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Abstract

In this paper, we propose Object-driven Attentive Gen-
erative Adversarial Newtorks (Obj-GANs) that allow
object-centered text-to-image synthesis for complex scenes.
Following the two-step (layout-image) generation process,
a novel object-driven attentive image generator is pro-
posed to synthesize salient objects by paying attention to
the most relevant words in the text description and the
pre-generated semantic layout. In addition, a new Fast
R-CNN based object-wise discriminator is proposed to
provide rich object-wise discrimination signals on whether
the synthesized object matches the text description and the
pre-generated layout. The proposed Obj-GAN significantly
outperforms the previous state of the art in various metrics
on the large-scale COCO benchmark, increasing the
Inception score by 27% and decreasing the FID score by
11%. A thorough comparison between the traditional grid
attention and the new object-driven attention is provided
through analyzing their mechanisms and visualizing their
attention layers, showing insights of how the proposed
model generates complex scenes in high quality.

1. Introduction
Synthesizing images from text descriptions (known as

Text-to-Image synthesis) is an important machine learning
task, which requires handling ambiguous and incomplete
information in natural language descriptions and learning
across vision and language modalities. Approaches based
on Generative Adversarial Networks (GANs) [5] have re-
cently achieved promising results on this task [23, 22, 32,
33, 29, 16, 9, 12, 34]. Most GAN based methods synthe-
size the image conditioned only on a global sentence vec-
tor, which may miss important fine-grained information at
the word level, and prevents the generation of high-quality
images. More recently, AttnGAN [29] is proposed which
introduces the attention mechanism [28, 30, 2, 27] into the
GAN framework, thus allows attention-driven, multi-stage

†Work was performed when was an intern with Microsoft Research AI.
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Figure 1: Top: AttnGAN [29] and its grid attention visualization.
Middle: our modified implementation of two-step (layout-image)
generation proposed in [9]. Bottom: our Obj-GAN and its object-
driven attention visualization. The middle and bottom generations
use the same generated semantic layout, and the only difference is
the object-driven attention.

refinement for fine-grained text-to-image generation.
Although images with realistic texture have been syn-

thesized on simple datasets, such as birds [29, 16] and
flowers [33], most existing approaches do not specifically
model objects and their relations in images and thus have
difficulties in generating complex scenes such as those in
the COCO dataset [15]. For example, generating images
from a sentence “several people in their ski gear are in the
snow” requires modeling of different objects (people, ski
gear) and their interactions (people on top of ski gear), as
well as filling the missing information (e.g., the rocks in the
background). In the top row of Fig. 1, the image gener-
ated by AttnGAN does contain scattered texture of people
and snow, but the shape of people are distorted and the pic-
ture’s layout is semantically not meaningful. [9] remedies
this problem by first constructing a semantic layout from the
text and then synthesizing the image by a deconvolutional
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image generator. However, the fine-grained word/object-
level information is still not explicitly used for generation.
Thus, the synthesized images do not contain enough details
to make them look realistic (see the middle row of Fig. 1).

In this study, we aim to generate high-quality complex
images with semantically meaningful layout and realistic
objects. To this end, we propose a novel Object-driven At-
tentive Generative Adversarial Networks (Obj-GAN) that
effectively capture and utilize fine-grained word/object-
level information for text-to-image synthesis. The Obj-
GAN consists of a pair of object-driven attentive image
generator and object-wise discriminator, and a new object-
driven attention mechanism. The proposed image genera-
tor takes as input the text description and a pre-generated
semantic layout and synthesize high-resolution images via
multiple-stage coarse-to-fine process. At every stage, the
generator synthesizes the image region within a bounding
box by focusing on words that are most relevant to the ob-
ject in that bounding box, as illustrated in the bottom row
of Fig. 1. More specifically, using a new object-driven at-
tention layer, it uses the class label to query words in the
sentences to form a word context vector, as illustrated in
Fig. 4, and then synthesizes the image region conditioned
on the class label and word context vector. The object-wise
discriminator checks every bounding box to make sure that
the generated object indeed matches the pre-generated se-
mantic layout. To compute the discrimination losses for all
bounding boxes simultaneously and efficiently, our object-
wise discriminator is based on a Fast R-CNN [4], with a
binary cross-entropy loss for each bounding box.

The contribution of this work is three-folded. (i) An
Object-driven Attentive Generative Network (Obj-GAN) is
proposed for synthesizing complex images from text de-
scriptions. Specifically, two novel components are pro-
posed, including the object-driven attentive generative net-
work and the object-wise discriminator. (ii) Comprehen-
sive evaluation on a large-scale COCO benchmark shows
that our Obj-GAN significantly outperforms previous state-
of-the-art text-to-image synthesis methods. Detailed abla-
tion study is performed to empirically evaluate the effect of
different components in Obj-GAN. (iii) A thorough analy-
sis is performed through visualizing the attention layers of
the Obj-GAN, showing insights of how the proposed model
generates complex scenes in high quality. Compared with
the previous work, our object-driven attention is more ro-
bust and interpretable, and significantly improves the object
generation quality in complex scenes.

2. Related Work
Generating photo-realistic images from text descrip-

tions, though challenging, is important to many real-world
applications such as art generation and computer-aided de-
sign. There has been much research effort for this task

through different approaches, such as variational infer-
ence [17, 6], approximate Langevin process [24], condi-
tional PixelCNN via maximal likelihood estimation [26,
24], and conditional generative adversarial networks [23,
22, 32, 33]. Compared with other approaches, Generative
Adversarial Networks (GANs) [5] have shown better per-
formance in image generation [21, 3, 25, 13, 11, 10]. How-
ever, existing GAN based text-to-image synthesis is usu-
ally conditioned only on the global sentence vector, which
misses important fine-grained information at the word level,
and thus lacks the ability to generate high-quality images.
[29] uses the traditional grid visual attention mechanism in
this task, which enables synthesizing fine-grained details at
different image regions by paying attentions to the relevant
words in the text description.

To explicitly encode the semantic layout into the gen-
erator, [9] proposes to decompose the generation process
into two steps, in which it first constructs a semantic lay-
out (bounding boxes and object shapes) from the text and
then synthesizes an image conditioned on the layout and
text description. [12] also proposes such a two-step process
to generate images from scene graphs, and their process can
be trained end-to-end. In this work, the proposed Obj-GAN
follows the two-step generation process as [9]. However,
[9] encodes the text into a single global sentence vector,
which loses word-level fine-grained information. More-
over, it uses the image-level GAN loss for the discriminator,
which is less effective at providing object-wise discrimina-
tion signal for generating salient objects. We propose a new
object-driven attention mechanism to provide fine-grained
information (words in the text description and objects in
the layout) for different components, including an attentive
seq2seq bounding box generator, an attentive image gener-
ator and an object-wise discriminator.

The attention mechanism has recently become a crucial
part of vision-language multi-modal intelligence tasks. The
traditional grid attention mechanism has been successfully
used in modeling multi-level dependencies in image cap-
tioning [28], image question answering [30], text-to-image
generation [29], unconditional image synthesis [31] and
image-to-image translation [16], image/text retrieval [14].
In 2018, [1] proposes a bottom-up attention mechanism,
which enables attention to be calculated over semantic
meaningful regions/objects in the image, for image caption-
ing and visual question-answering. Inspired by these works,
we propose Obj-GAN which for the first time develops an
object-driven attentive generator plus an object-wise dis-
criminator, thus enables GANs to synthesize high-quality
images of complicated scenes.

3. Object-driven Attentive GAN
As illustrated in Fig. 2, the Obj-GAN performs text-to-

image synthesis in two steps: generating a semantic layout



Figure 2: Obj-GAN completes the text-to-image synthesis in two steps: the layout generation and the image generation. The layout
generation contains a bounding box generator and a shape generator. The image generation uses the object-driven attentive image generator.

(class labels, bounding boxes, shapes of salient objects),
and then generating the image. In the image generation
step, the object-driven attentive generator and object-wise
discriminator are designed to enable image generation con-
ditioned on the semantic layout generated in the first step.

The input of Obj-GAN is a sentence with Ts tokens.
With a pre-trained bi-LSTM model, we encode its words
as word vectors e ∈ RD×Ts and the entire sentence as a
global sentence vector ē ∈ RD. We provide details of this
pre-trained bi-LSTM model and the implementation details
of other modules of Obj-GAN in § A.

