
Improving Multi-Task Deep Neural Networks via Knowledge Distillation
for Natural Language Understanding

Xiaodong Liu1, Pengcheng He2, Weizhu Chen2, Jianfeng Gao1

1 Microsoft Research 2 Microsoft Dynamics 365 AI
{xiaodl,penhe,wzchen,jfgao}@microsoft.com

Abstract

This paper explores the use of knowledge dis-
tillation to improve a Multi-Task Deep Neu-
ral Network (MT-DNN) (Liu et al., 2019) for
learning text representations across multiple
natural language understanding tasks. Al-
though ensemble learning can improve model
performance, serving an ensemble of large
DNNs such as MT-DNN can be prohibitively
expensive. Here we apply the knowledge
distillation method (Hinton et al., 2015) in
the multi-task learning setting. For each
task, we train an ensemble of different MT-
DNNs (teacher) that outperforms any single
model, and then train a single MT-DNN (stu-
dent) via multi-task learning to distill knowl-
edge from these ensemble teachers. We show
that the distilled MT-DNN significantly out-
performs the original MT-DNN on 7 out of
9 GLUE tasks, pushing the GLUE bench-
mark (single model) to 83.7% (1.5% abso-
lute improvement1). The code and pre-trained
models will be made publicly available at
https://github.com/namisan/mt-dnn.

1 Introduction

Ensemble learning is an effective approach to im-
prove model generalization, and has been used to
achieve new state-of-the-art results in a wide range
of natural language understanding (NLU) tasks,
including question answering and machine read-
ing comprehension (Devlin et al., 2018; Liu et al.,
2018; Huang et al., 2017; Hancock et al., 2019).
A recent survey is included in (Gao et al., 2019).
However, these ensemble models typically con-
sist of tens or hundreds of different deep neural
network (DNN) models and are prohibitively ex-
pensive to deploy due to the computational cost

1 Based on the GLUE leaderboard at
https://gluebenchmark.com/leaderboard as of April 1,
2019.

of runtime inference. Recently, large-scale pre-
trained models, such as BERT (Devlin et al., 2018)
and GPT (Radford et al., 2018), have been used
effectively as the base models for building task-
specific NLU models via fine-tuning. The pre-
trained models by themselves are already expen-
sive to serve at runtime (e.g. BERT contains 24
transformer layers with 344 million parameters,
and GPT-2 contains 48 transformer layers with 1.5
billion parameters), the ensemble versions of these
models multiplying the extreme for online deploy-
ment.

Knowledge distillation is a process of distill-
ing or transferring the knowledge from a (set of)
large, cumbersome model(s) to a lighter, easier-
to-deploy single model, without significant loss in
performance (Bucilu et al., 2006; Hinton et al.,
2015; Balan et al., 2015; Ba et al., 2016; Chen
et al., 2015; Tan et al., 2019).

In this paper, we explore the use of knowledge
distillation to improve a Multi-Task Deep Neural
Network (MT-DNN) (Liu et al., 2019) for learning
text representations across multiple NLU tasks.
Since MT-DNN incorporates a pre-trained BERT
model, its ensemble is expensive to serve at run-
time.

We extend the knowledge distillation method
(Hinton et al., 2015) to the multi-task learning set-
ting (Caruana, 1997; Xu et al., 2018; Collobert
et al., 2011; Zhang and Yang, 2017; Liu et al.,
2015). In the training process, we first pick a few
tasks, each with an available task-specific training
dataset which is stored in the form of (x, y) pairs,
where x is an input and y is its correct target. For
each task, we train an ensemble of MT-DNN mod-
els (teacher) that outperform the best single model.
Although the ensemble model is not feasible for
online deployment, it can be utilized, in an offline
manner, to produce a set of soft targets for each x
in the training dataset , which, for example, in a

ar
X

iv
:1

90
4.

