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ABSTRACT
A farm’s soil moisture and soil electrical conductivity (EC)
readings are extremely valuable for a farmer. They can help
her reduce water use and improve productivity. However,
the high cost of commercial soil moisture sensors and the
inaccuracy of sub-1000 dollar EC sensors have limited their
adoption. In this paper, we present the design and implemen-
tation of a system, called Strobe, that senses soil moisture
and soil EC using RF propagation in existing Wi-Fi bands.
Strobe overcomes the key challenge of limited bandwidth
availability in the 2.4 GHz unlicensed spectrum using a novel
multi-antenna technique. It maps the propagation time and
amplitude of Wi-Fi signals received by different antennas to
the soil permittivity and EC, which in turn depend on soil
moisture and salinity. Our experiments with USRP, WARP,
and commodity Wi-Fi cards show that Strobe can accurately
estimate soil moisture and EC using Wi-Fi, thereby showing
the potential of a future in which a farmer can sense soil in
their farm without investing 1000s of dollars in soil sensing
equipments.
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1 INTRODUCTION
Several agricultural applications rely on soil moisture and
soil EC measurements. For example, precision irrigation,
which refers to the variable application of water in different
regions of the farm, depends on accurate soil moisture values
at different depths. This technique helps reduce water use,
and also reduces soil leaching and contamination of ground
water by chemicals in fertilizers and other agricultural in-
puts. Soil EC is another key indicator of soil health. It has
been shown to correlate very well with crop yield and plant
nutrient availability, and farmers are recommended by the
USDA to measure soil EC to determine soil treatment plans
and management zones for Precision Agriculture [1].
Several techniques have been invented over the last few

decades to measure soil moisture and EC. These methods
include direct sensing techniques, which require soil to be ex-
tracted and dried out, as well as indirect sensingmethods that
measure surrogate properties of soil moisture and EC, such
as capacitance, electrical, and nuclear response. Researchers
have also explored the use of radar based technologies to
measure soil moisture and EC.
However, one of the key challenges in the adoption of

soil moisture and EC sensing technologies is the cost and
accuracy of existing sensor solutions. Although hobbyist soil
moisture sensors are available for less than 10 dollars, they
are not reliable and degrade quickly, and are consequently
not used by agricultural experts [2]. The lowest cost, commer-
cial grade, soil moisture sensing solutions still cost over a 100
dollars each. They use ruggedized components that typically
measure the resistance, capacitance, or conductivity change
of the sensor (discussed in Section 2). Furthermore, most sen-
sors measure an apparent EC, which needs to be combined
with the estimated permittivity to produce an interpretable
result, i.e., saturation extract EC – a measure of soil salin-
ity. Therefore, estimating the actual salinity or saturation
extract EC requires accurately measuring both the apparent
EC and permittivity. We are not aware of any low cost soil
sensor that can accurately estimate the salinity. Even moder-
ately expensive (sub-1000 USD) sensors can fail to accurately
estimate either apparent EC or permittivity [3, 4].
The high cost of soil sensors has limited the adoption of

soil sensing technologies. Sensors that cost a few hundred
dollars are unaffordable for most farmers in developing re-
gions. Even in the developed world, the cost of sensors has
limited the adoption of precision irrigation technologies [5].
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In this paper we present a low-cost soil sensing technique
called Strobe, for Soil Testing using RF Probes, that esti-
mates soil moisture and soil EC without the need for a spe-
cialized sensor. Instead, Strobe leverages the phenomenon
that RF waves travel slower in soil with higher permittivity.
Strobe uses Wi-Fi devices in the unlicensed 2.4 GHz spec-
trum. With just a few antennas in soil, Strobe can estimate
the permittivity and EC, and the corresponding moisture
and salinity levels of soil at the location of the antennas. A
wireless transmitter, e.g. a Wi-Fi card, from the soil survey-
ing device, emits signals that are received by the antennas
in soil. The receiver uses signals on multiple antennas to
compute soil permittivity. The results are then transmitted
back to the soil surveying device, which then computes the
soil moisture and soil EC values.