3.1. Semantic layout generation

In the first step, the Obj-GAN takes the sentence as input
and generates a semantic layout, a sequence of objects spec-
ified by their bounding boxes (with class labels) and shapes.
As illustrated in Fig. 2, a box generator first generates a se-
quence of bounding boxes, and then a shape generator gen-
erates their shapes. This part resembles the bounding box
generator and shape generator in [9], and we put our imple-
mentation details in § A.
Box generator. We train an attentive seq2seq model [2],
also referring to Fig. 2, as the box generator:

B1:T := [B1, B2, . . . , BT ] ∼ Gbox(e). (1)

Here, e are the pre-trained bi-LSTM word vectors, Bt =
(lt, bt) are the class label of the t’s object and its bounding
box b = (x, y, w, h) ∈ R4. In the rest of the paper, we will
also call the label-box pair Bt as a bounding box when no
confusion arises. Since most of the bounding boxes have
corresponding words in the sentence, the attentive seq2seq
model captures this correspondence better than the seq2seq
model used in [9].
Shape generator. Given the bounding boxes B1:T , the
shape generator predicts the shape of each object in its
bounding box, i.e.,

M̂1:T = Gshape(B1:T , z1:T ). (2)

where zt ∼ N (0, 1) is a random noise vector. Since the
generated shapes not only need to match the location and
category information provided by B1:T , but also should be
aligned with its surrounding context, we build Gshape based
on a bi-directional convolutional LSTM, as illustrated in
Fig. 2. Training of Gshape is based on the GAN framework
[9], in which a perceptual loss is also used to constrain the
generated shapes and to stabilize the training.

3.2. Image generation

3.2.1 Attentive multistage image generator

As shown in Fig. 3, the proposed attentive multistage gen-
erative network has two generators (G0, G1). The base gen-
erator G0 first generates a low-resolution image x̂0 condi-
tioned on the global sentence vector and the pre-generated
semantic layout. The refiner G1 then refines details in dif-
ferent regions by paying attention to most relevant words
and pre-generated class labels and generates a higher reso-
lution image x̂1. Specifically,
h0 = F0(z, ē, Enc(M0), cobj, clab), x̂0 = G0(h0),

h1 = F1(cpat, h0 + Enc(M1), cobj, clab), x̂1 = G1(h1),

where (i) z is a random vector with standard normal distri-
bution; (ii) Enc(M0) ( Enc(M1) ) is the encoding of low-
resolution shapes M0 (higher-resolution shapes M1); (iii)
cpat = F grid

attn (e, h0) are the patch-wise context vectors from
the traditional grid attention, (iv) cobj = F obj

attn(e, eg, lg,M)
are the object-wise context vectors from our new object-
driven attention, and clab = clab(lg,M) are the label context
vectors from class labels. We can stack more refiners to the
generation process and get higher and higher resolution im-
ages. In this paper, we have two refiners (G1 and G2) and
finally generate images with resolution 256× 256.
Compute context vectors via attention. Both patch-wise
context vectors cpat and object-wise context vectors cobj are
attention-driven context vectors for specific image regions,
and encode information from the words that are most rele-
vant to that image region. Patch-wise context vectors are



Figure 3: The object-driven attentive image generator.

Figure 4: Object-driven attention.
for uniform-partitioned image patches determined by the
uniform down-sampling/up-sampling structure of CNN, but
these patches are not semantically meaningful. Object-wise
context vectors are for semantically meaningful image re-
gions specified by bounding boxes, but these regions are at
different scales and may have overlaps.

Specifically, the patch-wise context vector cpat
j (

objective-wise context vector cobj
t ) is a dynamic represen-

tation of word vectors relevant to patch j (bounding box
Bt), which is calculated by

cpat
j =

Ts∑
i=1

βpat
j,iei, cobj

t =

Ts∑
i=1

βobj
t,i ei. (3)

Here, βpat
j,i ( βobj

t,i ) indicates the weight the model attends to
the i’th word when generating patch j (bounding box Bt)
and is computed by

βpat
j,i =

exp(spat
j,i)∑Ts

k=1 exp(spat
j,k)

, spat
j,i = (hj)

T ei, (4)

βobj
t,i =

exp(sobj
t,i )∑Ts

k=1 exp(sobj
t,k)

, sobj
t,i = (lgt )T egi . (5)

For the traditional grid attention, we use the image region
feature hj , which is one column in the previous hidden layer
h ∈ RDpat×N pat

, to query the pre-trained bi-LSTM word
vectors e. For the new object-driven attention, we use the
GloVe embedding of object class label lgt to query the GloVe
embedding of the words in the sentence, as illustrated in the
lower part of Fig. 4.
Feature map concatenation. The patch-wise context vec-
tor cpat

j can be directly concatenated with the image feature
vector hj in the previous layer. However, the object-wise
context vector cobj

t cannot, because they are associated with
bounding boxes instead of pixels in the hidden feature map.
We propose to copy the object-wise context vector cobj

t to
every pixel where the t’th object is present, i.e., Mt ⊗ cobj

t

where ⊗ is the vector outer-product, as illustrated in the
upper-right part of Fig. 4. 1

If there are multiple bounding boxes covering the same
pixel, we have to decide whose context vector should be
used on this pixel. In this case, we simply do a max-pooling
across all the bounding boxes:

cobj = max
t :1≤t≤T

Mt ⊗ cobj
t . (6)

Then cobj can be concatenated with the feature map h and
patch-wise context vectors cpat for next-stage generation.
Label context vectors. Similarly, we distribute the class
label information to the entire hidden feature map to get the
label context vectors, i.e.,

clab = max
t : 1≤t≤T

Mt ⊗ eg
t . (7)

Finally, we concatenate h, cpat, cobj and clab and pass the
1This operation can be viewed as an inverse of the pooling operator.



concatenated tensor through one up-sampling layer and sev-
eral residual layers to generate a higher-resolution image.
Grid attention vs. object-driven attention. The process
to compute the patch-wise context vectors above is the tra-
ditional grid attention mechanism used in AttnGAN [29].
Note that its attention weights βpat

j,i and context vector cpat
j

are useful only when the hidden feature hpat
j in the G0 stage

correctly captures the content to be drawn in patch j. This
essentially assumes that the generation in the G0 stage al-
ready captures a rough sketch (semantic layout). This as-
sumption is valid for simple datasets like birds [29], but
fails for complex datasets like COCO [15] where the gen-
erated low-resolution image x̂0 typically does not have a
meaningful layout. In this case, the grid attention is even
harmful, because patch-wise context vector is attended to a
wrong word and thus generate the texture associated with
that wrong word. This may be the reason why AttnGAN’s
generated image contains scattered patches of realistic tex-
ture but overall is semantically not meaningful; see Fig. 1
for example. Similar phenomenon is also observed in Deep-
Dream [20]. On the contrary, in our object-driven attention,
the attention weights βobj

t,i and context vector cobj
t rely on the

class label lgt of the bounding box and are independent of
the generation in the G0 stage. Therefore, the object-wise
context vectors are always helpful to generate images that
are consistent with the pre-generated semantic layout. An-
other benefit of this design is that the context vector cobj

t can
also be used in the discriminator, as we present in § 3.2.2.

3.2.2 Discriminators

We design patch-wise and object-wise discriminators to
train the attentive multi-stage generator above. Given a
patch from uniformly-partitioned image patches determined
by the uniform down-sampling structure of CNN, the patch-
wise discriminator is trying to determine whether this patch
is realistic or not (unconditional) and whether this patch
is consistent with the sentence description or not (condi-
tional). Given a bounding box and the class label of the
object within it, the object-wise discriminator is trying to
determine whether this region is realistic or not (uncondi-
tional) and whether this region is consistent with the sen-
tence description and given class label or not (conditional).
Patch-wise discriminators. Given an image-sentence pair
x, ē (ē is the sentence vector), the patch-wise unconditional
and text discriminator can be written as

ppat,un = Dpat
uncond.(Enc(x)), ppat,con = Dpat

text(Enc(x), ē),
(8)

where Enc is a convolutional feature extractor that extracts
patch-wise features, Duncond. ( Dpat

text ) determine whether the
patch is realistic (consistent with the text description) or not.
Shape discriminator. In a similar manner, we have our
patch-wise shape discriminator

Figure 5: Object-wise discriminator.

ppix = Dpix(Enc(x,M)), (9)

where we first concatenate the image x and shapesM in the
channel dimension, and then extracts patch-wise features
by another convolutional feature extractor Enc. The proba-
bilities ppix determine whether the patch is consistent with
the given shape. Our patch-wise discriminators Dpat

uncond.,
Dpat

text and Dpix resembles the PatchGAN [11] for the image-
to-image translation task. Compared with the global dis-
criminators in AttnGAN [29], the patch-wise discriminators
not only reduce the model size and thus enable generating
higher resolution images, but also increase the quality of
generated images; see Table 1 for experimental evidence.