09
48

2v
1

 [
cs

.C
L

]
 2

0
A

pr
 2

01
9

classification task are the class probabilities aver-
aged over the ensemble of different models. Then,
we train a single MT-DNN (student) via multi-task
learning with the help of the teachers by using both
the soft targets and correct targets across different
tasks. We show in our experiments that knowledge
distillation effectively transfers the generalization
ability of the teachers to the student. As a re-
sult, the distilled MT-DNN outperforms the vanilla
MT-DNN that is trained in a normal way, as de-
scribed in (Liu et al., 2019), on the same training
data as was used to train the teachers.

We validate the effectiveness of our approach on
the General Language Understanding Evaluation
(GLUE) dataset (Wang et al., 2019) which con-
sists of 9 NLU tasks. We find that the distilled
MT-DNN outperforms the vanilla MT-DNN on 7
tasks, including the tasks where we do not have
teachers. This distilled model improves the GLUE
benchmark (single model) to 83.7%, amounting to
3.2% absolute improvement over BERT and 1.5%
absolute improvement over the previous state of
the art model based on the GLUE leaderboard2 as
of April 1, 2019.

In the rest of the paper, Section 2 describes the
MT-DNN of Liu et al. (2019) which is the base-
line and vanilla model for this study. Section 3 de-
scribes in detail knowledge distillation for multi-
task learning. Section 4 presents our experiments
on GLUE. Section 5 concludes the paper.

2 MT-DNN

The architecture of the MT-DNN model is shown
in Figure 1. The lower layers are shared across all
tasks, while the top layers represent task-specific
outputs. The input X , which is a word sequence
(either a sentence or a set of sentences packed to-
gether) is first represented as a sequence of embed-
ding vectors, one for each word, in l1. Then the
transformer encoder captures the contextual infor-
mation for each word via self-attention, and gen-
erates a sequence of contextual embeddings in l2.
This is the shared semantic representation that is
trained by our multi-task objectives.

Lexicon Encoder (l1): The input X =
{x1, ..., xm} is a sequence of tokens of length m.
Following Devlin et al. (2018), the first token x1
is always the [CLS] token. If X is packed by
a set of sentences (X1, X2), we separate the these

2https://gluebenchmark.com

sentences with special tokens [SEP]. The lexicon
encoder maps X into a sequence of input embed-
ding vectors, one for each token, constructed by
summing the corresponding word, segment, and
positional embeddings.

Transformer Encoder (l2): We use a multi-
layer bidirectional Transformer encoder (Vaswani
et al., 2017) to map the input representation vec-
tors (l1) into a sequence of contextual embedding
vectors C ∈ Rd×m. This is the shared representa-
tion across different tasks.

Task-Specific Output Layers: We can incorpo-
rate arbitrary natural language tasks, each with its
task-specific output layers. For example, we im-
plement the output layers as a neural decoder for
text generation, a neural ranker for relevance rank-
ing, a logistic regression for text classification, and
so on. Below, we elaborate the implementation de-
tail using text classification as an example.

Suppose that x is the contextual embedding (l2)
of the token [CLS], which can be viewed as the
semantic representation of input sentence X . The
probability that X is labeled as class c (i.e., the
sentiment is postive or negative) is predicted by a
logistic regression with softmax:

Pr(c|X) = softmax(Wt · x), (1)

where Wt is the task-specific parameter matrix for
task t.

2.1 The Training Procedure
The training procedure of MT-DNN consists of
two stages: pre-training and multi-task learning
(MTL). In the pre-training stage, Liu et al. (2019)
used a publicly available pre-trained BERT model
to initialize the parameters of the shared layers
(i.e., the lexicon encoder and the transformer en-
coder).

In the MTL stage, mini-batch based stochastic
gradient descent (SGD) is used to learn the model
parameters (i.e., the parameters of all the shared
layers and the task-specific layers), as shown in
Algorithm 1. First, the training samples from mul-
tiple tasks (e.g., 9 GLUE tasks) are packed into
mini-batches. We denote a mini-batch by bt, indi-
cating that it contains only the samples from task t.
In each epoch, a mini-batch bt is selected, and the
model is updated according to the task-specific ob-
jective for task t, denoted by Lt(Θ). This approx-
imately optimizes the sum of all multi-task objec-
tives.

