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ABSTRACT
Human activity is one of the most important pieces of context
affecting an individual’s information needs. Understanding the
relationship between activities, time, location, and other contextual
features can improve the quality of various intelligent systems,
including contextual search engines, taskmanagers, digital personal
assistants, chat bots, and recommender systems.

In this work, we propose a method for extraction of an extensive
set of open-vocabulary activities from social media. In particular,
we derive tens of thousands of ongoing activities from Twitter,
where people share information about their past, present, and fu-
ture events and, using attached metadata, we establish spatiotem-
poral models of these activities at the time of posting. While public
Twitter content is subject to self-censorship (not all activities are
tweeted about), we compare extracted data with unbiased survey
data (ATUS) and show evidence that for activities which are tweeted
about, the underlying spatiotemporal profiles correctly capture their
real distributions of activity conditioned on time and location. Next,
to better understand the set of activities present in this dataset
(and what role self-censorship may play), we perform a qualitative
analysis to understand the activities, locations, and their tempo-
ral properties. Finally, we go on to solve predictive tasks centered
on the relationship between activity and spatiotemporal context
that are aimed at supporting an individual’s information needs.
Our predictive models, which incorporate text, personal history
and temporal features, show a significant performance gain over a
strong frequency-based baseline.
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1 INTRODUCTION
It has been shown that human activity plays a major role in af-
fecting what information needs people have. A study by Sohn et
al. [34] recognized activity among four most frequent contextual
triggers of information needs, which is in line with findings by other
authors [9, 15]. While the majority of context-related prior work
concentrates on time and location [1, 4, 36], activity as a higher-
level driver of information needs remains relatively unexplored
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Figure 1: Sample of human activities extracted from Twit-
ter demonstrating the dependencies between activities, time
and selected locations (school, airport, various locations).

with only a handful of publications dedicated to it [3, 10, 23, 37].
In the following two examples of potential context-aware appli-
cations, which lead us to investigate the underlying predictive
technology, we illustrate how including activity as context would
impact a user’s information access:

a) Activity-aware reminder system. Reminder systems allow
users to set notifications for future tasks, events or activities to avoid
forgetting about them. The notifications are typically invoked when
a predefined date/time is met or a specified location boundary is
crossed. However, Rong et al. [32] discovered that 40% of people
cannot or prefer not to identify a precise time of their tasks/to-
do items. This is one reason why an intelligent reminder system
should not rely solely on hard-coded conditions. Instead, it should
recognize activities mentioned in the reminder message (e.g., read
the article) and proactively notify the user at any location and time
when such an activity has a chance of being performed (e.g., in a
café during the morning or at home in the evening).

b) Activity recommender. Many applications would benefit
from a model that takes the user’s location and time as input and
returns a list of activities ranked according to the probability of
being performed. Two such examples could include an automatic
suggestion of a person’s activity for a status update on a social
network (e.g., Enjoying coffee @ Café Lyst) or recommendation of
activities for a user’s upcoming trips (e.g., Lake Como: cycling).

In both scenarios, as well as in similar activity-aware systems,
the underlying models would be expected to capture the spatio-
temporal dependencies of a wide range of open-domain activities.
Ideally, the set of recognized activities should cover all activities
a person might wish to be recommended or reminded about. In
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the long-term, a predictive model between open-domain activities,
locations, and time provides a simple foundation for commonsense
reasoning about the world – long a goal of AI. That is, the implicit
knowledge that certain activities, locations, and times correspond
with each other (e.g., breakfast happens in the morning; work usu-
ally happens between 9-5 on weekdays but can be observed at
other times; at a restaurant one eats but one also meets friends and
celebrates milestones). We leave how to leverage these models in
more general intelligence as future work and focus here solely on
understanding and predicting activities in a spatiotemporal context.

However, such an endeavor requires a large dataset of human
activities. This lack of a large-scale set of activities has been one of
the impediments to advancing our understanding of activities and
their contextual setting as well as how they might relate to tasks
and information needs. In this work, we take a step toward alle-
viating this lack by demonstrating that activities extracted from a
large-scale publicly available text source (Twitter) correspond with
time and location patterns of activities reported in an independent
broad survey. In contrast to surveys with predefined activity cate-
gories, textual sources can hold descriptions for tens of thousands
of activities from an open vocabulary, ranging from fine-grained
and very specific physical actions (e.g., “fixing a bike seat”) to high-
level cognitive notions (e.g., “thinking”). Prior work has proposed
a number of methods for activity extraction from various textual
sources [11, 13, 16, 27]. None of them, however, proceeds to jointly
model the relation between activities, locations and time (e.g., “drop-
ping off kid(s)” example in Fig. 1). In order to extract activities along
with these two dimensions, i.e., location and time, reliable in-the-
moment activity reports are necessary. ATUS1, a survey-driven
dataset with detailed records about activities of American citizens,
on its own, provides rich and credible information. The taxonomy
of activities it uses, however, is limited in size and would hardly
cover many real scenarios. A shortage of variety is by no means a
problem of microblogging platforms such as Twitter, where millions
of people share updates about what they do [29].

In this work, we leverage the fact that people have become
self-reporters of their own activities on social media, indirectly
providing context and expressing their activities with terms that
are not limited to any predefined taxonomy. We harvest Twitter
for rich textual representations of tens of thousands of activities
and simultaneously model their temporal and spatial dimensions
by capturing timestamps and geospatial tags at the time of posting.
To demonstrate the reliability of in-the-moment reports on Twitter,
we are the first to report evaluation against an externally collected
large-scale survey, ATUS.

