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ABSTRACT
Massive amounts of videos are generated for entertainment, secu-
rity, and science, powered by a growing supply of user-produced
video hosting services. Unfortunately, searching for videos is diffi-
cult due to the lack of content annotations. Recent breakthroughs in
image labeling with deep neural networks (DNNs) create a unique
opportunity to address this problem. While many automated end-
to-end solutions have been developed, such as natural language
queries, we take on a different perspective: to leverage both the
development of algorithms and human capabilities. To this end, we
design a query language in tandem with a user interface to help
users quickly identify segments of interest from the video based on
labels and corresponding bounding boxes. We combine techniques
from the database and information visualization communities to
help the user make sense of the object labels in spite of errors and
inconsistencies.
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1 INTRODUCTION
Deep learning has enabled a new wave of unprecedented semantic
labeling and question answering capabilities in the past decade [2,
6, 11, 15, 17]. While increasingly these new algorithms are deployed
in the wild, most techniques are still not at human level accuracy,
which may pose new usability challenges. In this paper, we propose
both a structured query language and corresponding user interface
to leverage human knowledge. We bring in well-established tech-
niques in information visualization and search interfaces to help
provide affordances and context for the labels generated.

Traditional multi-media retrieval has relied on manual anno-
tation [3, 9], low-level visual feature extraction [19], or a narrow
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subset of objects and actions (e.g., “zone”, “equipment” [14]). These
methods are challenging to scale to the quantity and diversity of
current video repositories. Recent advances in computer vision
have enabled semantic labeling of images, where deep neural net-
works (DNNs) can identify a diverse range of objects and their
corresponding regions in the image [11, 17].

This new ability to work with spatial and temporal informa-
tion for objects in videos creates new ways to interact with video
streams. While traditional search techniques such as document re-
trieval exist, it is difficult to query for more complex events which
inherently contain structure over the labels—structure in space and
time.

While there has been much effort on direct question and answer
support for video queries [5–7, 12, 15, 22] (to name a few), the
algorithms used by these systems are more recent than that of
object identification, and arguably more complex. Instead of trying
to complete the whole task in an automated fashion, we hope to
leverage the capabilities of users to combine the best of both the
automated and human capabilities through a query language and
user interface, designed in tandem. The goal is to enhance user
capabilities and alleviate the complexity of the challenge to the
computer systems. Specifically, we explore how to use training over
basic images to create structured information via a query language.

To this end, we propose a video query language (VQL) over the
labels obtained from state-of-the-art object recognition systems.
VQL is designed to be intuitive to use, expressive, and compatible
with a graphical user interface. VQL is executed by transpiling to
SQL, using a small set of user-defined functions, leveraging existing
database technologies, making the backend portable and efficient.
A compelling addition to VQL notifies users if relevant new frames
match their query using database TRIGGER operator.

Furthermore, we found that inconsistent and erroneous labeling
of DNN algorithms require that queries be constructed iteratively.
To help modify their query appropriately, users need to better
contextualize the results and isolate parts of the query. We designed
visualizations of the objects’ temporal and spatial information to
help the user navigate “unknown unknowns”. Detailed annotations
also help the user narrow down the parts of the query that need
changes.

The project is an initial exploration in a large design space, and
much more user experiments are needed to understand the human
understanding of the results and errors. However, we hope to share
some early results to start a conversation in the community.
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2 BACKGROUND AND MOTIVATION
Since the 90’s, several languages for querying videos have been
proposed: Huang et al. developed a language, VIQS, to query human
labeled objects and activities to find video segments like “where a
party occurs” [9]. To help eliminate tedious, manual labeling, Chang
et al. developed a video search system, VideoQ, where users can
draw the shape, specify color, or draw the trajectory of an object [3].
More recently, Saykol et al. presented VSQL, which is restricted to a
small set of events for surveillance, such as objects entering a scene,
items being picked up, and four types of objects [19]. Similarly,
Le at al. proposed SVSQL for querying surveillance videos with
objects and events, e.g., SELECT <Output > FROM < Database >
WHERE <Condition > [14]. These previous efforts were limited by
the technologies at the time—they either require intensive human
labor or expose only low-level details of the video. The past decade
saw a rapid rise of deep neural networks, and we are now able to
identify objects in images with high accuracy [17, 18]. However, we
cannot directly apply the previous query techniques because they
are not designed with the characteristics of the new capabilities.
For instance, VIQS assumes a notion of activity be labeled [9], and
SVSQL events [14]. Neither events nor activities are available with
basic image classification. In addition, none of the query systems
mentioned deal with the cases of inconsistent or incorrect labels,
the effect of which we will discuss in more detail in Section 4.