Figure 1: Architecture of the MT-DNN model for representation learning (Liu et al., 2019). The lower layers are
shared across all tasks while the top layers are task-specific. The input X (either a sentence or a set of sentences)
is first represented as a sequence of embedding vectors, one for each word, in l1. Then the Transformer encoder
captures the contextual information for each word and generates the shared contextual embedding vectors in l2.
Finally, for each task, additional task-specific layers generate task-specific representations, followed by operations
necessary for classification, similarity scoring, or relevance ranking.

Take text classification as an example. We use
the cross-entropy loss as the objective in Line 3 of
Algorithm 1:

−
∑
c

1(X, c) log(Pr(c|X)), (2)

where 1(X, c) is the binary indicator (0 or 1) if
class label c is the correct classification for X , and
Pr(.) is defined by Equation 1.

Then, in Line 5, the parameters of the shared
layers and the output layers corresponding to task
t are updated using the gradient computed in Line
4.

After MT-DNN is trained via MTL, it can be
fine-tuned (or adapted) using task-specific labeled
training data to perform prediction on any individ-
ual task, which can be a task used in the MTL
stage or a new task that is related to the ones
used in MTL. Liu et al. (2019) showed that the
shared layers of MT-DNN produce more univer-
sal text representations than that of BERT. As a
result, MT-DNN allows fine-tuning or adaptation
with substantially fewer task-specific labels.

3 Knowledge Distillation

The process of knowledge distillation for MTL is
illustrated in Figure 2. First, we pick a few tasks

Algorithm 1: Training a MT-DNN model.
Initialize model parameters Θ randomly.
Initialize the shared layers (i.e., the lexicon
encoder and the transformer encoder) using
a pre-trained BERT model.

Set the max number of epoch: epochmax.
//Prepare the data for T tasks.

for t in 1, 2, ..., T do
Pack the dataset t into mini-batch: Dt.

end
for epoch in 1, 2, ..., epochmax do

1. Merge all the datasets:
D = D1 ∪D2... ∪DT

2. Shuffle D
for bt in D do

//bt is a mini-batch of task t.
3. Compute task-specific loss : Lt(Θ)
4. Compute gradient: ∇(Θ)
5. Update model: Θ = Θ− ε∇(Θ)

end
end

where there are task-specific labeled training data.
Then, for each task, we train an ensemble of dif-
ferent neural nets as a teacher. Each neural net is

Figure 2: Process of knowledge distillation for multi-task learning. A set of tasks where there is task-specific
labeled training data are picked. Then, for each task, an ensemble of different neural nets (teacher) is trained. The
teacher is used to generate for each task-specific training sample a set of soft targets. Given the soft targets of the
training datasets across multiple tasks, a single MT-DNN (student) is trained using multi-task learning and back
propagation as described in Algorithm 1, except that if task t has a teacher, the task-specific loss in Line 3 is the
average of two objective functions, one for the correct targets and the other for the soft targets assigned by the
teacher.

an instance of MT-DNN described in Section 2,
and is fine-tuned using task-specific training data
while the parameters of its shared layers are ini-
tialized using the MT-DNN model pre-trained on
the GLUE dataset via MTL, as in Algorithm 1, and
the parameters of its task-specific output layers are
randomly initialized.

For each task, a teacher generates a set of soft
targets for each task-specific training sample. Take
text classification as an example. A neural net-
work model typically produces class probabilities
using a softmax layer as in Equation 1. Let Qk be
the class probabilities produced by the k-th single
network of the ensemble. The teacher produces
the soft targets by averaging the class probabilities
across networks:

Q = avg([Q1, Q2, ..., QK]). (3)

We want to approximate the teacher using a stu-
dent neural network model, which also has a soft-
max output for the same task Pr(c|X), as in Equa-
tion 1. Hence, we use the standard cross entropy
loss:

−
∑
c

Q(c|X) log(Pr(c|X)). (4)

Note that the above loss function differs from
the cross entropy loss in Equation 2 in that the
former uses the soft targets Q(c|X) while the lat-
ter uses the hard correct target via the indicator
1(X, c).