We address the following research questions:
RQ1 What are the activities that people perform? How can

weobtain an extensive set of them?Wepropose amethod
for extraction of activities that people engage in. We demon-
strate the suitability of Twitter as a self-reporting platform
for extraction of reliable spatiotemporal properties. (§3)

RQ2 When and where do people engage in these activities?
We analyze temporal and spatial profiles of extracted activi-
ties to reveal the underlying patterns. (§4)

1American Time Use Survey (12 years, 170K participants)

RQ3 Given an activity of a person (and possibly other con-
text), can we predict where it is likely to happen? We
propose and evaluate a model that leverages (personalized)
spatiotemporal patterns of activities in order to predict se-
mantic location. This relates to the ‘task reminder’ scenario. (§5)

RQ4 Given a location (and possibly other context), can we
predict what activities people will engage in there?We
pose an inverted problem to the one in RQ3, addressing the
‘activity recommender’ scenario. (§5)

In short, this paper makes the following novel contributions:
• Establishes an extensive set of human daily activities;
• Separates ongoing activities from future or past activities in
social network posts;

• Profiles the spatial and temporal aspects of ongoing activities;
• Evaluates a sample of these activities against an external sur-
vey of activity and spatiotemporal context;

• Proposes several predictive tasks centered on activity and in-
spired by real-life scenarios, where using activity as additional
context would make a profound difference;

• Proposes and evaluates predictive models for the aforemen-
tioned tasks.

2 RELATEDWORK
Our aim is to profile and predict activities of all complexities while
using social media as our source of evidence. Here, we review
relevant prior work.

Activity recognition. In contrast to the traditional AI view of
activity recognition usingwearable/wireless sensors [8] or video [21],
widespread connected mobile devices allow for collecting large
amounts of contextual data about people’s daily activities in a non-
intrusive way. Java et al. [18] and Naaman et al. [29] have shown
that users of microblogging platforms primarily post updates about
their daily routines and experiences, which makes social networks
by far the most scalable and diverse source of in-situ informa-
tion about people’s daily activities. Alternative large-scale sources
of data that facilitate activity extraction [11, 27] are community-
authored reviews of places (e.g., Yelp). While the reviews provide
a means for mapping activities to locations, they cannot make a
similar relation with time due to the ex post nature of reviews.

Methods to extract activities from textual sources range from
manual curation of lists or taxonomies [19, 20, 33], through various
supervised machine learning [16] or language modeling [13] tech-
niques, to the application of natural language processing (NLP) [11,
27]. The high quality of manually crafted taxonomies [33], driven
by the expertise of their curators, is counterweighted by the limited
scalability of human labor involved in the process. Approaches
relying on machine learning methods [16] require labeled instances
of data and unsupervised language or topical models [13, 40, 41] are
robust, nevertheless, they represent latent activities as a probabilis-
tic distribution of words or concepts instead of assigning a concrete
label to each activity. Finally, methods based on NLP techniques
interpret the concept of activity [11, 27] or a task [12] as a verb-
noun phrase pairs (e.g., drinking coffee), which they extract using a
pattern-based paradigm. These methods are scalable and precise,
however, they fail to capture expressions that are not covered by
predefined patterns.



Activity classification and prediction. A parallel line of liter-
ature focuses on activity classification, where a target set of activi-
ties already exists. Zhu et al. [42] train a model to label geo-located
tweets with top-level activity classes from the ATUS hierarchy [33].
Their approach relies on crowdsourced annotations and contextual
features from location-based social networks (LBSN) that include
check-in time, venue name and venue category. A similar approach
is adopted by Beber at al. [2] with the goal of inferring activities
of moving objects based on their trajectories. In addition, the au-
thors profile typical durations of activities, which is a feature of
the work by Melià-Seguí et al. [28]. A more user-centric approach
that learns activity expressions for individual users and simulta-
neously transfers training instances between classifiers to fight
data sparsity is presented by Song et al. [35]. Weerkamp and de
Rijke [38] extend the pool of microblog prediction problems with
the task of activity prediction. In their pilot study, which has ele-
ments of event-extraction techniques, the authors suggest mining
of likely near-future activities from the Twitter stream using a set
of user-defined keywords and timeframes.

Activity and location. Arguably, activities that are typically
performed at a location define its meaning to some degree [10]
(e.g., café is a place where people drink coffee). Therefore, in some
literature, activities and locations are used jointly [5] or interchange-
ably [17]. A common practice is to use semantic location labels as
a proxy to high-level activities (e.g., office → working) [3, 23, 39].
Given the fact that detecting dominant functional places such as
home or work from people’s daily routines is feasible [22], such
an approach is an understandable simplification. Nevertheless, a
considerable number of locations can be a scene of more than one
activity at the same moment [2] (“Airport” location in Fig. 1), and
one activity can be characteristic of various locations (e.g., “taking
picture” ).

In our work, we use large volumes of tweets that are interlinked
with Foursquare check-ins. This allows us to benefit from the text-
to-location mapping as in [11, 27]. While Twitter users share in-
formation about past, current and future events, we only focus
on messages that provide in-the-moment reports (contrary to [38]
who target future activities). We extract a multitude of fine-grained
activities at each location type, as opposed to [3, 39]. With respect
to our data source, we use scalable NLP methods for activity extrac-
tion, and we evaluate our results against data from a handcrafted
taxonomy of activities and locations (ATUS) [33]. In contrast to the
activity classification literature [2, 42], we represent activities with
their textual footprint, not with an abstract high-level class. We
aim for establishing an extensive set of activities, answering the
call by Brush et al. [7].