Prior work on Ground Penetrating Radars (GPR) and Time
Domain Reflectometery (TDR) have considered the use of
RF for measuring soil properties. However, these systems
are specialized, wideband, and hence cost several 1000s of
dollars. They use time of flight (ToF) to measure the speed of
the RF signal, and consequently the permittivity of soil. They
require a wide contiguous bandwidth from 100s of MHz to
few GHz, in the UHF spectrum, to accurately measure the
ToF. However, such a wide bandwidth is not available in the
UHF unlicensed spectrum. Furthermore, ToF measures the
average moisture level from the surface of soil, but doesn’t
measure the absolute moisture levels, e.g. the soil moisture
value at 8 inches below surface level. These systems rely on
signal attenuation to estimate EC. Since the attenuation is
affected by all parameters along the signal transmission path,
the EC measurement can be error-prone.
Strobe addresses the above challenges by proposing two

new techniques to estimate the moisture and EC from Wi-Fi
signals. Instead of measuring the absolute ToF, which would
require a wide bandwidth, Strobe measures the relative ToF
of received signals between multiple antennas, which only
exploits the 70 MHz of available spectrum in 2.4 GHz. The
relative ToF is used to determine permittivity and soil mois-
ture. Since the accuracy of permittivity estimation increases
over frequency, Strobe can report much more accurate soil
moisture than most existing moisture sensors that use sub-
100 MHz spectrum. We then propose a new technique to
measure soil EC using the ratio of signal amplitudes on the
different antennas. This significantly reduces the complexity
of EC estimation compared to prior RF-based methods.
To the best of our knowledge, Strobe is the first work to

demonstrate the capability to sense soil moisture and soil sat-
uration extract EC using Wi-Fi transmissions in unlicensed
spectrum. This capability enables many new scenarios. For
example, an EC map can help a farmer build management
zones. A sprinkler system can dynamically learn moisture

maps of the farm, and adapt the time of irrigation, and the
amount of water that it uses in different regions.

We have implemented Strobe in the 2.4 GHz Wi-Fi bands
over various hardware, including USRP, WARP, and Qual-
comm Atheros based Wi-Fi cards, and shown the system to
perform as well as the more expensive soil sensors.

2 BACKGROUND
We first provide background on the state of the art in soil
moisture and EC sensing, and then show how ToF-based
techniques have used RF for soil sensing.

2.1 Sensing soil moisture and EC
The most accurate method for soil sensing is the direct gravi-
metric method [6]: of sampling soil, drying it out, and weigh-
ing the amount of moisture that is lost from the soil. However,
this technique is expensive, manual, requires oven drying,
and disturbs the soil.
Several lower-cost surrogate sensing approaches have

been proposed in the literature that estimate soil moisture
based on the indirect soil properties that are sensitive to
moisture. For example, electrical resistance based sensors
measure the resistance of soil when current is passed through
two electrodes [7]. Capacitive sensors measure the time to
charge the capacitor. A calibration equation is then used to
convert the resistance to the corresponding soil moisture
value. Heat-diffusion sensors exploit the fact that wet soil
dissipates heat much faster than dry soil to measure the rate
of temperature increase when applying a heat source [8].
Tensiometers [9] measure the tension created by soil absorb-
ing the water kept in a ceramic cup connected through a tube.
Radioactive sensors [10] measure the slowing of neutrons
in soil after being emitted into the soil from a fast-neutron
source. Most “commercial” grade soil moisture sensors, such
as the ones from Decagon, Campbell Scientific, or Sensoterra,
typically cost over a 100 dollars.
To measure EC, the resistance to current is measured

through electrodes in soil. The most inexpensive sensors
we are aware of cost over a 100 dollars. They have to be to
connected to a microprocessor and RF modules, and hence
are even more expensive.