As pointed out by Hinton et al. (2015), the use
of soft targets produced by the teacher is the key to
successfully transferring the generalization ability
of the teacher to the student. The relative prob-
abilities of the teacher labels contain information
about how the teacher generalizes. For example,
the sentiment of the sentence “I really enjoyed the
conversation with Tom” has a small chance of be-
ing classified as negative. But the sentence “Tom
and I had an interesting conversation” can be ei-
ther positive or negative, depending on its context
if available, leading to a high entropy of the soft
targets assigned by the teacher. In these cases, the
soft targets provide more information per training
sample than the hard targets and less variance in
the gradient between training samples. By opti-
mizing the student for the soft targets produced
by the teacher, we expect the student to learn to
generalize in the same way as the teacher. In our
case, each task-specific teacher is the average of a
set of different neural networks, and thus general-
izes well. The single MT-DNN (student) trained
to generalize in the same way as the teachers is
expected to do much better on test data than the
vanilla MT-DNN that is trained in the normal way
on the same training dataset. We will demonstrate
in our experiments that this is indeed the case.

We also find that when the correct targets are
known, the model performance can be signifi-
cantly improved by training the distilled model on

a combination of soft and hard targets. We do so
by defining a loss function for each task that take
a weighted average between the cross entropy loss
with the correct targets as Equation 2 and the cross
entropy with the soft targets as Equation 4. Hinton
et al. (2015) suggested using a considerably lower
weight on the first loss term. But in our experi-
ments we do not observe any significant difference
by using different weights for the two loss terms,
respectively.

Finally, given the soft targets of the training
datasets across multiple tasks, the student MT-
DNN can be trained using MTL as described in
Algorithm 1, except that if task t has a teacher,
the task-specific loss in Line 3 is the average of
two objective functions, one for the correct targets
and the other for the soft targets assigned by the
teacher.

4 Experiments

We evaluate the MT-DNN trained using Knowl-
edge Distillation, termed as MT-DNNKD in this
section, on the General Language Understanding
Evaluation (GLUE) benchmark. GLUE is a col-
lection of nine NLU tasks as in Table 1, includ-
ing question answering, sentiment analysis, text
similarity and textual entailment. We refer read-
ers to Wang et al. (2019) for a detailed description
of GLUE. We compare MT-DNNKD with existing
state-of-the-art models including BERT (Devlin
et al., 2018), STILT (Phang et al., 2018), Snorkel
MeTal (Hancock et al., 2019), and MT-DNN (Liu
et al., 2019). Furthermore, we investigate the rel-
ative contribution of using knowledge distillation
for MTL with an ablation study.

4.1 Implementation details

Our implementation is based on the PyTorch im-
plementations of MT-DNN3 and BERT4. We used
Adamax (Kingma and Ba, 2014) as our optimizer
with a learning rate of 5e-5 and a batch size of 32.
The maximum number of epochs was set to 5. A
linear learning rate decay schedule with warm-up
over 0.1 was used, unless stated otherwise. We
also set the dropout rate of all the task-specific
layers as 0.1, except 0.3 for MNLI and 0.05 for
CoLA/SST-2. To avoid the gradient explosion is-
sue, we clipped the gradient norm within 1. All the

3https://github.com/namisan/mt-dnn
4https://github.com/huggingface/pytorch-pretrained-

BERT

texts were tokenized using wordpieces, and were
chopped to spans no longer than 512 tokens.

To obtain a set of diverse single models to form
ensemble models (teachers), we first trained 6 sin-
gle MT-DNNs, initialized using Cased/Uncased
BERT models as (Hancock et al., 2019) with a dif-
ferent dropout rate, ranged in {0.1, 0.2, 0.3}, on
the shared layers, while keeping other training hy-
perparameters the same as aforementioned. Then,
we selected top 3 best models according to the re-
sults on the MNLI and RTE development datasets.
Finally, we fine-tuned the 3 models on each of the
MNLI, QQP, RTE and QNLI tasks to form four
task-specific ensembles (teachers), each consist-
ing of 3 single MT-DNNs fine-tuned for the task.
The teachers are used to generate soft targets for
the four tasks as Equation 3, described in Section
3. We only pick four out of nine GLUE tasks
to train teachers to investigate the generalization
ability of MT-DNNKD, i.e., its performance on the
tasks with and without teachers.