3 ACTIVITY EXTRACTION
Apart from time and location, human activity is one of the most
influential cues affecting the information needs of an individual [15,
34]. While the values of time and location are known and inherently
predefined (e.g., units of time, geo-coordinates, semantic labels of
locations), the same cannot be said about human activities. The
abstraction, ambiguity and variety of activities make it challenging
to establish an exhaustive list of them. Yet, our first objective (RQ1)

is to frame the notion of a daily activity and to create an extensive
set of the most common activities that people perform and report
on a daily basis. Let us first define the key concepts and describe our
dataset before proceeding to the actual activity extraction methods:

Definition 3.1. Human activity, in the context of this work, is
a real-world physical or cognitive activity of a person that she
performs in space and time. The level of activity abstraction can
vary from low-level (e.g., moving), through a more fine-grained
activity expression (e.g., riding on a bike) to a very abstract notion
(e.g, enjoying the day).

Definition 3.2. Activity descriptor, or simply activity, is a tex-
tual surface form (e.g., the actual text ‘writing a report’) referring
to any activity that satisfies the definition of human activity.

Definition 3.3. Temporal profile of an activity is a histogram
of activity observations over a specified temporal interval. In this
work, we construct normalized daily and weekly profiles.

Definition 3.4. Spatial profile of an activity is a distribution
capturing the normalized frequency of activity occurrences across a
selected set of location categories. Wework with location categories
rather than individual locations to focus on patterns that generalize.

3.1 Data
Social networks can be seen as large crowdsourcing platforms with
the potential to reveal the global picture of human activity behavior.
While any social network that generates textual posts with time and
locationmetadata could be used for our task, we foundmost reasons
to use Twitter data: firstly, it is a widely used and well-researched
microblogging platform; secondly, with the exception of our propri-
etary spam score weighting2 all data is publicly accessible; finally,
it has been shown that people tend to post updates that relate to
their state or activity [29]. In our experiments, we operate with a
sample of 6, 641, 503 geo-tagged Twitter posts that are restricted
to the approximated region of the 48 contiguous states of the USA
between January 1st 2016 and May 31st 2017. Further, we filter for
tweets that are written in English, have a spam score below 0.5
and are cross-posted exclusively via the Foursquare application.
Foursquare is a location-based social network, which is used by
people to search for, retrieve details about and comment on nearby
points of interest (POIs). Users can explicitly mark their visit to
a POI by performing a check-in within the application, and many
people choose to share this activity publicly via Twitter. These are
the tweets that we benefit from in this work because they give us a
means to pinpoint the user’s precise location to the building, busi-
ness or venue, and, importantly, the location’s category. Locations
on Foursquare are categorized in a multi-level hierarchy, where the
top level has 10 categories (e.g., Shop & Service), the second level
has 448 (e.g., Bike Shop).

3.2 Methods
Importantly, Twitter posts may express information about past,
current, or future activity. We now present a simple and effective
method for extraction of ongoing activities with their context.

2The spam score is an internally determined value that our organization applies to
tweets. It is a strong function of the tweet’s associated Twitter account.



3.2.1 Preprocessing. Twitter content is noisy, and the language
is specific with heavy use of abbreviations and special characters
such as emojis [14]. For that reason, we apply several preprocessing
steps to minimize the noise in the data:
Content cleaning - we remove URLs, hashtags, and special char-

acters (apostrophes, spurious white spaces, etc.).
Foursquare pointer - when a person checks in using the Four-

square mobile application with the sharing option switched
on, the application automatically appends a string to the
tweet with user’s current location (e.g., (@ Rolling Hills,
CA)). We remove these suffixes.

Duplicate removal - we consider two tweets to be duplicates
when they are posted by the same author, have identical
content (after preprocessing steps), and belong to the same
Foursquare category.

Timezone inference - in order to calculate the local time of a
tweet from its server publication time, we infer the tweet’s
timezone from its geo-coordinates using timezonefinder3 and
apply the time difference to get the local time.

3.2.2 Activity Extraction. Verbs or verb phrases are, by definition,
sentence constituents that introduce an action (e.g., feed, go to).
Nouns or noun phrases, on the other hand, typically fulfill the role
of verbs’ arguments (e.g., ducks, popular cafe). To extract activ-
ity descriptors from free text, we isolate the linguistically natural
structure of verb+noun pairs (alternatively verb phrase+noun phrase,
or combination) using a syntactic parser and a part-of-speech [6]
grammar4. We denote the verb part as the activity head phrase (e.g.,
feed, go) and the complete pair as the full activity descriptor (e.g.,
feed ducks, go to popular café). Since we are interested in activities
that take place at the time of their reporting, we only extract verbs
in the present progressive tense, i.e., heuristically identified as verbs
ending with ‘-ing’ (e.g., feeding, going). In terms of generality, many
languages contain tense markers or grammatical constructions that
could be leveraged similarly (e.g., Romance or Slavic languages,
Chinese, Japanese, Hindi). Future work could use tense as a weak
label to bootstrap an in-progress activity descriptor extractor which
could then be refined through label supervision to handle less com-
mon cases. Below, we provide an extraction example:

<activity>︷                                 ︸︸                                 ︷
<verb phrase>︷         ︸︸         ︷
Picking up my

<noun phrase>︷︸︸︷
4K TV at #BestBuy! GTA will look insane!

After extraction, articles and possessive s’s are removed, and the
activity text is lemmatized in order to normalize the slight morpho-
logic variations. Several activity examples are displayed in Figure 1
with the activity surface forms as labels on the y-axis. We note that
a similar verb-noun extraction technique has been relied on in prior
work [11, 12, 27], although, it is only our work that specializes in
exclusive extraction of ongoing events.

3https://github.com/MrMinimal64/timezonefinder
4For the sake of reproducibility, the grammar is available in the Appendix (§A.3).