Object-wise discriminators. Given an image x, bounding
boxes of objects B1:T and their shapes M , we propose the
following object-wise discriminators:

{hobj
t }Tt=1 =FastRCNN(x,M,B1:T ),

pobj,un
t = Dobj

uncond.(h
obj
t ), pobj,con

t = Dobj(hobj
t , e

g
t , c

obj
t ).

(10)
Here, we first concatenate the image x and shapes M
and extract a region feature vector hobj

t for each bounding
box through a Fast R-CNN model [4] with an ROI-align
layer [7]; see Fig. 5(a). Then similar to the patch-wise dis-
criminator (8), the unconditional (conditional) probabilities
pobj,un
t ( pobj,con

t ) determine whether the t’th object is real-
istic (consistent with its class label eg

t and its text context
information cobj

t ) or not; see Fig. 5(b). Here, eg
t is the GloVe

embedding of the class label and cobj
t is its text context in-

formation defined in (3).

All discriminators are trained by the traditional cross en-
tropy loss [5].



3.2.3 Loss function for the image generator

The generator’s GAN loss is a weighted sum of these dis-
criminators’ loss, i.e.,

LGAN(G) = −
λobj

T

T∑
t=1

 log pobj,un
t︸ ︷︷ ︸

obj uncond. loss

+ log pobj,con
t︸ ︷︷ ︸

obj cond. loss


− 1

N pat

N pat∑
j=1

log ppat,un
j︸ ︷︷ ︸

uncond. loss

+λtxt log ppat,con
j︸ ︷︷ ︸

text cond. loss

+λpix log ppix
j︸ ︷︷ ︸

shape cond. loss

 .

Here, T is the number of bounding boxes, N pat is the num-
ber of regular patches, (λobj, λtxt, λpix) are the weights of the
object-wise GAN loss, patch-wise text conditional loss and
patch-wise shape conditional loss, respectively. We tried
combining our discriminators with the spectral normalized
projection discriminator [18, 19], but did not see significant
performance improvement. We report performance of the
spectral normalized version in § 4.1 and provide model ar-
chitecture details in § A.

Combined with the deep multi-modal attentive similarity
model (DAMSM) loss introduced in [29], our final image
generator’s loss is

LG = LGAN + λDAMSMLDAMSM (11)

where λdamsm is a hyper-parameter to be tuned. Here,
the DAMSM loss is a word level fine-grained image-text
matching loss computed, which will be elaborated in § A.
Based on the experiments on a held-out validation set, we
set the hyperparameters in this section as: λobj = 0.1, λtxt =
0.1, λpix = 1 and λdamsm = 100.

Remark 3.1. Both the patch-wise and object-wise discrim-
inators can be applied to different stages in the generation.
We apply the patch-wise discriminator for every stage of the
generation, following [33, 11], but only apply the object-
wise discriminator at the final stage.

4. Experiments
Dataset. We use the COCO dataset [15] for evaluation.
It contains 80 object classes, where each image is associ-
ated with object-wise annotations (i.e., bounding boxes and
shapes) and 5 text descriptions. We use the official 2014
train (over 80K images) and validation (over 40K images)
splits for training and test stages, respectively.
Evaluation metrics. We use the Inception score [25] and
Fréchet inception distance (FID) [8] score as the quantita-
tive evaluation metrics. In our experiments, we found that
Inception score can be saturated, even over-fitted, while FID
is a more robust measure and aligns better with human qual-
itative evaluation. Following [29], we also use R-precision,

Table 1: The quantitative experiments. Methods marked with 0, 1
and 2 respectively represent experiments using the predicted boxes
and shapes, the ground-truth boxes and predicted shapes, and the
ground-truth boxes and shapes. We use bold, ∗, and ∗∗ to high-
light the best performance under these three settings, respectively.
The results of methods marked with † are those reported in the
original papers. ↑ (↓) means the higher (lower), the better.

Methods Inception ↑ FID ↓ R-prcn (%) ↑
Obj-GAN0 27.37± 0.22 25.85 86.20± 2.98

Obj-GAN1 27.96± 0.39∗ 24.19∗ 88.36± 2.82

Obj-GAN2 29.89± 0.22∗∗ 20.75∗∗ 89.59± 2.67

P-AttnGAN w/ Lyt0 18.84± 0.29 59.02 65.71± 3.74

P-AttnGAN w/ Lyt1 19.32± 0.29 54.96 68.40± 3.79

P-AttnGAN w/ Lyt2 20.81± 0.16 48.47 70.94± 3.70
P-AttnGAN 26.31± 0.43 41.51 86.71± 2.97

Obj-GAN w/ SN0 26.97± 0.31 29.07 86.84± 2.82

Obj-GAN w/ SN1 27.41± 0.17 27.26 88.70± 2.65∗

Obj-GAN w/ SN2 28.75± 0.32 23.37 89.97± 2.56∗∗

Reed et al. [23]† 7.88± 0.07 n/a n/a
StackGAN [32]† 8.45± 0.03 n/a n/a
AttnGAN [29] 23.79± 0.32 28.76 82.98± 3.15
vmGAN [35]† 9.94± 0.12 n/a n/a
Sg2Im [12]† 6.7± 0.1 n/a n/a
Infer [9]0† 11.46± 0.09 n/a n/a
Infer [9]1† 11.94± 0.09 n/a n/a
Infer [9]2† 12.40± 0.08 n/a n/a
Obj-GAN-SOTA0 30.29± 0.33 25.64 91.05± 2.34

Obj-GAN-SOTA1 30.91± 0.29 24.28 92.54± 2.16

Obj-GAN-SOTA2 32.79± 0.21 21.21 93.39± 2.08

a common evaluation metric for ranking retrieval results,
to evaluate whether the generated image is well conditioned
on the given text description. More specifically, given a pre-
trained image-to-text retrieval model, we use generated im-
ages to query their corresponding text descriptions. First,
given generated image x̂ conditioned on sentence s and
99 random sampled sentences {s′i : 1 ≤ i ≤ 99}, we
rank these 100 sentences by the pre-trained image-to-text
retrieval model. If the ground truth sentence s is ranked
highest, we count this a success retrieval. For all the im-
ages in the test dataset, we perform this retrieval task once
and finally count the percentage of success retrievals as the
R-precision score.

It is important to point out that none of these quanti-
tative metrics are perfect. Better metrics are required to
evaluate image generation qualities in complicated scenes.
In fact, the Inception score completely fails in evaluat-
ing the semantic layout of the generated images. The R-
precision score depends on the pre-trained image-to-text re-
trieval model it uses, and can only capture the aspects that
the retrieval model is able to capture. The pre-trained model
we use is still limited in capturing the relations between ob-
jects in complicated scenes, so is our R-precision score.
Quantitative evaluation. We compute these three metrics
under two settings for the full validation dataset.
Qualitative evaluation. Apart from the quantitative evalua-
tion, we also visualize the outputs of all ablative versions of
Obj-GAN and the state-of-the-art methods (i.e., [29]) whose
pre-trained models are publicly available.



Figure 6: The overall qualitative comparison. All images are generated without the usage of any ground-truth information.

4.1. Ablation study

In this section, we first evaluate the effectiveness of the
object-driven attention. Next, we compare the object-driven
attention mechanism with the grid attention mechanism.
Then, we evaluate the impact of the spectral normalization
for Obj-GAN. We use Fig. 6 and the higher half of Table 1 to
present the comparison among different ablative versions of
Obj-GAN. Note that all ablative versions have been trained
with batch size 16 for 60 epochs. In addition, we use the
lower half of Table 1 to show the comparison between Obj-
GAN and previous methods. Finally, we validated the Obj-
GAN’s generalization ability on the novel text descriptions.
Object-driven attention. To evaluate the efficacy of the
object-driven attention mechanism, we implement a base-
line, named P-AttnGAN w/ Lyt, by disabling the object-
driven attention mechanism in Obj-GAN. In essence, P-
AttnGAN w/ Lyt can be considered as an improved version
of AttnGAN with the patch-wise discriminator (abbreviated
as the prefix “P-” in name) and the modules (e.g., shape
discriminator) for handling the conditional layout (abbre-
viated as “Lyt”). Moreover, it can also be considered as a
modified implementation of [9], which resembles their two-
step (layout-image) generation. Note that there are three
key differences between P-AttnGAN w/ Lyt and [9]: (i)
P-AttnGAN w/ Lyt has a multi-stage image generator that
gradually increases the generated resolution and refines the
generated images, while [9] has a single-stage image gen-
erator. (ii) With the help of the grid attentive module, P-
AttnGAN w/ Lyt is able to utilize the fine-grained word-
level information, while [9] conditions on the global sen-
tence information. (iii) The third difference lies in their loss

functions: P-AttnGAN w/ Lyt uses the DAMSM loss in (11)
to penalize the mismatch between the generated images and
the input text descriptions, while [9] uses the perceptual loss
to penalize the mismatch between the generated images and
the ground-truth images. As shown in Table 1, P-AttnGAN
w/ Lyt yields higher Inception score than [9] does.