Beyond object identification, there are many recent ML research
on segmenting and captioning events and actions [2, 11, 13, 16, 20],
but the accuracies tend to be lower than those of object classifications—
all state of art labeling algorithms have a top-5 accuracy of over
90% on ImageNet dataset [17, 18]. Recently systems researchers
have developed fast systems to answer basic (binary classification
queries) [12] or predefined queries [22]. These research tend to have
a high “cold start” cost for a new query and requires much more in-
strumentation than identifying objects in videos. Machine learning
researchers also have worked on natural language querying [5–
7, 15]. While these approaches can eventually offer experiences
much closer to human to human interactions, the field is still under
active research for arguably simple cases (e.g., 3D shapes [6]) and
require non-trivial processing per query [2]. Our goal is orthogonal
with those of the state of the art query answering systems—we do
not intend to compete in the benchmarks for automatic identifi-
cation or Q&A tasks—our goal is to create design techniques to
leverage human capabilities in the query process to simplify the
task complexity and accuracy required by the machine.

To this end, there have been some efforts to integrate search
interfaces with that of ML labeled results. Zhang et al. developed
an object and scene faceted search interface over segmented videos
[23]. However the interface there is limited to binary toggles of
objects and scene keywords. We hope to make more detailed use
of the labels with their bounding boxes using a query language to
capture both temporal and spatial semantics.

3 QUERY LANGUAGE
To support the user in making effective use of the object labels, we
need first a formalism to express and compose the predicates on
individual frames across time. This simple query language is de-
signed in tandem with the user interface, described in the following

section—the query is not intended to be used standalone but rather
as a driver for the UI.

We first describe the overall goal of the language and user in-
terface, the high-level relationship of VQL and prior art, a running
example to explain and motivate design choices, the data model,
and lastly the operators.

The goal of VQL is to help users transform labels and bounding
boxes of each frame in a video into predicates that locate segments
of videos. While the goal is unique to the needs of querying videos,
the query approach shares many similarities with geospatial queries
such as PostGIS [1] and time series queries [4, 10]. While we could
describe VQL in terms of these specialized operators, we chose
to describe VQL operations in terms of SQL for simplicity. Again,
our goal is not to innovate on spatial or temporal queries, but
rather to use these techniques from databases with techniques from
information visualization and search to create a novel lens at an
emerging use case.

As a driving example, take a homeowner analyzing the video
of her front porch, trying to figure out why a package delivered
sometime during the day was opened and refer to that throughout
the paper.

3.1 Data Model
The data model for VQL is a table with the following columns:
label, region, frame, confidence, where each row is the
output of a DNN. There is an additional table with columns frame,
time, previous, next, used for processing a sequence of frames
into time periods. More concretely, we discuss the entities in this
data model:
• label: a string that describes an object, labeled by DNN
algorithms. Labels are not objects since the same object could
be labeled differently across frames. For instance, in the
porch video, the person who opened the package has been
labeled as “man”, “woman”, “traveler”, and “living thing”, all
of which are somewhat correct but are difficult to use. This
“inconsistency” is reasonable given that the DNN algorithm
we deploy focus on a single frame and are agnostic to the
fact that all the frames are from the same video.
• grid: a fixed rectangular partitioning of the frame of the
video into rows and columns. Physical distances are also not
currently supported by image recognition DNNs, and grids
are easier to specify and more efficient to compute. A cell in
a grid is a unit rectangle in the grid, represented by a tuple
of row (left to right) and column (top to down) indices. E.g.,
(1,2).
• region: a rectangle in the video frame. Represented as two
opposing cells of the rectangle. E.g., ((1,2) to (3,5)).
This is called a “bounding box” in computer vision.
• frame: a single image, a point in time, represented as an
integer that is the sequence id of the frame in the video. A
segment is a set of contiguous frames represented by a tuple
with the starting frame and the ending frame. A segment
represents a period and serves as a proxy for an event. A
segment set is a set of non-overlapping segments.
• confidence: a number between 0 and 1, yielded by the DNN
about its confidence that the label is correct.
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Table 1: Example Queries