3.2.3 Extraction Analysis. To verify extraction precision, the first
author conducted an evaluation by manually extracting verb+noun
phrases that would be naturally understood as valid activity de-
scriptors from 500 tweets, where activity was identified using our
extraction algorithm. After comparing these results for an exact
match with the method’s output, we find that the precision is 73.6%.
In the vast majority of these cases, the error does not mean that
we extract activity from a tweet where there is none. The usual
extraction errors are related to misspelling (e.g., being niceâ), not
capturing the whole activity descriptor (e.g., trying michelin instead
of trying michelin starred sushi place), or inclusion of extraneous
text (e.g., catching pokemon today). False positives only account
for 16% errors and are mostly caused by incorrect part of speech
(POS) tagging due to limited context, which leads to the confusion
of noun phrases with noun+verb phrases (e.g., driving distance).

3.2.4 Semantic Location Extraction. All tweets in our dataset come
from the Foursquare mobile application and contain metadata about
users’ check-ins. We leverage timestamps of check-ins and their
location, which, rather than by exact coordinates, are represented
by the venue category (e.g., Grocery Store). The categories reflect
semantic function of places [3, 39] and also increase generalizibility
of our spatiotemporal profiles.

3.3 Results of Activity Extraction
We extracted 226, 859 spatiotemporally anchored activities from
which 101, 869 are unique instances. The number of observations
per activity follows a long-tail distribution with 82% of activities
appearing only once in the whole dataset and only 2.2% of activities
that are repeated ten or more times. These activities were reported
by 33, 116 users from which 62% performed more than one activity,
though only 5% of users are associated with 25 or more activity
records. The complexity and the abstraction level of extracted ac-
tivities vary from very short and general (e.g., running) to lengthy
and specific (e.g., practicing egg drop soup delivery skill). The most
selective part of the extraction pipeline is the ‘-ing’ filtering step
which removes 71.5% of tweets. We would like to stress that our
goal in this work is not to extract every activity mentioned in Twit-
ter (high recall); rather we aim for precise extraction of activities
that people are engaged in at the time of reporting. Also, we realize
that people have individual preferences for when and where they
tweet about which activities; however, in aggregate, we demon-
strate in our evaluation that we collect a diverse sample that allows
us to build reliable models. To aid reproducibility, the Appendix
discusses the details of the extraction steps.

3.4 Evaluation: Comparison with ATUS
A primary research question, when deciding to work with the Twit-
ter dataset, is whether and to which degree the microblog posts
with their metadata can be trusted to reflect the true relationship
between spatiotemporal context and each activity that is found
there. We evaluated this by comparing the temporal profiles of
certain Twitter activities with results of a large-scale survey of
people’s time use (ATUS) [33]. This comparison was designed to
see if the Twitter profiles were relatively close to ground truth,
helping to justify our deeper analysis in the remainder of the paper.
ATUS (American Time Use Survey), a dataset which we use as our

https://github.com/MrMinimal64/timezonefinder


Twitter 
ATUS

04:00 08:00 12:00 16:00 20:00

Activity: watching TV, movie
Jensen-Shannon diverg.: 0.012

04:00 08:00 12:00 16:00 20:00

Activity: working
J-S diverg.: 0.015

04:00 08:00 12:00 16:00 20:00

Activity: eating / drinking
Jensen-Shannon diverg.: 0.033

Twitter 
ATUS

Figure 2: Temporal profiles (normalized) of selected activi-
ties in ATUS (red) and Twitter (blue) and their divergence.

ground truth, is an ongoing effort of the U.S. Census Bureau to
collect detailed information about the ways Americans spend their
time. The survey is conducted by telephone, and participants are
asked to describe their day, locations they visited (26 categories),
and their activities (17/105/438 categories in top 3 levels). In our
study, we used data spanning from 2003 to 2015 which contain
3.35M observations from 170, 842 participants.

Evaluation method. The difference in activity vocabularies be-
tween ATUS (limited hierarchy) and Twitter (open vocabulary)
poses a challenge for direct comparison of counterpart activities.
Therefore, we propose a set of evaluation approaches from the per-
spective of activities or locations that can be aligned manually in a
straightforward way. The evaluation methods are:

A) Quantitative (activity) - Temporal profiles of selected activi-
ties are constructed using data from both datasets and the
difference between two distributions is computed;

B) Qualitative (activity) - Typical activity locations in both data-
sets are compared and followed by discussion of differences;

C) Quantitative (location) - We compare temporal profiles of
locations, for which all underlying activities are aggregated.

Table 1: Activity comparison.

ATUS Kahneman Twitter (example) D JS

Socializing and communicating Socializing visiting friend, . . . 0.008
Television and movies Watching TV seeing movie, . . . 0.012
Relaxing, thinking Housework listening to music, . . . 0.014
Work, main job Working doing work, . . . 0.015
Shopping (exc. groceries/gas/food) Shopping doing shopping, . . . 0.016
Eating and drinking Eating eating lunch, . . . 0.033
Interior cleaning Housework doing laundry, . . . 0.041
Travel related to working Commuting heading to work, . . . 0.048
Physical care for children Taking care of ch. picking up baby, . . . 0.130
Food and drink preparation Preparing food making dinner, . . . 0.134

Mon Tue Wed Thu Fri Sat Sun

Gym / Fitness center (Twitter)
Gym / Health club(ATUS)

Mon Tue Wed Thu Fri Sat Sun

Spiritual center (Twitter)
Place of worship (ATUS)

Figure 3: Weekly activity distributions at Spiritual cen-
ter/Place of worship andGym according to Twitter and ATUS
data. High correlation confirms credibility of Twitter as a
source of self-reported activities.