We compare Obj-GAN with P-AttnGAN w/ Lyt under
three settings, with each corresponding to a set of condi-
tional layout input, i.e., the predicted boxes & shapes, the
ground-truth boxes & predicted boxes, and the ground-truth
boxes & shapes. As presented in Table 1, Obj-GAN con-
sistently outperforms P-AttnGAN w/ Lyt on all three met-
rics. In Fig. 7, we use the same layout as the conditional
input, and compare the visual quality of their generated im-
ages. An interesting phenomenon shown in Fig. 7 is that
both the foreground objects (e.g., airplane and train) and the
background (e.g., airport and trees) textures synthesized by
Obj-GAN are much richer and smoother than those using
P-AttnGAN w/ Lyt. The effectiveness of the object-driven
attention for the foreground objects is easy to understand.
The benefits for the background textures using the object-
driven attention mechanism is probably due to the fact that
it implicitly provides stronger signal that distinguishes the
foreground. As such, the image generator may have richer
guidance and clearer emphasis when synthesizing textures
for a certain region.

Grid attention vs. object-driven attention. We compare
Obj-GAN with P-AttnGAN herein, so as to compare the
effects of the object-driven and the grid attention mecha-
nisms. In Fig. 8, we show the generated image of each
method as well as the corresponding attention maps aligned



Figure 7: Qualitative comparison with P-AttnGAN w/ Lyt.

Figure 8: Qualitative comparison with P-AttnGAN. The attention
maps of each method are shown beside the generated image.

on the right side. In a grid attention map, the brightness of
a region reflects how much this region attended to the word
above the map. As for the object-driven attention map, the
word above each attention map is the most attended word by
the highlighted object. The highlighted region of an object-
driven attention map is the object shape.

As analyzed in § 3.2.1, the reliability of grid attention
weights depends on the quality of the previous layer’s im-
age region features. This makes the grid attention unreliable
sometimes, especially for complex scenes. For example,
the grid attention weights in Fig. 8 are unreliable because
they are scattered (e.g., the attention map for “man”) and
inaccurate. However, this is not a problem for the object-
driven attention mechanism, because its attention weights
are directly calculated from embedding vectors of words
and class labels and are independent of image features.
Moreover, as shown in Fig. 4 and Equ. (6), the impact re-
gion of the object-driven attention context vector is bounded
by the object shapes, which further enhances its semantics
meaningfulness. As a result, the instance-driven attention
significantly improves the visual quality of the generated
images, as demonstrated in Fig. 8. Moreover, the perfor-
mance can be further improved if the semantic layout gen-
eration is improved. In the extreme case, Obj-GAN based
on ground truth layout (Obj-GAN2) has the best visual qual-
ity (the rightmost column of Fig. 8) and the best quantitative
evaluation (Table 1).
Obj-GAN w/ SN vs. Obj-GAN. We present the compari-
son between the cases with or without spectral normaliza-
tion in the discriminators in Table 1 and Fig. 6. We observe
that there is no obvious improvement on the visual qual-
ity, but slightly worse on the quantitative metrics. We show

Figure 9: Generated images for novel descriptions.

more results and discussions in § A.
Comparison with previous methods. To compare Obj-
GAN with the previous methods, initialized by the Obj-
GAN models in the ablation study, we trained Obj-GAN-
SOTA with batch size 64 for 10 more epochs. In order
to evaluate AttnGAN on FID, we conducted the evalua-
tion on the officially released pre-trained model. Note that
the Sg2Im [12] focuses on generating images from scene
graphs and conducted the evaluation on a different split of
COCO. However, we still included Sg2Im’s results to re-
flect the broader context of the related topic. As shown in
Table 1, Obj-GAN-SOTA outperforms all previous meth-
ods significantly. We notice that the increment of batch size
does boost the Inception score and R-precision, but does
not improve FID. The possible explanation is: with a larger
batch size, the DAMSM loss (a ranking loss in essence) in
(11) plays a more important role and improves Inception
and R-precision, but it does not focus on reducing FID be-
tween the generated images and the real ones.
Generalization ability. We further investigate if Obj-GAN
just memorizes the scenarios in COCO or it indeed learns
the relations between the objects and their surroundings.
To this end, we compose several descriptions which reflect
novel scenarios that are unlikely to happen in the real-world,
e.g., a decker bus is floating on top of a lake, or a cat is
catching a frisbee. We use Obj-GAN to synthesize images
for these rare scenes. The results in Fig. 9 further demon-
strate the good generalization ability of Obj-GAN.

5. Conclusions
In this paper, we have presented a multi-stage Object-

driven Attentive Generative Adversarial Networks (Obj-
GANs) for synthesizing images with complex scenes from
the text descriptions. With a novel object-driven attention
layer at each stage, our generators are able to utilize the
fine-grained word/object-level information to gradually re-
fine the synthesized image. We also proposed the Fast R-
CNN based object-wise discriminators, each of which is
paired with a conditional input of the generator and provides
object-wise discrimination signal for that condition. Our
Obj-GAN significantly outperforms previous state-of-the-
art GAN models on various metrics on the large-scale chal-
lenging COCO benchmark. Extensive experiments demon-
strate the effectiveness and generalization ability of Obj-
GAN on text-to-image generation for complex scenes.
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A. Appendix

A.1. Obj-GAN vs. the ablative versions

In this section, we show more images generated by our
Obj-GAN and its ablative versions on the COCO dataset.
In Fig. 10 and Fig. 11, we provide more comparisons as the
complementary for Fig. 6. It can be found that there are no
obvious improvement on the visual quality when using the
spectral normalization.



Figure 10: The overall qualitative comparison.

A.2. Visualization of attention maps

In Fig. 12, we visualize attention maps generated by P-
AttnGAN and Obj-GAN as the complementary for Fig. 8.

A.3. Results based on the ground-truth layout

We show the results generated by Obj-GAN based on the
ground-truth layout in Fig. 13, Fig. 14 and Fig. 15.



Figure 11: The overall qualitative comparison.



Figure 12: Qualitative comparison with P-AttnGAN. The attention maps of each method are shown beside the generated image.



(1) A glass table with a bottle
and glass of wine next to a chair.

(2) A train sitting on some
tracks next to a sidewalk.

(3) Soccer player wearing green
and orange hitting soccer ball.

(4) A kitchen with a very messy
counter space.

(5) The people are on the beach
getting ready to surf.

(6) A jet airliner waits its turn
on the runway.

(7) Two cows are grazing in a
dirt field.

(8) A small lightweight airplane
flying through the sky.

(9) A cow running in a field next
to a dog.

(10) Two people go into the wa-
ter with their surfboards.

(11) A man in a helmet jumps a
snowboard.

(12) A giraffe is standing all
alone in a grassy area.

(13) The black dog is staring at
the cat.

(14) A bunch of sheep are
standing in a field.

(15) A bench sitting on top of a
lush green hillside.

(16) A polar bear playing in the
water at a wild life enclosure.

Figure 13: Results based on the ground-truth layout.



(1) A man on a soccer field next
to a ball.

(2) A dog sitting on a bench in
front of a garden.

(3) A black cat drinking water
out of a water faucet.

(4) A cat laying on a TV in the
middle of the room.

(5) Four people on skis below a
mountain taking a picture.

(6) A man in outdoor winter
clothes holds a snowboard.

(7) A orange before and after it
was cu.

(8) A dog running with a frisbee
in its mouth.

(9) A woman and a dog tussle
over a frisbee.

(10) Man in a wetsuit on top of
a blue and white surfboard.

(11) A white ship sails in the
blue ocean water.

(12) A couple of men standing
next to dogs near water.