Description Query
more than three cats and two dogs FIND ((COUNT "cat") > 3) AND (COUNT "dog") > 2);
a car stopped in the middle of the street FIND ("car" IN (3,3) to (5,5)) FOR 30s;
a person was near a car for longer than 1 minute. FIND ("person" NEAR "car" BY 1) FOR 60s;
a person quickly moved close to the camera FIND (("person" IN (1,1) to (8,8) > 0.6)

AFTER ("person" IN (1,1) to (8,8) < 0.2)) < 5;

3.2 Spatial Operators
In the example scenario, the homeowner may want to verify that
the package was indeed delivered in the first place. Because her
neighbors are moving, there are other boxes in the video. To disam-
biguate, she can specify the package to be in a region. To achieve
this, in VQL, one could write FIND <label> IN <region>.

The operator IN is an instance of a spatial operator. IN returns
true for a frame if the frame contains a label whose bounding box is
in the specified region. One extension to the IN operator is to limit
by how much a labeled object fills the input region. We introduce
two threshold operators, > and < to specify by how much the object
fills in the region, evaluated as area (label )

area (r eдion) > threshold .
Physical relationships between an object and space can be more

than containment; we list them below. Due to the relative simplicity
of the operators, we do not describe more detailed implementation
mechanism here:

• OVERLAP <region>: if parts of the labeled region is in the
specified region.
• NOTIN <region>: applying existence, OVERLAP to the union
of the rectangles in the inverse of <region>.
• NEAR <region> BY <number of cells>: expanding the
region that the label is in by a certain amount, parametrized
by the user, by number of cells, starting from the boundary
of the region.

Often, the object of interest is composed of multiple labels, maybe
because the DNN labeled the same object with different words, or if
the user cares about different objects. We, thus, extend <label> to
<label> (OR <label>)* (regular expression syntax) to support
this feature.

Lastly, we also support spatial queries between objects, such
as ‘man’ NEAR ‘CAR’ BY 1, where the “1” is the number of cell
distances apart. We take the same query semantics as the label
region query but cast the label to its bounding box for every frame
evaluated. This is particularly useful when the video is taken by
nonstationary cameras. If there are multiple matching objects, the
query is evaluated on all pairs and returns true if there is a match.

3.3 Temporal Operators
An atom is evaluated on a video by applying it to each frame. This
yields a segment set which becomes the input to temporal operators.
Since segments correspond to (parts of) events, there should be
predicates applied on the properties of segment sets to help users
further narrow down their target. For instance, the homeowner
may have located when the package was delivered, but since the

DNN offers no label for open versus closed package, she needs to
find people that have come close after the package is delivered.

To achieve the functionality to query segment sets, we introduce
the following operators:
• Duration: filters segments that are true longer or shorter
than some period. Syntax: <atom> [>, <] <duration>.
• Smooth: merges disconnected segments that are within a
certain distance. Syntax: <atom> SMOOTH <duration>
• Logical composite: intersect or union two segment sets.
Syntax: <atom1> [AND, OR] <atom2>.
• Order composite: filter out segments in one segment set
that occurs after or before segments in another segment set,
with no other segments in between. Syntax: <atom1> AFTER
<atom2>. This is may be useful for events with sequential
dependency.

3.4 Non-Segment Queries
Whereas all previous queries return segment sets, we now talk
about queries that return regions and objects.
• All the objects in region: FIND LABELS IN <region>—
useful for users discovering labels. For instance, the home-
owner was initially confused why a search for package did
not show the earliest frame when the package was present,
but then upon viewing the list of objects realized that the
DNN had previously used the label “box”.
• All the regions inwhich an object has existed FIND REGIONS
OF <label>—useful for creating the heat map, which we de-
scribe in the following section. For instance, the homeowner
is trying to narrow down when or if someone got close to
the package. It would be helpful to see the places the label
“person” may have been, for her to then specify the location
in the query.
• The counts of satisfying labels of an atom in the video per
frame: FIND COUNTS OF <atom>. For instance, users might
identify outliers in histograms, which are often indications
of interesting events.