A. Activity comparison (quantitative). We compared the 15
most frequent activities 5 reported by ATUS survey participants
with a study by Kahneman et al. [20] and identified 10 common
activities (Table 1). In order to map ATUS activities to those from
Twitter, two human assessors manually judged semantic similarity
of the top 500 most frequent Twitter activities and, when possible,
established a link to the corresponding ATUS activity (inter-rater
agreement as Cohen’s kappa: κ = 0.79). To quantify the similarity
of the ATUS activities with their Twitter counterparts, we compare
the temporal profiles of these activities and express the difference
by calculating their Jensen-Shannon divergence (D JS ). The results
indicate very high similarity for six activities (D JS ≤ 0.035), high
similarity for two (D JS ≈ 0.05), and low for another two activities
(D JS ≥ 0.13). The weaker correlation in the last two cases (i.e.,
‘Food and drink preparation’, ‘Physical care for children’) is caused
by relatively lower popularity of Twitter posts containing reference
to these activities and consequent low diversity of related activi-
ties in rather limited test selection (i.e., 500 most frequent Twitter
activities). For instance, all activities in the test set related to food
preparation are concerned with dinner, which makes the profile
skewed towards later time of the day.

With ATUS as ground truth, this comparison gives us confidence
that reported activities in Twitter tend to reflect the actual timing
of real activities. In Fig. 2, we depict evaluation plots of the three
most frequent ATUS activities: (‘Eating and Drinking’, ‘Work, main
job’, and ‘Television and movies’), which amount for 34% of all ac-
tivities in ATUS and on average occupy up to 11.4h of one’s day [20].

B. Activity comparison (qualitative). Both activities extracted
from Twitter and activities reported by participants of the survey
are classified into categories of locations (e.g., spiritual center, gym).
That leads us to study the typical locations of selected activities, and
we find some interesting insights. The characteristic locations of
majority of activities are very similar in both datasets. For instance,
the activity of ‘commuting’ happens in various means of transport
(train, car, etc.) in both datasets; ‘working’ mostly falls into the cate-
gory of respondent’s workplace in ATUS, in Twitter it is professional
5We exclude ‘sleeping’ since it is impossible to tweet about it while performing it.



& other places (which can be considered an equivalent location).
To highlight some differences, we observe that some daily activi-
ties that often take place at home according to ATUS (‘watching a
movie’, ‘eating and drinking’) are more likely to be tweeted about
when performed at out-of-home places (i.e., cinema, restaurant).

C. Location comparison (quantitative). Apart from individual
activity comparison, we construct aggregated temporal profiles
for all underlying activities that happen at a location. Given that
each activity has a specific temporal profile, potential differences of
these aggregates in ATUS and Twitter could indicate bias of certain
activities that are more or less talked about on Twitter. Despite
non-compatible categorization systems of locations in ATUS and
Foursquare (via Twitter), we were able to find location equivalents
to 11 (out of 26) ATUS categories in Foursquare. We rendered daily
and weekly temporal profiles of the location activity aggregates
and in Fig. 3, on two examples, we demonstrate good alignment of
extracted data with the ground truth. In Fig. 4, we use the weekly
profiles to calculate the distribution divergence (D JS ) across all 11
location categories, and present the results in the form of a matrix
heatmap. The low D JS values on the diagonal indicate positive
correlation of aggregated location profiles in Twitter (y-axis) and
ATUS locations (x-axis).

The evaluation, in which we compared the temporal and spatial
aspects of activities from Twitter and ATUS, suggests a high cor-
relation between the extracted activities and the ground truth in
both dimensions. Based on these findings, we conclude that with
respect to time and location the activities extracted from Twitter
using the proposed techniques are a good representative of people’s
true activity behavior.

ALL

OUTDOORS

FERRY

SUBWAY

SCHOOL

GYM

GROCERY S.

MALL

POST

BANK

SPIRITUAL C.

RESTAURANT

ALL

OUTDOORS

FERRY

SUBW
AY

SCHOOL
GYM

GROCERY S.

M
ALL

POST

BANK

SPIR
IT

UAL C
.

RESTAURANT

Tw
it

te
r

ATUS

Profile similarity

J-S divergence Low High

High Low

Figure 4: Comparison of 11 counterpart ATUS and Twitter
top-level location categories. The difference is expressed as
Jensen-Shannon divergence between temporal profiles of lo-
cation activity aggregates.

4 ACTIVITY ANALYSIS
Assured that Twitter indeed provides a reliable window into ac-
tivity spatiotemporal profiles, in this section, we address RQ2 by
inspecting what activities are the ones that people report on the
most and where and when they tend to happen.

What are the most common activities? Being aware that so-
cial networks are subject to self-censorship [26], we studied which
are the most common activities that people are willing to tweet
about. The most common head phrase is, by a large margin, the verb
‘getting.’ This phenomenon can be explained by the polymorphous
nature of the verb: it is a constituent of many verbal constructions
with a range of different meanings (getting hair done, getting food,
getting up, etc.). We identified activities related to transportation
(e.g., heading home), eating and drinking (e.g, having lunch) or
entertainment (e.g., celebrating birthday) to be the most reported
ones on Twitter.We list the most common activities in the appendix.

Where do activities take place? Spatially, activities from Twit-
ter are unevenly distributed into location categories with strong
bias towards food- or shop-related venues. An underrepresented
category of locations are event venues (e.g, conference room). The
relation between some activities and certain locations is very strong.
The conditional probability of cutting hair being done in Salon /
Barbershop, having ramen in Asian Restaurant or worshiping in Spir-
itual Center is 1.0 in all these cases. (We chose activities with 10+
observations.) On the other side of the probability spectrum we
find activities such as killing time which is almost equally likely
to happen in 120 different locations including Beach,Winery, Zoo,
Racetrack, and Bookstore.