4.2 GLUE Main Results

We compare MT-DNNKD with a list of state-of-
the-art models that have been submitted to the
GLUE leaderboard.

BERTLARGE This is the large BERT model re-
leased by Devlin et al. (2018), which we used as
a baseline. We used single-task fine-tuning to pro-
duce the best result for each GLUE task according
to the development set.

MT-DNN This is the model described in Section
2 and Liu et al. (2019). We used the pre-trained
BERTLARGE model to initialize its shared layers,
refined the shared layers via MTL on all GLUE
tasks, and then perform a fine-tune for each GLUE
task using the task-specific data.

MT-DNNKD This is the MT-DNN model trained
using knowledge distillation as described in Sec-
tion 3. MT-DNNKD uses the same model architec-
ture as that of MT-DNN. But the former is trained
with the help from four task-specific ensembles
(teachers). MT-DNNKD is optimized for the multi-
task objectives that are based on the hard correct
targets, as well as the soft targets produced by the
teachers if available. After knowledge distillation
based MTL, MT-DNNKD is further fine-tuned for
each task using task-specific data to produce the
final predictions for each GLUE task on blind test
data for evaluation.

Corpus Task #Train #Dev #Test #Label Metrics
Single-Sentence Classification (GLUE)

CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST-2 Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
WNLI NLI 634 71 146 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Relevance Ranking (GLUE)
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Table 1: Summary of the GLUE benchmark.

Model CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE WNLI AX Score
8.5k 67k 3.7k 7k 364k 393k 108k 2.5k 634

BiLSTM+ELMo+Attn 1 36.0 90.4 84.9/77.9 75.1/73.3 64.8/84.7 76.4/76.1 79.8 56.8 65.1 26.5 70.0
Singletask Pretrain

Transformer 2 45.4 91.3 82.3/75.7 82.0/80.0 70.3/88.5 82.1/81.4 87.4 56.0 53.4 29.8 72.8

GPT on STILTs 3 47.2 93.1 87.7/83.7 85.3/84.8 70.1/88.1 80.8/80.6 - 69.1 65.1 29.4 76.9
BERTLARGE

4 60.5 94.9 89.3/85.4 87.6/86.5 72.1/89.3 86.7/85.9 92.7 70.1 65.1 39.6 80.5
MT-DNN5 61.5 95.6 90.0/86.7 88.3/87.7 72.4/89.6 86.7/86.0 - 75.5 65.1 40.3 82.2
Snorkel MeTaL 6 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6/87.2 93.9 80.9 65.1 39.9 83.2
ALICE ∗ 63.5 95.2 91.8/89.0 89.8/88.8 74.0/90.4 87.9/87.4 95.7 80.9 65.1 40.7 83.3
MT-DNNKD 65.4 95.6 91.1/88.2 89.6/89.0 72.7/89.6 87.5/86.7 96.0 85.1 65.1 42.8 83.7
Human Performance 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4 92.0/92.8 91.2 93.6 95.9 - 87.1

Table 2: GLUE test set results scored using the GLUE evaluation server. The number below each task denotes the
number of training examples. The state-of-the-art results are in bold. MT-DNNKD uses BERTLARGE to initialize
its shared layers. All the results are obtained from https://gluebenchmark.com/leaderboard on April 1, 2019. Note
that Snorkel MeTaL is an ensemble model. - denotes the missed result of the latest GLUE version. ∗ denotes the
unpublished work, thus not knowing whether it is a single model or an ensemble model. For QNLI, we treat it as
two tasks, pair-wise ranking and classification task on v1 and v2 training datasets, respectively, and then merge
results on the test set. Model references: 1:(Wang et al., 2019) ; 2:(Radford et al., 2018); 3: (Phang et al., 2018);
4:(Devlin et al., 2018); 5: (Liu et al., 2019); 6: (Hancock et al., 2019).