3.5 Execution
Table 2 illustrate how VQL can be mapped to simple SQL queries
with a UDF, predicate, to evaluate the spatial operators per frame.
We implemented region operators as bit vectors to improve per-
formance. The detailed transpilation is out of the scope of this
paper. The temporal operators are all executed on the client, as
the visualizations require more detailed frame- and segment-level
information. It is future work to investigate limits to this approach.
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Table 2: VQL to SQL

VQL SQL Output
FIND "package" in ((6,6)
to (7,7))

SELECT frame FROM labels WHERE label = "package" AND
predicate(region, ((6,6) to (7,7)));

set of segments

FIND LABELS IN ((4,5) to
(7,7))

SELECT label FROM labels WHERE predicate(region, ((4,5) to
(7,7)));

set of labels

FIND COUNTS OF "person" IN
((4,5) to (7,7))

SELECT COUNT(*), frame FROM labels WHERE predicate(region,
((4,5) to (7,7))) GROUP BY frame;

set of (frame, count)

Another optimization technique we use is skipping frames. Often
a video does not change much, and one could save computation by
only running DNN evaluation on frames that have changed by some
threshold, measured by the percentage of pixels that are no longer of
the same value. We currently use a heuristic value of 10%—there is a
tradeoff between potentially missing important details with higher
change-threshold, and creating too many noisy labels/consuming
computation resources with lower change-threshold. Additionally,
we use a heuristic for filtering out low confidence labels.

4 QUERY INTERFACE
The query language alone is difficult for the user to use, since for
any given item, there may be several reasonable labels, and the
exact locations of the objects are hard to specify without inspecting
the frames. To facilitate discovery and context, we developed a user
interface in tandem with the VQL. This section first describes the
design goals of the UI, relevant literature from information visu-
alization and search interfaces, functionalities to help users locate
segments of interest, implementation, and evaluation considera-
tions.

The design goal is to provide context and visualize the video
segment results, and the key challenge is dealing with labeling
errors and inconsistencies. We look to literature in the information
visualization community and search community to address these
two aspects. Direct manipulation is a common technique for UI
developement [8], and well suited for our use case given the visual
nature of videos and images to bridge the “gulf of specification”, in
addition, we provide visualizations of the search result to bridge
the “gulf of evaluation”.

To provide context for the labels in relation with the images, we
use the concept of cross-filter [21] combined with VQL to define
how interacting with the label list, frames, and segments update
the other components, respectively, as illustrated in Figure 1. A
cross-filter allows data to be filtered using a selection made in a
separate part of the interface. We will discuss how the filtering
works, as well as the components of the UI, integrated with the
running example of the homeowner.

First, the user needs to gain a sense of what labels are available
for query in the system. For instance, while the homeowner might
query for “package”, the DNN algorithm may have labeled the
package as “box”, which is not technically incorrect, but the user
needs a way to reconciliation their conception with that of the
systems. In other cases, the DNN algorithm could just be incorrect,
for example, in one frame, we had the same package mistakenly
labeled as a “book”. Here, seeing that there is a mysterious “book”

Figure 1: Snapshot of the query interface. Users typically
start by seeing a list of labels on the left side to show what
labels have been detected in the video. The different regions
of the UI are all crosslinked so that when selecting a la-
bel, a preview heat map in yellow shows relevant regions in
the video where the selected label is found. Timelines are
also updated to show the presence of the label over time.
The user can subsequently interact either spatially (by draw-
ing a region of interest in the main video shown as a red-
transparent rectangle) or with the timelines to show a por-
tion of time as an interesting segment. Each successive in-
teraction can be applied to all the related views helping the
user refine the query to achieve the desired outcome.

label is the first step required for diagnosing problems in their query
result.

To help users discover unexpected labels, the VQL UI presents
list of labels, so that they can get an immediate sense of different
labels used by having all labels listed. Users can further contextualize
what a label is by clicking on the label, which queries for segments
where the label is present, in components called “timelines” to be
discussed.