When do activities happen? Inspired by the finding of Noulas et
al. [30], we inspected the aggregated temporal dynamics of users’
activity patterns over the course of a day and a week (Fig. 5). We
find that the most active days are Saturday and Friday, while Mon-
day to Wednesday are almost equally quiet. We split the day into
four habitual parts: morning (6:00-12:00), afternoon (12:00-18:00),
evening (18:00-24:00) and night (00:00-6:00) to find that 43% of ac-
tivities are reported during the afternoon, and only less than 3%
reported at night. Further, when analyzing the temporal scope of
various activities individually, we generate profiles of these activi-
ties to visually examine their temporal footprints, e.g., see Fig. 1.
The plot depicts a sample of temporal distributions that belong to
eleven activities, which are selected so that their peak hours are
spread out over the timespan of a day. It should be mentioned that
the underlying data originate in the US and culture dissimilarities
in other regions may lead to different activity profiles.

night

evening

afternoon

morning

Mon
12.4%

27%

42%

28%

3%

Tue
12.6%

26%

41%

31%

2%

Wed
12.8%

25%

41%

32%

2%

Thu
13.6%

24%

40%

34%

2%

Fri
16.2%

23%

41%

33%

3%

Sat
18.4%

24%

46%

27%

3%

Sun
14.0%

24%

51%

21%

3%

Figure 5: Frequency of reported activities during four peri-
ods of day and on different days of the week.



The analysis revealed interesting facts: 1) the distributions of ac-
tivities and their locations are top-heavy with only a fraction of
activities that re-appear frequently, 2) people often report on ac-
tivities related to their journey, eating/drinking or entertainment,
which were recognized as enjoyable activities according to Kah-
neman et al. [20], and, 3) the most active reporting periods are
Friday-Saturday afternoons (which might be partially influenced
by the “Twitter social jet lag” [24]).

5 PREDICTIONS
The previous section uncovered patterns of human activities. Re-
ferring back to our main task, which is to propose models that
embrace human activity as a contextual feature, we go on and use
the newly acquired insights in two prediction tasks, respectively:

RQ3 Given an activity of a person (and possibly other con-
text), can we predict where it is likely to happen?

RQ4 Given a location (and possibly other context), can we
predict what activities people will engage in there?

5.1 Methods
We cast each prediction task in this paper as a ranking problem,
where a list of items i is ordered by a ranking score Si , which reflects
its probability P(i |c) of being relevant to a given context c .

In RQ3, the task is to return a ranked list of top- and/or second-
level location categories given a full activity and other relevant
context on the input. The ranking order reflects the probability of
the activity taking place at the location. We denote this model as
activity-to-location (A2L). The problem in RQ4 is reversed, i.e.,
given a top- or second-level location category (and other relevant
context), the goal is to rank activities according to the likelihood
of them happening at the given location. We denote this model as
location-to-activity (L2A).

Evaluation metrics.We are primarily focused on precision of
our predictions in this work; therefore, we use traditional binary-
relevance ranking metrics: mean reciprocal rank (MRR) and preci-
sion at a cut-off position P@k . We evaluate results for k = {1, 3}.

Dataset. For the experiments, we chronologically split the Twit-
ter sample of more than 6.5M tweets into an initial 90% of training
data from the beginning (DTR ) and 10% of evaluation data (DEV ).

5.2 Baseline
An intuitive and strong baseline ranks items according to their
conditional probability computed from the training dataset DTR .
In the activity-to-location task, the probability P(l |a) of location
l is proportional to the number of cases the activity a is observed at
location l in the training dataset DTR . In location-to-activity, ac-
tivities are ranked according to the probability P(a |l), which is given
by the frequency of activity a at given location l . We discovered that
time, and especially the period of day, is a strong predictor. There-
fore, we include another baseline, BL-temp, where the probability
is also conditioned on the period of day t , i.e., P(l |a, t) or P(a |l , t).

5.3 Predictive Approach
We operate with a diverse set of features, which, when combined,
generate a long feature vector with binary, numerical (x ∈ (0, 1) ⊂
R) or categorical values. Below, we discribe their types and, in
Table 2, their usage. Ensemble models have proven to be robust
and well-performing. Considering their ability to handle large fea-
ture spaces with categorical values, we opted for a random forests
classifier as the machine learning algorithm of choice.

Textual features. We extract unigrams from activity surface
forms and transform them into a feature matrix. Weights of the
terms in the matrix are calculated using Tf-Idf to ensure higher
values of informative terms.

Temporal features are inferred from the activity timestamp
(local time). We extract hour of day (0-23), part of the day as in
Section 4, day of week, month, and timezone.

Spatial / Activity prior features. Spatial prior features capture
the prior probability of top- and second-level location categories
in the training dataset for a given activity a. The activity prior
feature contains the prior probability of activities given a top- or
second-level location category.

Personal features encode a user’s past behavior as observed
in the training dataset. In RQ3, the behavior is represented by a
feature vector that consists of binary flags indicating activities that
user performed in the past. In RQ4, analogously, the sparse vector
marks locations previously visited by the user.

Table 2: Overview of features and their usage in activity-to-
location (A2L) and location-to-activity (L2A) models.

Feature Feature type Value type A2L L2A

Activity descriptor unigrams Textual Numerical ✓
Hour of day Temporal Categorical ✓ ✓
Period of day Temporal Categorical ✓ ✓
Day of week Temporal Categorical ✓ ✓
Month of year Temporal Categorical ✓ ✓
Timezone id Temporal Categorical ✓ ✓
General location category prior Spatial prior Numerical ✓
General activity prior Activity prior Numerical ✓
User’s location category prior Personal Binary ✓
User’s activity prior Personal Binary ✓

5.4 Experimental Setup
We compare our models with all features (All) against the baselines
(BL). In addition to that, we investigate the influence of types of fea-
ture sets by applying a leave-one-out strategy. Specifically, we train
with all feature sets except one: activity textual features (w/o Text.),
temporal features (w/o Temp.), prior features (spatial in RQ3 (w/o
Spat.), activity in RQ4 (w/o Act.)), or personal features (w/o Pers.).
For brevity, we only display the feature set analysis for one of the
datasets (H), however, the pattern is similar in all other cases.