The main results on the official test datasets
of GLUE are reported in Table 2. Compared to
other recent submissions on the GLUE leader-
board, MT-DNNKD is the best performer, creating
a new state-of-the-art result of 83.7%. The margin
between MT-DNNKD and the second-best model
ALICE is 0.5%, larger than the margin of 0.1%
between the second and the third (and the fourth)
places. It is worth noting that MT-DNNKD is a sin-
gle model while Snorkel MetaL (Hancock et al.,
2019) is an ensemble model. The description of
ALICE is not disclosed yet.

Table 2 also shows that MT-DNNKD signifi-
cantly outperforms MT-DNN not only in overall

score but on 7 out of 9 GLUE tasks, including the
tasks without a teacher. Since MT-DNNKD and
MT-DNN use the same network architecture, and
are trained with the same initialization and on the
same datasets, the improvement of MT-DNNKD is
solely attributed to the use of knowledge distilla-
tion in MTL.

We note that the most significant per-task im-
provements are from CoLA (65.4% vs. 61.5%)
and RTE (85.1% vs. 75.5%). Both tasks have rela-
tively small amounts of in-domain data. Similarly,
for the same type of tasks, the improvements of
MT-DNNKD over MT-DNN are much more sub-
stantial for the tasks with less in-domain training

https://gluebenchmark.com/leaderboard

Model MNLI-m/mm QQP RTE QNLI(v2) MRPC CoLa SST-2 STS-B
BERTLARGE 86.3/86.2 91.1/88.0 71.1 92.4 89.5/85.8 61.8 93.5 89.6/89.3
MT-DNN 87.1/86.7 91.9/89.2 83.4 92.9 91.0/87.5 63.5 94.3 90.7/90.6
MT-DNNKD 87.3/87.3 91.9/89.4 88.6 93.2 93.3/90.7 64.5 94.3 91.0/90.8
MT-DNN-ensemble 88.1/87.9 92.5/90.1 86.7 93.5 93.4/91.0 64.5 94.7 92.1/91.6

Table 3: GLUE dev set results. The best result on each task produced by a single model is in bold. MT-DNN
uses BERTLARGE as their initial shared layers. MT-DNNKD is the MT-DNN trained using the proposed knowledge
distillation based MTL. MT-DNN-ensemble denotes the results of the ensemble models described in Section 4.1.
The ensemble models on MNLI, QQP, RTE and QNLI are used as teachers in the knowledge distillation based
MTL, while the other ensemble modes, whose results are in blue and italic, are not used as teachers.

data e.g., for the two NLI tasks, the improvement
in RTE is much larger than that in MNLI; for the
two paraphrase tasks, the improvement in MRPC
is larger than that in QQP. These results suggest
that knowledge distillation based MTL is effective
at improving model performance for not only tasks
with teachers but also ones without teachers, and
more so for tasks with fewer in-domain labels.

4.3 Ablation Study

We perform an ablation study to investigate how
effective it can distill knowledge from the ensem-
ble models (teachers) to a single MT-DNN (stu-
dent). To this end, we compare the performance of
the ensemble models with the corresponding stu-
dent model.

The results on dev sets are shown in Table
3, where MT-DNN-ensemble are the task-specific
ensemble models trained using the process de-
scribed in Section 3. We only use four ensem-
ble models (i.e., the models for MNLI, QQP, RTE,
QNLI) as teachers. The results of the other ensem-
ble models (i.e., MRPC, CoLa, SST-2, STS-B) are
reported to show the effectiveness of the knowl-
edge distillation based MTL at improving the per-
formance on tasks without a teacher.

