(425) 706 7709 425-706-7709 1600 Pennsylvania Ave 1600.Pennsylvania.Ave
325 123 4567 325-123-4567 2000 Spring Rd 2000.Spring.Rd

Table 11: (Left) Format phone numbers; (Right) Format spaces.

Nagarajan Natarajan1 Danny Simmons2 Naren Datha1 Prateek Jain1 Sumit Gulwani2

which rounds the number to the nearest multiple of 10. For
the spec { “17:10:52” 7→ “4:45PM-5:15PM” }, an intended
program that appropriately formats the given time in the
right 30-minute range generated is:

let x: Kth(inputs, 1) in
FormatDateTimeRange(
ParsePartialDateTime(x, ["H\\:m\\:s", "
H\\:m\\:ss", "H\\:mm\\:s", "H\\:mm\\:ss
", "HH\\:m\\:s", "HH\\:m\\:ss", "HH\\:
mm\\:s", "HH\\:mm\\:ss"]), "h\\:mmtt",
"-", "({Hour=0, Minute=15, Second=0,
Millisecond=0, HourInPeriod=12, Period
=0}, 30, Minute, Down, , 0)", "({Hour
=0, Minute=15, Second=0, Millisecond=0,
HourInPeriod=12, Period=0}, 30, Minute

, UpOrNext, , 0)")

The details of the operators used in the above programs are
presented earlier in this Appendix.

D Personalization: Details

The scoring functions for the RoundingSpec operator be-
fore and after re-learning as discussed in Section 5.3 are
given in Figures 7 and 8 respectively.

Remark 6 (Personalized Rounding). A subtle point to
note from the two scoring functions presented in Figures 7
and 8 is that other untoward changes are not introduced
by re-training. In particular, the ordering “Nearest” >
“Up” > “AwayFromZero” remains the same, as the repli-
cated benchmark tasks are inconsequential to this order-
ing. This usecase highlights that the simple replication (or
task-dependent weights in the objective) scheme is effec-
tive for introducing personalization without causing unin-
tended consequences.

Example 1 (Synthesized Rounding Programs). A rele-
vant number formatting task in the FlashFill benchmark is
{“112” 7→ “110”, “117” 7→ “120”,

“11112” 7→ “11110”, “548” 7→ “550”}. Using only
the first I/O example, the top program generated with the
learned ranker (that uses the scoring function in Figure 7)
is:

let x: Kth(inputs, 1) in
FormatNumber(RoundNumber(ParseNumber(x, "(’

,’, , , ’.’,)"), "(0, 10, TowardsZero)
"), BuildNumberFormat(null, null, null,
3, 3, "(, , , ’.’,)"))

which would fail on two I/O examples in the spec, as it
rounds the input number towards zero. With two exam-
ples, the ranker indeed gets the correct program, but the
point here is to be able to tailor the ranker to the type of
tasks typically arising in the domain. The re-learnt ranker
(Figure 8) produces the desired program with just the first
example:

let x : Kth(inputs, 1) in

FormatNumber(RoundNumber(ParseNumber(x, "(’
,’, , , ’.’,)"), "(0, 10, Nearest)"),
BuildNumberFormat(null, null, null, 3,
3, "(, , , ’.’,)"))

Example 2 (Personalized Date/Time Format-
ting). Consider the task {“23/12/2010” 7→
“2010 23 12”, “3/4/2010” 7→ “2010 3 4”, “1932 97” 7→
“1932 6 4”, “Monday #4 December 1973” 7→
“1973 24 12”}. With one example, the synthesized top
program is

let columnName = "0" in let x : ChooseInput
(vs, columnName) in
FormatPartialDateTime(
ParsePartialDateTime(x, ["d\\/M\\/yyyy
", "yyyy\\ j", "dddd\" #\"i\\ MMMM\\
yyyy"]), "yyyy\\ dd\\ M"),

which fails on the second example, producing the wrong
output “2010 03 4”, as it formats the date with “dd”. After
re-training, the new ranker retrieves the correct program at
the top:

let columnName = "0" in let x : ChooseInput
(vs, columnName) in
FormatPartialDateTime(
ParsePartialDateTime(x, ["d\\/M\\/yyyy
", "yyyy\\ j", "dddd\" #\"i\\ MMMM\\
yyyy"]), "yyyy\\ d\\ M").

Learning Natural Programs from a Few Examples in Real-Time

public double roundingSpec(double bias_roundingSpec, double base_Delta, double
base_DeltaIsPowerOf10, double base_Zero, double base_ZeroIsZero, double
base_RoundingMode, double base_RoundingModeIsNearest, double
base_RoundingModeIsTowardZero, double base_RoundingModeIsAwayFromZero) {

return 1.885516E-09 * base_Delta +
0.1580201 * base_DeltaIsPowerOf10 +
-1.449533E-05 * base_RoundingModeIsAwayFromZero +
0.03198133 * base_RoundingModeIsNearest +
0.1897284 * base_RoundingModeIsTowardZero +
-0.0004875684 * base_Zero +
-0.05304068 * base_ZeroIsZero +
-0.05818909 * bias_roundingSpec +
2.835578E-07 * base_Delta * base_DeltaIsPowerOf10;
}

Figure 7: The learnt scoring function (using Algorithm 1 and MinMax formulation) for the RoundingSpec operator of the
FlashFill DSL presented in Table 1.

public double roundingSpec(double bias_roundingSpec, double base_Delta, double
base_DeltaIsPowerOf10, double base_Zero, double base_ZeroIsZero, double
base_RoundingMode, double base_RoundingModeIsNearest, double
base_RoundingModeIsTowardZero, double base_RoundingModeIsAwayFromZero) {

return -2.830293E-08 * base_Delta +
1.038527 * base_DeltaIsPowerOf10 +
-0.04912099 * base_RoundingModeIsAwayFromZero +
1.967019 * base_RoundingModeIsNearest +
0.9285749 * base_RoundingModeIsTowardZero +
-0.002863473 * base_Zero +
-0.6954886 * base_ZeroIsZero +
-0.7241547 * bias_roundingSpec +
2.73517E-07 * base_Delta * base_DeltaIsPowerOf10;
}

Figure 8: The re-learnt scoring function (using Algorithm 1 and MinMax formulation) for the RoundingSpec operator of
the FlashFill DSL presented in Table 1, after replicating 4 pertinent rounding tasks in the training data. The weight for the
“Nearest” rounding mode (base RoundingModeIsNearest) has increased significantly (compared to Figure 7), thus
letting it taking precedence over “TowardZero” mode as desired. See Appendix D.