Now that the homeowner has found the labels, “box” and “book”,
they need to specify the region. This can be done directly via brush-
ing over the video player, which is snapped to the grid. The UI
automatically detects the currently active label selected in the list
of labels, and forms the query atom with the spatial operator, which
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is defaulted to OVERLAP with a 0.8 threshold, to allow “fuzzy” speci-
fication. We provide additional controls to change the operator.

Sometimes, it is difficult to specify the region if the user does
not know where the object will be ahead of time. For instance, the
homeowner wanted to query for people being near the package, but
her queries have returned no results. To help the user contextualize
spatial information of the objects, we introduce spatial visualiza-
tion using heat maps that show the regions where a label has
been through the video. Here the homeowner may realize that their
selection was too far left. Additionally, in the case the algorithm
incorrectly evaluated the bounding box of the label, the heat map
can help the user identify the cause of the incorrect query result.

In addition to refining the spatial queries, VQL UI also provides
timelines, which are temporal visualization of the segment sets
of each atom and frequency of labels per frame via a histogram,
shown in Figure 1. We chose to separate the visualizations by atom
because we found that often the query result is incorrect due to the
inconsistency or minor errors of the object labels, and seeing the
break down of the results help identify the issue faster.

In addition, across interactions, the query results are also pushed
to the top of the list, maintaining a full history of the results that
the user can drag and drop to reorder. The user can also choose
to remove all or individual timelines. The history of user interac-
tion could help users quickly navigate and compare results. Users
can perform visually the temporal operators—e.g., compare across
timelines to find intersections, unions, ordering, leveraging better
domain knowledge such as the duration of events. The homeowner
can use the histogram of the count of packages/boxes to discover
when the count has increased (delivery), and when the count is
decreased (moved or taken), instead of needing to write a more
complex temporal query. Similarly, the user can intuitively group
segments that are a jagged sequence, not needing to use the SMOOTH
operator to reapply the query, thus simplifying the interaction.

Timelines are also annotated with the frames labeled by the
DNN, filtered by a minimum confidence rate controlled by the
user. Hovering over the timeline reveals the corresponding frames,
clicking on the timeline starts the video, clicking on the frames
show labeled objects, and clicking on a labeled object reveals on
the timeline all the other components where the object was labeled,
as well as samples of the instances of the images in small multiples.

4.1 Implementation
To implement the described interface, every interaction takes the
current state of the UI through a finite state machine, each of whose
state then transduces the corresponding query in VQL. As an ex-
ample, clicking on a label “box” enters a state of the FSM, which
generates the query, FIND "box";, whose result reactively updates
the timeline UI components. Then if the user brushes on a region
in the image, the query is now FIND "box" in (2,3) to (4,7),
whose result is pushed the top of the list of query results.

4.2 Limitations
One key objective of the project is to help users efficiently make
sense of the labels with some error. Therefore it is important to
evaluate how people perceive the error or inconsistencies with the
underlying labeled data. Currently, we only have anecdotal positive

feedback about the general usability of the interface. However, a
formal user evaluation is needed to understand the effectiveness
of the interface at different levels of accuracies of the labeling
algorithm.

Furthermore, there are still many other aspects of the design
space that is plausible, as well as the space of accuracies—how
do user behavior and perception change as the accuracy change
from 100% to 90% and 60%? These questions will be important for
practitioners who may need to trade off between accuracy and
latency/amount of resources.

5 CONCLUSION
This paper proposes both a query language and user interface for
querying DNN generated object labels for videos. We identified
the challenge of users working with directly machine generated
labels due to inaccuracies and inconsistencies. We incorporated
techniques from database and information visualization communi-
ties to help users make sense of the result.

Future areas of exploration include (1) evaluate how users use
this language, and graphical interface and other variations in the
design space, (2) characterize the broader implications of errors and
inconsistencies produced by DNNs, and (3) bring techniques from
data cleaning to further alleviate the challenge of labeling errors.

We hope this project contributes to the broader discussion of how
best to leverage the capabilities of users while exploiting emerging
technologies.
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