We can draw several conclusions from the re-
sults in Table 3. First, MT-DNNKD significantly
outperforms MT-DNN and BERTLARGE across
multiple GLUE tasks on the dev sets, which is
consistent with what we observe on test sets in
Table 2. Second, comparing MT-DNNKD with
MT-DNN-ensemble, we see that the MT-DNNKD
successfully distills knowledge from the teachers.
Although the distilled model is simpler than the
teachers, it retains nearly all of the improvement
that is achieved by the ensemble models. More in-
terestingly, we find that incorporating knowledge
distillation into MTL improves the model perfor-

mance on the tasks where no teacher is used. On
MRPC, CoLA, and STS-B, the performance of
MT-DNNKD is much better than MT-DNN and is
close to the ensemble models although the latter
are not used as teachers in MTL.

5 Conclusion

In this work, we have extended knowledge distilla-
tion to MTL in training a MT-DNN for natural lan-
guage understanding. We have shown that distil-
lation works very well for transferring knowledge
from a set of ensemble models (teachers) into a
single, distilled MT-DNN (student). On the GLUE
datasets, the distilled MT-DNN creates new state
of the art result on 7 out of 9 NLU tasks, includ-
ing the tasks where there is no teacher, pushing the
GLUE benchmark (single model) to 83.7%.

We show that the distilled MT-DNN retains
nearly all of the improvements achieved by ensem-
ble models, while keeping the model size the same
as the vanilla MT-DNN model.

There are several research areas for future ex-
ploration. First, we will seek better ways of com-
bining the soft targets and hard correct targets for
multi-task learning. Second, the teachers might be
used to produce the soft targets for large amounts
of unlabeled data, which in turn can be used to
train a better student model in a way conceptually
similar to semi-supervised learning. Third, instead
of compressing a complicated model to a simpler
one, knowledge distillation can also be used to im-
prove the model performance regardless of model
complexity, in machine learning scenarios such as
self-learning in which both the student and teacher
are the same model.

Acknowledgments

We thank Asli Celikyilmaz, Xuedong Huang,
Moontae Lee, Chunyuan Li, Xiujun Li, and

Michael Patterson for helpful discussions and
comments.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Anoop Korattikara Balan, Vivek Rathod, Kevin P Mur-
phy, and Max Welling. 2015. Bayesian dark knowl-
edge. In Advances in Neural Information Process-
ing Systems, pages 3438–3446.

Cristian Bucilu, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In
Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 535–541. ACM.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens.
2015. Net2net: Accelerating learning via knowl-
edge transfer. arXiv preprint arXiv:1511.05641.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jianfeng Gao, Michel Galley, and Lihong Li. 2019.
Neural approaches to conversational ai. Founda-
tions and Trends R© in Information Retrieval, 13(2-
3):127–298.

Braden Hancock, Clara McCreery, Ines Chami,
Vincent Chen, Sen Wu, Jared Dunnmon,
Paroma Varma, Max Lam, and Chris R. 2019.
Massive multi-task learning with snorkel
metal: Bringing more supervision to bear.
https://dawn.cs.stanford.edu/2019/03/22/glue/.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, and
Weizhu Chen. 2017. Fusionnet: Fusing via fully-
aware attention with application to machine compre-
hension. arXiv preprint arXiv:1711.07341.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representa-
tion learning using multi-task deep neural networks
for semantic classification and information retrieval.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 912–921.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. arXiv preprint
arXiv:1901.11504.

Xiaodong Liu, Yelong Shen, Kevin Duh, and Jianfeng
Gao. 2018. Stochastic answer networks for ma-
chine reading comprehension. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics.

Jason Phang, Thibault Févry, and Samuel R Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Xu Tan, Yi Ren, Di He, Tao Qin, and Tie-Yan Liu.
2019. Multilingual neural machine translation with
knowledge distillation. In International Conference
on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Yichong Xu, Xiaodong Liu, Yelong Shen, Jingjing
Liu, and Jianfeng Gao. 2018. Multi-task learning
for machine reading comprehension. arXiv preprint
arXiv:1809.06963.

Yu Zhang and Qiang Yang. 2017. A survey on multi-
task learning. arXiv preprint arXiv:1707.08114.

https://openreview.net/forum?id=S1gUsoR9YX
https://openreview.net/forum?id=S1gUsoR9YX
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