(13) A man on a motorcycle in
a carport.

(14) A group of people riding
horses on a beach.

(15) A hipster wearing flood
pants poses with his skateboard.

(16) A black dog holding a fris-
bee in its mouth.

Figure 14: Results based on the ground-truth layout.



(1) A big boat on the water near
the shore.

(2) All the horses in the pen are
grazing.

(3) A man riding a bike down
the middle of a street.

(4) A bathroom with a sink and
a toilet.

(5) A yellow school bus parked
near a tree.

(6) A group of cows graze on
some grass.

(7) A ship is sailing across an
ocean filled with waves.

(8) Three skiers posing for a
picture on the slope.

(9) A large green bus approach-
ing a bus stop.

(10) A close view of a pizza,
and a mug of beer.

(11) A cat is looking at a televi-
sion displaying a dog in a cage.

(12) Three white sinks in a bath-
room under mirrors.

(13) Three cranes standing on
one leg in the water.

(14) A bear lying on a rock in
its den, looking upward.

(15) Two bottles of soda sit near
a sandwich.

(16) Someone on a snowboard
coming to a stop.

Figure 15: Results based on the ground-truth layout.



A.4. Bi-LSTM text encoder, DAMSM and R-
precision

We use the deep attentive multi-modal similarity model
(DAMSM) proposed in [29], which learns a joint embed-
ding of the image regions and words of a sentence in a com-
mon semantic space. The fine-grained conditional loss en-
forces the sub-region of the generated image to match the
corresponding word in the sentence.

Bi-LSTM text encoder serves as the text encoder for
both DAMSM and the box generator (see § A.5). Bi-LSTM
text encoder is a bi-directional LSTM that extracts seman-
tic vectors from the text description. In the Bi-LSTM, each
word corresponds to two hidden states, one for each direc-
tion. Thus, we concatenate its two hidden states to represent
the semantic meaning of a word. The feature matrix of all
words is indicated by ė ∈ RD×Ts . Its ith column ėi is the
feature vector for the ith word. D is the dimension of the
word vector and Ts is the number of words. Meanwhile, the
last hidden states of the bi-directional LSTM are concate-
nated to be the global sentence vector, denoted by ê ∈ RD.
We present the network architectures for the Bi-LSTM text
encoder in Table 2.

The image encoder is a convolutional neural network
that maps images to semantic vectors. The intermediate lay-
ers of the CNN model learns local features of different re-
gions of the image, while the later layers learn global fea-
tures of the image. More specifically, the image encoder
is built upon Inception-v3 model pre-trained on ImageNet.
We first rescale the input image to be 299×299 pixels. And
then, we extract the local feature matrix f ∈ R768×289

(reshaped from 768×17×17) from “mixed 6e” layer of
Inception-v3. Each column of f is the feature vector of a
local image region. 768 is the dimension of the local fea-
ture vector, and 289 is the number of regions in the im-
age. Meanwhile, the global feature vector f ∈ R2048 is
extracted from the last average pooling layer of Inception-
v3. Finally, we convert the image features to the common
semantic space of text features by adding a new layer per-
ceptron as shown in Eq. (12),

v = Wf ; v = W f, (12)

where v ∈ RD×289 and its ith column vi is the visual fea-
ture vector for the ith image region; v ∈ RD is the visual
feature vector for the whole image. While vi is the local im-
age feature vector that corresponds to the word embedding,
v is the global feature vector that is related to the sentence
embedding. D is the dimension of the multimodal (i.e., im-
age and text modalities) feature space. For efficiency, all pa-
rameters in layers built from Inception-v3 model are fixed,
and the parameters in newly added layers are jointly learned
with the rest of networks.

The fine-grained conditional loss is designed to learn
the correspondence between image regions and words.

However, it is difficult to obtain manual annotations. Ac-
tually, many words relate to concepts that may not easily be
visually defined, such as open or old. One possible solution
is to learn word-image correspondence in a semi-supervised
manner, in which the only supervision is the correspon-
dence between the entire image and the whole text descrip-
tion (a sequence of words).

We can first calculate the similarity matrix between all
possible pairs of word and image region by Eq. (13),

s = ėT v, (13)

where s ∈ RT×289 and si,j means the similarity between
the ith word and the jth image region.

Generally, a sub-region of the image is described by none
or several words of the text description, and it is not likely
to be described by the whole sentence. Therefore, we nor-
malize the similarity matrix by Eq. (14),

si,j =
exp(si,j)∑T−1
k=0 exp(sk,j)

(14)

Second, we build an attention model to compute a con-
text vector for each word (query). The context vector ci is
a dynamic representation of image regions related to the ith

word of the text description. It is computed as the weighted
sum over all visual feature vectors,

ci =

288∑
j=0

αjvj , (15)

where we define the weight αj via Eq. (16),

αj =
exp(γ1si,j)∑288
k=0 exp(γ1si,k)

(16)

Here, γ1 is a factor that decides how much more attention is
paid to features of its relevant regions when computing the
context vector for a word.

Finally, we define the relevance between the ith word
and the image using the cosine similarity between ci and
ėi, i.e., R(ci, ėi) = (cTi ėi)/(||ci||||ėi||). The relevance be-
tween the entire image (Q) and the whole text description
(U) is computed by Eq. (17),

R(Q,U) = log
( T−1∑
i=1

exp(γ2R(ci, ėi))
) 1
γ2
, (17)

where γ2 is a factor that determines how much to magnify
the importance of the most relevant word-image pair. When
γ2 →∞, R(Q,U) approximates to maxT−1i=1 R(ci, ėi).

For a text-image pair, we can compute the posterior prob-
ability of the text description (U ) being matching with the
image (Q) via,

P (U |Q) =
exp(γ3R(Q,U))∑

U ′∈U exp(γ3R(Q,U ′))
, (18)



where γ3 is a smoothing factor determined by experiments.
U denotes a minibatch ofM text descriptions, in which only
one description U+ matches the image Q. Thus, for each
image, there are M − 1 mismatching text descriptions. The
objective function is to learn the model parameters Λ by
minimizing the negative log posterior probability that the
images are matched with their corresponding text descrip-
tions (ground truth),

Lw1 (Λ) = − log
∏
Q∈Q

P (U+|Q), (19)

where ‘w’ stands for “word”.
Symmetrically, we can compute,

Lw2 (Λ) = − log
∏
U∈U

P (Q+|U), (20)

where P (Q|U) = exp(γ3R(Q,U))∑
Q′∈Q exp(γ3R(Q′,U)) .

If we redefine Eq. (17) by R(Q,U) =
(
vT ê

)
/
(
||v||||ê||

)
and substitute it to Eq. (18), Eq. (19), Eq. (20), we can ob-
tain loss functions Ls1 and Ls2 (where ‘s’ stands for “sen-
tence”) using the sentence embedding ê and the global vi-
sual vector v.

The fine-grained conditional loss is defined via Eq. (21),

LDAMSM = Lw1 + Lw2 + Ls1 + Ls2 (21)

The DAMSM is pre-trained by minimizing LDAMSM us-
ing real image-text pairs. Since the size of images for pre-
training DAMSM is not limited by the size of images that
can be generated, real images of size 299×299 are utilized.
Furthermore, the pre-trained DAMSM can provide visually-
discriminative word features and a stable fine-grained con-
ditional loss for the attention generative network.

The R-precision score. The DAMSM model is also
used to compute the R-precision score. If there are R rele-
vant documents for a query, we examine the top R ranked
retrieval results of a system, and find that r are relevant,
and then by definition, the R-precision (and also the preci-
sion and recall) is r/R. More specifically, we use generated
images to query their corresponding text descriptions. First,
the image encoder and Bi-LSTM text encoder learned in our
pre-trained DAMSM are utilized to extract features of the
generated images and the given text descriptions. Then, we
compute cosine similarities between the image features and
the text features. Finally, we rank candidates text descrip-
tions for each image in descending similarity and find the
top r relevant descriptions for computing the R-precision.