We observed that number of records per user, activity or category
(entities) follows the power-law distribution. In order to mitigate
data sparsity and study its influence on prediction performance, we
propose three filtering approaches. The most aggressive strategy
only keeps the head (H) of the dataset, i.e., the 100 most frequent
users, 20 categories and 100 activities. The more relaxed variants
expand the data with the body (H+B): 1000 most frequent users, 50
categories and 500 activities; and the tail fraction (H+B+T) of the
dataset: 5000most frequent users, 100 categories and 1000 activities.



Table 3: Prediction results of activity-to-location model.

Data Model MRR Impr. P@1 Impr. P@3 Impr.

H BL 0.59 0.45 0.68
All 0.70 18.6% 0.54 20.4% 0.82 20.9%
w/o Text. 0.62 4.8% 0.45 0.4% 0.72 5.9%
w/o Temp. 0.39 -33.2% 0.16 -63.6% 0.49 -27.9%
w/o Spat. 0.61 3.6% 0.44 -2.7% 0.71 4.7%
w/o Pers. 0.52 -12.4% 0.32 -29.8% 0.65 -5.0%

H+B BL 0.47 0.34 0.53
All 0.59 26.2% 0.44 29.7% 0.66 23.5%

H+B+T BL 0.43 0.31 0.49
All 0.52 21.3% 0.37 20.6% 0.57 16.9%

5.5 Results and Discussion
Tables 3 and 4 present prediction results of activity-to-location and
location-to-activity models, respectively. Location in both cases
refers to the second-level categories, which offer an order of mag-
nitude more location categories than the top-level categories. The
tables contain results for each filtering strategy (‘Data’ column) and
compare values with the best-performing baseline (BL or BL-temp).

The evaluation results in Table 3 show the superiority of the
activity-to-location model over the baseline by up to 26.2% in
MRR for the H+B dataset. The significant improvement in MRR is
accompanied by precision increase at the cut-off points of 1 and
3 by up to 29.7% and 23.5%, respectively. We see that the model
benefits the most from the temporal features (Temp.), suggesting
that given we know which activity a person is occupied with, her
location strongly depends on time. The textual features (Text.), apart
from enhancing the results, ensure generalizability of the model to
unseen activities by leveraging prior knowledge about linguistically
similar activities.

The task of predicting activity for a given location (location-
to-activity model) is a relatively more difficult problem, which is
noticeable from the baseline (BL-temp) numbers in Table 4. Our
technique, however, consistently outperforms the strongest base-
line, achieving performance improvement of up to 32.8% in MRR
and 70.6% and 39.6% in P@1 and P@3, respectively. While user’s
historical data (Pers.) have a significant impact on the predictive
performance in both tasks, it is the activity prediction where know-
ing user’s past behavior (i.e., past activities at given location) is
crucial. We observed that as the datasets get sparser, the benefit of
personal data grows stronger.

Strengths. Some human activities tend to happen at a very lim-
ited number of location types irrespective of personal preferences
(depositing check - Bank, waiting to board a flight - Airport), and
even simple modeling technique can capture these regularities. On
the other end of the spectrum lie activities that are very general
and whose entropy w.r.t. location categories is high, e.g., ‘enjoying
night’ that was observed 45 times in 21 distinct categories. The
benefit of our models over probabilistic baselines is in their ability
to handle activities whose typical location changes in time and is
rather user-specific. We illustrate the temporal dependence of an

06:00 08:00 10:00 12:00 14:00 16:00 18:00

School Athletics & Sports Home (Private) 

Movie Theatre

Figure 6: Relative location probabilities changing in time for
‘dropping off kid’ activity as returned by our model.

Table 4: Prediction results of location-to-activity model.

Data Model MRR Impr. P@1 Impr. P@3 Impr.

H BL-temp 0.34 0.21 0.42
All 0.45 32.8% 0.36 70.6% 0.53 26.5%
w/o Temp. 0.41 20.2% 0.29 37.4% 0.48 14.5%
w/o Act. 0.31 -10.3% 0.22 13.7% 0.35 -15.6%
w/o Pers. 0.28 -17.0% 0.18 -12.8% 0.34 -17.8%

H+B BL-temp 0.25 0.15 0.27
All 0.32 29.2% 0.25 66.7% 0.37 39.6%

H+B+T BL-temp 0.21 0.13 0.23
All 0.23 9.9% 0.18 41.5% 0.26 13.00%

activity on ‘dropping off kid’ in Figure 6. We see how the probability
of activity location changes over the course of a day (Thu). The
probabilities depend on historical behavior of each user, and, in this
particular case, our model improves the MRR by 0.51.

Implications. The negative correlation between prediction per-
formance and data sparsity confirms our hypothesis that restriction
of the dataset to the most frequent entities leads to more accurate
predictions. The obvious explanation is that the task becomes rela-
tively simpler, since the number of classes drops. We note that the
ultimate goal is to support prediction into a rich open-set of activi-
ties and, while our model performs well there, it leaves a research
opportunity for further improvements that generalize to the tail.

6 CONCLUSIONS AND FUTUREWORK
Human activity is clearly one of the major drivers that influence
information needs of people. In this paper, we have shown that
large amounts of open-domain activities are self-reported by users
in their social media posts. While not all activities that people per-
form are tweeted about (due to self-censorship [31]), by focusing on
extraction of ongoing activities present on Twitter, we are able to
reliably model spatial and temporal aspects of thousands of activi-
ties that do get published. We demonstrate reliability by contrasting
the extracted spatiotemporal profiles with real-life distributions
captured in an independent large-scale survey of people’s daily
routines, ATUS. Our work was primarily motivated by two context-
aware applications (i.e., reminder and recommender), which would
greatly benefit from reliable activity–location prediction models.
To address that, we pose two tasks: 1) prediction of locations for a
given activity and 2) prediction of activities for a given location. In
both of them, a proposed model outperforms a strong frequency-
based baseline by a significant margin of 26.2% and 32.8% MRR
improvement, in respective order.