A.5. Network architectures for semantic layout gen-
eration

Box generator. We design our box generator by improv-
ing the one in [9] to be attentive. We denote the bounding

box of the t-th object as Bt = (bxt , b
y
t , b

w
t , b

h
t , lt). Then, we

formulate the joint probability of sampling Bt from the box
generator as

p(bxt , b
y
t , b

w
t , b

h
t , lt) = p(lt)p(b

x
t , b

y
t , b

w
t , b

h
t |lt). (22)

We implement p(lt) as a categorical distribution, and im-
plement p(bxt , b

y
t , b

w
t , b

h
t |lt) as a mixture of quadravariate

Gaussians. As described in [9], in order to reduce the pa-
rameter space, we decompose the box coordinate probabil-
ity as p(bxt , b

y
t , b

w
t , b

h
t |lt) = p(bxt , b

y
t |lt)p(bwt , bht |bxt , b

y
t , lt),

and approximate it with two bivariate Gasussian mixtures
by

p(bxt , b
y
t |lt) =

K∑
k=1

πxyt,kN (bxt , b
y
t ;µxyt,k,Σ

xy
t,k),

p(bwt , b
h
t |bxt , b

y
t , lt) =

K∑
k=1

πwht,kN (bwt , b
h
t ;µwht,k ,Σ

wh
t,k ).

(23)

In practice, as in [9], we implement the box generator within
a encoder-decoder framework. The encoder is the Bi-LSTM
text encoder as mentioned in § A.4. The Gaussian Mixture
Model (GMM) parameters for Eq. (22) are obtained from
the decoder LSTM outputs. Given text encoder’s final hid-
den state hEnc

Ts
∈ RD and output HEnc ∈ RTs×D, we initial-

ize the decoder’s initial hidden state h0 with hEnc
Ts

. As for
HEnc, we use it to compute the contextual input zt for the
decoder:

zt =

Ts∑
i=1

αih
Enc
i , with αi = Wv · (Wα[ht−1, h

Enc
i ]),

(24)

where Wv is a learnable parameter, Wα is the parameter
of a linear transformation, and · and [·, ·] represent the dot
product and concatenation operation, respectively.

Then, the calculation of GMM parameters are shown as
follows:

[ht, ct] = LSTM([Bt−1, zt]; [ht−1, ct−1]), (25)

lt = W lht + bl, (26)

θxyt = W xy[ht, lt] + bxy, (27)

θwht = Wwh[ht, lt, bx, by] + bwh, (28)

where θ·t = [π·t,1:K ,µ
·
t,1:K ,Σ

·
t,1:K ] are the parameters for

GMM concatenated to a vector. We use the same Adam
optimizer and training hyperparameters (i.e., learning rate
0.001, β1 = 0.9, β2 = 0.999) as in [9].

Shape generator. We implement the shape generator
in [9] with almost the same architecture except the upsam-
ple block. In [9], the upsample block is designed as [con-
vtranspose 4 × 4 (pad 1, stride 2) - Instance Normalization



- ReLU]. We discovered that the usage of convtranspose
would lead to unstable training which is reflected by the
frequent severe grid artifacts. To this end, we replace this
upsample block with that in our image generator (see Ta-
ble 3) by switching the batch normalization to the instance
one.

A.6. Network architectures for image generation

We present the network architecture for image generators
in Table 4 and the network architectures for discriminators
in Table 5, Table 6 and Table 7. They are built with basic
blocks defined in Table 3. We set the hyperparameters of
the network structures as: Ng = 48, Nd = 96, Nc = 80,
Ne = 256, Nl = 50, m0 = 7, m1 = 3, and m2 = 3.

We employ an Adam optimizer for the generators with
learning rate 0.0002, β1 = 0.5 and β2 = 0.999. For each
discriminator, we also employ an Adam optimizer with the

same hyperparameters.
We design the object-wise discriminators for small ob-

jects and large objects, respectively. We specify that if the
maximum of width or height of an object is greater than
one-third of the image size, then this object is large; other-
wise, it is small.

A.7. Network architectures for spectral normalized
projection discriminators

We combine our discriminators above with the spectral
normalized projection discriminator in [18, 19]. The differ-
ence between the object-wise discriminator and the object-
wise spectral normalized projection discriminator is illus-
trated in Figure 16. We present detailed network architec-
tures of the spectral normalized projection discriminators in
Table 8, Table 9 and Table 10, with basic blocks defined in
Table 3.



Table 2: The architecture of Bi-LSTM text encoder.

Layer Name Hyperparameters
Embedding num embeddings = vocab size, embedding dim = 300
Dropout prob = 0.5

LSTM input size = 300, hidden size (D
2
) = 128, num layers = 1, dropout prob = 0.5, bidirectional = True

Table 3: The basic blocks for architecture design. (“-” connects two consecutive layers; “+” means element-wise addition
between two layers.)

Name Operations / Layers
Interpolating (k) Nearest neighbor upsampling layer (up-scaling the spatial size by k)

Upsampling (k) Interpolating (2) - convolution 3× 3 (stride 1, padding 1, decreasing ]channels to k) -
Batch Normalization (BN) - Gated Linear Unit (GLU).

Downsampling (k) In Gs: convolution 3× 3 (stride 2, increasing ]channels to k) - BN - LeakyReLU.
In Ds, the convolutional kernel size is 4. In the first block of Ds, BN is not applied.

Downsampling w/ SN (k) Convolution 4× 4 (spectral normalized, stride 2, increasing ]channels to k) - BN - LeakyReLU.
In the first block of Ds, BN is not applied.

Concat Concatenate input tensors along the channel dimension.

Residual Input + [Reflection Pad (RPad) 1 - convolution 3× 3 (stride 1, doubling ]channels) -
Instance Normalization (IN) - GLU - RPad 1 - convolution 3× 3 (stride 1, keeping ]channels) - IN].

FC At the beginning of Gs: fully connected layer - BN - GLU - reshape to 3D tensor.
FC w/ SN (k) Fully connected layer (spectral normalized, changing ]channels to k).
Outlogits Convolution 4× 4 (stride 2, decreasing ]channels to 1) - sigmoid.
Repeat (k × k) Copy a vector k × k times.
Fmap Sum Summing the two input feature maps element-wisely.
Fmap Mul Multiplying the two input feature maps element-wisely.
Avg Pool (k) Average pooling along the k-th dimension.

Conv 3× 3 (k)
In Gs: convolution 3× 3 (stride 1, padding 1, changing ]channels to k) - Tanh.
In Ds, convolution 3× 3 (stride 1, padding 1, changing ]channels to k) - BN - LeakyReLU.

Conv 4× 4 w/ SN Convolution 4× 4 (spectral normalized, stride 2, keeping ]channels).
Conv 1× 1 w/ SN Convolution 1× 1 (spectral normalized, stride 1, decreasing ]channels to 1).

F ca Conditioning augmentation that converts the sentence embedding ê to the conditioning vector e:
fully connected layer - ReLU.

F pat-attn Grid attention module. Refer to the paper for more details.
F obj-attn Object-driven attention module. Refer to the paper for more details.
F lab-distr Label distribution module. Refer to the paper for more details.
Shape Encoder (k) RPad 1 - convolution 3× 3 (stride 1, decreasing ]channels to k) - IN - LeakyReLU.
Shape Encoder w/ SN (k) RPad 1 - convolution 3× 3 (spectral normalized, stride 1, decreasing ]channels to k) - IN - LeakyReLU.
ROI Encoder Convolution 4× 4 (stride 1, padding 1, decreasing ]channels to Nd ∗ 4) - LeakyReLU.
ROI Encoder w/ SN Convolution 4× 4 (spectral normalized, stride 1, padding 1, decreasing ]channels to Nd ∗ 4) - LeakyReLU.
ROI Align (k) Pooling k × k feature maps for ROI.



Table 4: The structure for generators of Obj-GAN.

Stage Name Input Tensors Output Tensors

G0

FC 100-dimensional z, and F ca 8× 8× 4Ng

Upsampling (2Ng) 8× 8× 4Ng 16× 16× 2Ng

Upsampling (Ng) 16× 16× 2Ng c (32× 32×Ng)
Shape Encoder ( 1

2
Ng) M0 (64× 64×Nc) 64× 64× 1

2
Ng

Downsampling (Ng) 64× 64× 1
2
Ng u0 (32× 32×Ng)

Concat c, u0, F obj-attn, F lab-distr 32× 32× (3Ng +Nl)
m0 Residual 32× 32× (3Ng +Nl) 32× 32× (3Ng +Nl)
Upsampling (Ng) 32× 32× (3Ng +Nl) h0 (64× 64×Ng)
Conv 3× 3 (3) h0 x0 (64× 64× 3)

G1

Shape Encoder ( 1
2
Ng) M1 (128× 128×Nc) 128× 128× 1

2
Ng

Downsampling (Ng) 128× 128× 1
2
Ng u1 (64× 64×Ng)

Fmap Sum h0, u1 h0 (64× 64×Ng)
Concat F pat-attn, h0, F obj-attn, F lab-distr 64× 64× (3Ng +Nl)
m1 Residual 64× 64× (3Ng +Nl) 64× 64× (3Ng +Nl)
Upsampling (Ng) 64× 64× (3Ng +Nl) h1 (128× 128×Ng)
Conv 3× 3 (3) h1 x1 (128× 128× 3)

G2

Shape Encoder ( 1
2
Ng) M2 (256× 256×Nc) 256× 256× 1

2
Ng

Downsampling (Ng) 256× 256× 1
2
Ng u2 (128× 128×Ng)

Fmap Sum h1, u2 h1 (128× 128×Ng)
Concat F pat-attn, h1, F obj-attn, F lab-distr 128× 128× (3Ng +Nl)
m2 Residual 128× 128× (3Ng +Nl) 128× 128× (3Ng +Nl)
Upsampling (Ng) 128× 128× (3Ng +Nl) h2 (256× 256×Ng)
Conv 3× 3 (3) h2 x2 (256× 256× 3)

Table 5: The structure for patch-wise discriminators of Obj-GAN. e is output by F ca

Stage Name Input Tensors Output Tensors

D0

Downsampling (Nd) x0 (64× 64× 3) 32× 32×Nd

Downsampling (2Nd) 32× 32×Nd 16× 16× 2Nd

Downsampling (4Nd) 16× 16× 2Nd 8× 8× 4Nd

Downsampling (8Nd) 8× 8× 4Nd h0 (4× 4× 8Nd)
Repeat (4× 4) e (Ne) 4× 4×Ne

Concat - Conv 3× 3 (8Nd) h0, 4× 4×Ne he0 (4× 4× 8Nd)
Outlogits (unconditional loss) h0 1
Outlogits (conditional loss) he0 1

D1

Downsampling (Nd) x1 (128× 128× 3) 64× 64×Nd

Downsampling (2Nd) 64× 64×Nd 32× 32× 2Nd

Downsampling (4Nd) 32× 32× 2Nd 16× 16× 4Nd

Downsampling (8Nd) 16× 16× 4Nd h1 (8× 8× 8Nd)
Repeat (8× 8) e (Ne) 8× 8×Ne

Concat - Conv 3× 3 (8Nd) h1, 8× 8×Ne he1 (8× 8× 8Nd)
Outlogits (unconditional loss) h1 3× 3
Outlogits (conditional loss) he1 3× 3

D2

Downsampling (Nd) x2 (256× 256× 3) 128× 128×Nd

Downsampling (2Nd) 128× 128×Nd 64× 64× 2Nd

Downsampling (4Nd) 64× 64× 2Nd 32× 32× 4Nd

Downsampling (8Nd) 32× 32× 4Nd h2 (16× 16× 8Nd)
Repeat (16× 16) e (Ne) 16× 16×Ne

Concat - Conv 3× 3 (8Nd) h2, 16× 16×Ne he2 (16× 16× 8Nd)
Outlogits (unconditional loss) h2 7× 7
Outlogits (conditional loss) he2 7× 7



Table 6: The structure for shape discriminators of Obj-GAN.

Stage Name Input Tensors Output Tensors

D0

Shape Encoder ( 1
8
Nd) M0 (64× 64×Nc) 64× 64× 1

8
Nd

Concat x0 (64× 64× 3), 64× 64× 1
8
Nd 64× 64× (3 + 1

8
Nd)

Downsampling (Nd) 64× 64× (3 + 1
8
Nd) 32× 32×Nd

Downsampling (2Nd) 32× 32×Nd 16× 16× 2Nd

Downsampling (4Nd) 16× 16× 2Nd 8× 8× 4Nd

Downsampling (8Nd) 8× 8× 4Nd h0 (4× 4× 8Nd)
Outlogits (unconditional loss) h0 1

D1

Shape Encoder ( 1
8
Nd) M1 (128× 128×Nc) 128× 128× 1

8
Nd

Concat x1 (128× 128× 3), 128× 128× 1
8
Nd 128× 128× (3 + 1

8
Nd)

Downsampling (Nd) 128× 128× (3 + 1
8
Nd) 64× 64×Nd

Downsampling (2Nd) 64× 64×Nd 32× 32× 2Nd

Downsampling (4Nd) 32× 32× 2Nd 16× 16× 4Nd

Downsampling (8Nd) 16× 16× 4Nd h1 (8× 8× 8Nd)
Outlogits (unconditional loss) h1 3× 3

D2

Shape Encoder ( 1
8
Nd) M2 (256× 256×Nc) 256× 256× 1

8
Nd

Concat x2 (256× 256× 3), 256× 256× 1
8
Nd 256× 256× (3 + 1

8
Nd)

Downsampling (Nd) 256× 256× (3 + 1
8
Nd) 128× 128×Nd

Downsampling (2Nd) 128× 128×Nd 64× 64× 2Nd

Downsampling (4Nd) 64× 64× 2Nd 32× 32× 4Nd

Downsampling (8Nd) 32× 32× 4Nd h2 (16× 16× 8Nd)
Outlogits (unconditional loss) h2 7× 7

Table 7: The structure for object-wise discriminators of Obj-GAN. cobj represents the intermediate context vectors of F obj-attn,
and eg represents the embedding vectors the class labels.

Stage Name Input Tensors Output Tensors

small

Interpolating (2) M2 (256× 256×Nc) 512× 512×Nc

Interpolating (2) x2 (256× 256× 3) 512× 512× 3
Shape Encoder ( 1

8
Nd) 512× 512×Nc 512× 512× 1

8
Nd

Concat 512× 512× 3, 512× 512× 1
8
Nd 512× 512× (3 + 1

8
Nd)

Downsampling (Nd) 512× 512× (3 + 1
8
Nd) 256× 256×Nd

Downsampling (2Nd) 256× 256×Nd 128× 128× 2Nd

Downsampling (4Nd) 128× 128× 2Nd 64× 64× 4Nd

ROI Align (5) 64× 64× 4Nd Nsmall × 5× 5× 4Nd

ROI Encoder (5) Nsmall × 5× 5× 4Nd h (Nsmall × 4× 4× 4Nd)
Repeat (4× 4) cobj (Nsmall ×Ng) Nsmall × 4× 4×Ng

Repeat (4× 4) eg (Nsmall ×Nl) Nsmall × 4× 4×Nl

Concat - Conv 3× 3 (4Nd) h,Nsmall × 4× 4×Ng , Nsmall × 4× 4×Nl hc (Nsmall × 4× 4× 4Nd)
Outlogits (unconditional loss) h Nsmall
Outlogits (conditional loss) hc Nsmall

large

Interpolating (2) M2 (256× 256×Nc) 512× 512×Nc

Interpolating (2) x2 (256× 256× 3) 512× 512× 3
Shape Encoder ( 1

8
Nd) 512× 512×Nc 512× 512× 1

8
Nd

Concat 512× 512× 3, 512× 512× 1
8
Nd 512× 512× (3 + 1

8
Nd)

Downsampling (Nd) 512× 512× (3 + 1
8
Nd) 256× 256×Nd

Downsampling (2Nd) 256× 256×Nd 128× 128× 2Nd

Downsampling (4Nd) 128× 128× 2Nd 64× 64× 4Nd

Downsampling (8Nd) 64× 64× 4Nd 32× 32× 8Nd

ROI Align (5) 32× 32× 8Nd Nlarge × 5× 5× 8Nd

ROI Encoder (5) Nlarge × 5× 5× 8Nd h (Nlarge × 4× 4× 4Nd)
Repeat (4× 4) cobj (Nlarge ×Ng) Nlarge × 4× 4×Ng

Repeat (4× 4) eg (Nlarge ×Nl) Nlarge × 4× 4×Nl

Concat - Conv 3× 3 (4Nd) h,Nlarge × 4× 4×Ng , Nlarge × 4× 4×Nl hc (Nlarge × 4× 4× 4Nd)
Outlogits (unconditional loss) h Nlarge
Outlogits (conditional loss) hc Nlarge



(1) Object-wise discriminator. (2) Object-wise spectral normalized projection discriminator.

Figure 16: The comparison between the object-wise discriminator and its spectral normalized projection version. (a) extracts
the region feature based on the Fast R-CNN model. (b) determines whether the t-th object is realistic (consistent with its
label eg

t and text context information cobj
t ) or not.