In order to preserve variety in this initial study, we did not con-
sider resolution of synonym activities, nor did we cluster activities
into categories. Future work could try to increase the robustness of
learned models by learning an embedding of activities to support
synonymy. Another interesting direction for follow-up research,
since we now have a good understanding of spatiotemporal pat-
terns of various activities, would be to use them to identify web
searches that are related to these activities.

To conclude, this work provides a significant step toward a proba-
bilistic model of common-sense that enables context-aware systems
to reason about the connections between location, time, and natural
language descriptions of activity. Furthermore, there is an exciting
opportunity for further research given both the public nature of
the data source and unexplored modeling choices.
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A APPENDIX
A.1 Activity Phrases
We computed the most common activity head phrases found in
Twitter, including their relative frequencies and some example noun
phrases for each one, shown in Table A1. We see that each verb
phrase can introduce a variety of activities, whose ambiguity is
only resolved by the following noun phrase.

Table A1: Most common activity head phrases with a sample
of related common full activities.

Activity head phrase Full activity
# Verb phrase Freq. Noun phrases (most common)

1. getting 11.8% . . . hair (done), stuff, lunch, food, gas, . . .
2. picking up 5.6% . . . dinner, lunch, thing, med, car, food, load, . . .
3. having 4.3% . . . lunch, dinner, fun, breakfast, time, drink, . . .
4. watching 3.6% . . . game, movie, TV, football, girl, fireworks, . . .
5. going 3.3% . . . home, to be day, to bed, to work, to gym, . . .
6. trying 3.3% . . . place, something, out place, spot, out spot, . . .
7. celebrating 2.6% . . . birthday, year, life, day, anniversary, bday, . . .
8. heading 2.5% . . . home, to airport, to work, to bed, downtown, . . .
9. checking 2.3% . . . (out) place, out spot, thing, out location, . . .
10. enjoying 2.2% . . . day, weather, lunch, dinner, time, view, . . .
11. taking 2.2% . . . care, break, advantage, tour, mom, picture, . . .
12. doing 1.9% . . . thing, laundry, work, shopping, something, . . .
13. making 1.7% . . .money, friend, round, time, dinner, progress, . . .
14. seeing 1.6% . . . friend, movie, show, doctor, deadpool, girl, . . .
15. grabbing 1.5% . . . lunch, dinner, bite, breakfast, food, coffee, . . .
16. visiting 1.4% . . . friend, mom, dad, family, grandma, aunt, . . .
17. dropping 1.4% . . . kid, off donation, off car, off load, off passenger, . . .
18. eating 1.4% . . . lunch, dinner, breakfast, food, pizza, supper, . . .
19. working 1.2% . . . today, night, hour, way, prayer, shift, . . .
20. starting 1.2% . . . day, week, weekend, year, morning, trip, . . .
21. playing 0.9% . . . game, pokemon, tune, tourist, music, golf, . . .
22. buying 0.9% . . . stuff, grocery, food, thing, car, book, . . .
23. opening 0.7% . . . day, night, ceremony, weekend, account, session, . . .
24. being 0.7% . . . tourist, home, adult, kid, fatty, friend, . . .
25. drinking 0.6% . . . beer, coffee, wine, water, tea, brew, . . .

A.2 Overview of the Tweet-filtering Process
Filtering tweets down to activity assertions takes 10 steps, as out-
lined in Table A2. Our goal was to create a precise set of relevant
activity tweets, but not to necessarily find all relevant tweets.

Table A2: Filtering of tweets during the activity extraction process. Along with description of each step, the table displays a
number of remaining tweets after the step is performed and the percentage of the original volume of tweets that it represents.

# Processing step Number of tweets Percentage

1. Tweets from US region (in English) originating from Foursquare app 6 641 503 100%
2. Removal of duplicate tweets (based on TweetID) 5 845 289 88.0%
3. Filtering of corrupted records (due to parsing) 5 845 108 88.0%
4. Filtering for tweets by users with spamScore < .5 5 841 176 87.9%
5. Filtering for tweets with spamScore < .5 5 788 598 87.2%
6. Filtering for tweets containing ‘-ing’ 1 044 127 15.7%
8. Content cleaning for tweets (removal of tweets that become empty after this step) 544 762 8.2%
9. Duplicate filtering (based on User ID, Text & Category) 518 368 7.8%
10. Activity extraction (filtering for tweets containing ≥ 1 activities) 193 219 2.9%

A.3 Activity Extraction Grammar
For completeness and reproducibility purposes, we present the
complete grammar we used for extraction of verb+noun pairs (i.e.,
<VPNP>) after the text was tokenized and tagged with parts of
speech [6].We refer the reader to the Penn Treebank POS tagset [25]
for a full overview of the POS tags.

NPS: {<NNS>* <NN>* <POS>? <FW>* <NNS>* <NN>*}
JX: {<JJ>* <JJS>* <JJR>* <,>?}
NP: {<DT>? <CD>? <NNP>* <NNPS>* <JX>*

(<DT> <VBG>)? <CD>? <NPS>}
VP: {<VBG> <RP>* (<JJ> <TO>)? <TO>? <VB>*}
VPNP:{<VP> <PRP$>* <NP>}

For a better idea about how the extraction grammar works, we
display a parse tree of an example phrase:

<VPNP>︷                                                                            ︸︸                                                                            ︷
<VP>︷                        ︸︸                        ︷

picking <VBG> up <RP>

NP︷                                            ︸︸                                            ︷
<JX>︷            ︸︸            ︷

microsoft <JJ>

<NPS>︷                      ︸︸                      ︷
surface <NN> pro <NN>
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