Table 8: The structure for patch-wise spectral normalized projection discriminators of Obj-GAN. e is output by F ca

Stage Name Input Tensors Output Tensors

D0

Downsampling w/ SN (Nd) x0 (64× 64× 3) 32× 32×Nd

Downsampling w/ SN (2Nd) 32× 32×Nd 16× 16× 2Nd

Downsampling w/ SN (4Nd) 16× 16× 2Nd 8× 8× 4Nd

Downsampling w/ SN (8Nd) 8× 8× 4Nd 4× 4× 8Nd

Conv 4× 4 w/ SN 4× 4× 8Nd h0 (8Nd)
FC w/ SN (8Nd) e (Ne) c0 (8Nd)
Fmap Mul - Avg Pool (0) h0, c0 hc0 (1)
Conv 1× 1 w/ SN (unconditional loss) h0 ouncond

0 (1)
Fmap Sum (conditional loss) ouncond

0 , hc0 ocond
0 (1)

D1

Downsampling w/ SN (Nd) x1 (128× 128× 3) 64× 64×Nd

Downsampling w/ SN (2Nd) 64× 64×Nd 32× 32× 2Nd

Downsampling w/ SN (4Nd) 32× 32× 2Nd 16× 16× 4Nd

Downsampling w/ SN (8Nd) 16× 16× 4Nd 8× 8× 8Nd

Conv 4× 4 w/ SN 8× 8× 8Nd h1 (3× 3× 8Nd)
FC w/ SN (8Nd) e (Ne) 8Nd

Repeat (3× 3) 8Nd c1 (3× 3× 8Nd)
Fmap Mul - Avg Pool (2) h1, c1 hc1 (3× 3)
Conv 1× 1 w/ SN (unconditional loss) h1 ouncond

1 (3× 3)
Fmap Sum (conditional loss) ouncond

1 , hc1 ocond
1 (3× 3)

D2

Downsampling w/ SN (Nd) x2 (256× 256× 3) 128× 128×Nd

Downsampling w/ SN (2Nd) 128× 128×Nd 64× 64× 2Nd

Downsampling w/ SN (4Nd) 64× 64× 2Nd 32× 32× 4Nd

Downsampling w/ SN (8Nd) 32× 32× 4Nd 16× 16× 8Nd

Conv 4× 4 w/ SN 16× 16× 8Nd h2 (7× 7× 8Nd)
FC w/ SN (8Nd) e (Ne) 8Nd

Repeat (7× 7) 8Nd c2 (7× 7× 8Nd)
Fmap Mul - Avg Pool (2) h2, c2 hc2 (7× 7)
Conv 1× 1 w/ SN (unconditional loss) h2 ouncond

2 (7× 7)
Fmap Sum (conditional loss) ouncond

2 , hc2 ocond
2 (7× 7)



Table 9: The structure for shape spectral normalized projection discriminators of Obj-GAN.
Stage Name Input Tensors Output Tensors

D0

Shape Encoder w/ SN ( 1
8
Nd) M0 (64× 64×Nc) 64× 64× 1

8
Nd

Concat x0 (64× 64× 3), 64× 64× 1
8
Nd 64× 64× (3 + 1

8
Nd)

Downsampling w/ SN (Nd) 64× 64× (3 + 1
8
Nd) 32× 32×Nd

Downsampling w/ SN (2Nd) 32× 32×Nd 16× 16× 2Nd

Downsampling w/ SN (4Nd) 16× 16× 2Nd 8× 8× 4Nd

Downsampling w/ SN (8Nd) 8× 8× 4Nd 4× 4× 8Nd

Conv 4× 4 w/ SN 4× 4× 8Nd h0 (8Nd)
Conv 1× 1 w/ SN (unconditional loss) h0 1

D1

Shape Encoder w/ SN ( 1
8
Nd) M1 (128× 128×Nc) 128× 128× 1

8
Nd

Concat x1 (128× 128× 3), 128× 128× 1
8
Nd 128× 128× (3 + 1

8
Nd)

Downsampling w/ SN (Nd) 128× 128× (3 + 1
8
Nd) 64× 64×Nd

Downsampling w/ SN (2Nd) 64× 64×Nd 32× 32× 2Nd

Downsampling w/ SN (4Nd) 32× 32× 2Nd 16× 16× 4Nd

Downsampling w/ SN (8Nd) 16× 16× 4Nd 8× 8× 8Nd

Conv 4× 4 w/ SN 8× 8× 8Nd h1 (3× 3× 8Nd)
Conv 1× 1 w/ SN (unconditional loss) h1 3× 3

D2

Shape Encoder w/ SN ( 1
8
Nd) M2 (256× 256×Nc) 256× 256× 1

8
Nd

Concat x2 (256× 256× 3), 256× 256× 1
8
Nd 256× 256× (3 + 1

8
Nd)

Downsampling w/ SN (Nd) 256× 256× (3 + 1
8
Nd) 128× 128×Nd

Downsampling w/ SN (2Nd) 128× 128×Nd 64× 64× 2Nd

Downsampling w/ SN (4Nd) 64× 64× 2Nd 32× 32× 4Nd

Downsampling w/ SN (8Nd) 32× 32× 4Nd 16× 16× 8Nd

Conv 4× 4 w/ SN 16× 16× 8Nd h2 (7× 7× 8Nd)
Conv 1× 1 w/ SN (unconditional loss) h2 7× 7

Table 10: The structure for object-wise spectral normalized projection discriminators of Obj-GAN. cobj represents the inter-
mediate context vectors of F obj-attn, and eg represents the embedding vectors the class labels.

Stage Name Input Tensors Output Tensors

small

Interpolating (2) M2 (256× 256×Nc) 512× 512×Nc

Interpolating (2) x2 (256× 256× 3) 512× 512× 3
Shape Encoder w/ SN ( 1

8
Nd) 512× 512×Nc 512× 512× 1

8
Nd

Concat 512× 512× 3, 512× 512× 1
8
Nd 512× 512× (3 + 1

8
Nd)

Downsampling w/ SN (Nd) 512× 512× (3 + 1
8
Nd) 256× 256×Nd

Downsampling w/ SN (2Nd) 256× 256×Nd 128× 128× 2Nd

Downsampling w/ SN (4Nd) 128× 128× 2Nd 64× 64× 4Nd

ROI Align (5) 64× 64× 4Nd Nsmall × 5× 5× 4Nd

ROI Encoder w/SN (5) Nsmall × 5× 5× 4Nd Nsmall × 4× 4× 4Nd

Conv 4× 4 w/ SN Nsmall × 4× 4× 4Nd h (Nsmall × 4Nd)
Concat cobj (Nsmall ×Ng), eg (Nsmall ×Nl) Nsmall × (Ng +Nl)
FC w/ SN (4Nd) Nsmall × (Ng +Nl) c (Nsmall × 4Nd)
Fmap Mul - Avg Pool (1) h, c hc (Nsmall)
Conv 1× 1 w/ SN (unconditional loss) h ouncond (Nsmall)
Fmap Sum (conditional loss) ouncond, hc ocond (Nsmall)

large

Interpolating (2) M2 (256× 256×Nc) 512× 512×Nc

Interpolating (2) x2 (256× 256× 3) 512× 512× 3
Shape Encoder w/ SN ( 1

8
Nd) 512× 512×Nc 512× 512× 1

8
Nd

Concat 512× 512× 3, 512× 512× 1
8
Nd 512× 512× (3 + 1

8
Nd)

Downsampling w/ SN (Nd) 512× 512× (3 + 1
8
Nd) 256× 256×Nd

Downsampling w/ SN (2Nd) 256× 256×Nd 128× 128× 2Nd

Downsampling w/ SN (4Nd) 128× 128× 2Nd 64× 64× 4Nd

Downsampling w/ SN (8Nd) 64× 64× 4Nd 32× 32× 8Nd

ROI Align (5) 32× 32× 8Nd Nlarge × 5× 5× 8Nd

ROI Encoder w/ SN (5) Nlarge × 5× 5× 8Nd Nlarge × 4× 4× 4Nd

Conv 4× 4 w/ SN Nlarge × 4× 4× 4Nd h (Nlarge × 4Nd)
Concat cobj (Nlarge ×Ng), eg (Nlarge ×Nl) Nlarge × (Ng +Nl)
FC w/ SN (4Nd) Nlarge × (Ng +Nl) c (Nlarge × 4Nd)
Fmap Mul - Avg Pool (1) h, c hc (Nlarge)
Conv 1× 1 w/ SN (unconditional loss) h ouncond (Nlarge)
Fmap Sum (conditional loss) ouncond, hc ocond (Nlarge)