2.2 Soil sensing using RF
RF-based soil sensing is enabled by the phenomenon that RF
waves propagate slower and attenuate more in soil than in air
due to soil’s larger permittivity and EC compared to air. Fig-
ure 1 shows an overview of how the existing ToF-based RF
sensing techniques, such as GPR and TDR, derive soil proper-
ties from RF wave properties. These techniques first measure
electromagnetic (EM) wave velocity and attenuation in soil
to infer soil apparent permittivity and apparent EC. With



Figure 1: Relationship between RF wave properites and soil properities.

apparent permittivity and EC estimation, soil moisture and
salinity can be computed from the well-studied models [11–
14]. Next, we introduce the soil properties shown in Figure 1
and then explain the relationship between wave propagation
and soil properties.

Soil properties. In soil studies, a property, e.g., permit-
tivity, can have various names, e.g., relative permittivity,
apparent permittivity, etc., when measured in different ways.
Without explaining them clearly, the readers might get con-
fused and misunderstand the results. Therefore, here we ex-
plain the terms adopted in this paper, which are also widely
used in RF sensing techniques. Within these terms, we use
moisture and salinity as the end results to intuitively de-
scribe how much water and salt are contained in soil, and
the other terms as ways to explain how RF sensing works
and to understand Strobe’s performance.
(i) Permittivity and electrical conductivity (EC) are two

fundamental electrical properties of a material. Permittivity
is a complex value given as ϵ∗ = ϵ ′ + jϵ ′′. EC is always
considered as a real value σ since its imaginary component
is insignificant at radio frequencies [15]. The real part of
permittivity (ϵ ′) dominates wave velocity, while EC (σ ) and
the imaginary part of permittivity (ϵ ′′) dominate energy loss.

(ii) Relative permittivity (unitless) is the ratio of the abso-
lute permittivity to the free space permittivity ϵ0 (8.854 ×
10−12 F/m), given as ϵ∗r = ϵ∗/ϵ0 = ϵ ′r + jϵ ′′r . As shown in
Figure 1, the real part of relative permittivity (ϵ ′r ) is directly
related to soil moisture. For simplicity, we use the term per-
mittivity to refer to the relative permittivity in the rest of
this paper.

(iii) Apparent permittivity is the soil permittivity measured
in situ. Besides the real part of permittivity (ϵ ′r ), apparent
permittivity also captures the effects of the imaginary part
of permittivity (ϵ ′′r ) and EC (σ ) on wave velocity, given as:

ϵa =
ϵ
′

r

2

[√
1 + tan2δ + 1

]
(1)

where the loss tangent tanδ is a measure of how lossy a
soil medium is. It is a function of the complex permittivity
(ϵ∗r ), EC (σ ), and measurement frequency (f ):

tanδ =
ϵ
′′

r +
σ

2π f ϵ0

ϵ
′

r
(2)

Existing dielectric soil moisture sensors use apparent per-
mittivity to approximate the real part of permittivity (i.e.,
ϵa ≈ ϵ ′r ) and estimate soil moisture, which is only accurate
when tanδ is small, e.g., with a small ϵ ′′r and a big f .

(iv) Apparent EC is the EC of soil measured in situ. Its
value depends on the actual EC σ , the imaginary component
of permittivity ϵ ′′r , and the measurement frequency f :

σa = σ + 2π f ϵ0ϵ
′′

r (3)

Existing soil EC sensors use apparent EC to approximate
the actual EC (i.e., σa ≈ σ ). Eq. 3 indicates that sensors
operating at a very low frequency, e.g., most resistive EC
sensors, can provide accurate EC estimation.
(v) We use moisture to refer to the volumetric water con-

tent (VWC) θ in soil, which is the ratio of water volume to
the total volume of wet soil that consists of water, air and
soil particles. The models to convert ϵa to θ are soil-specific
and can be found in sensor manuals, e.g., [16].
(vi) We use salinity to refer to the saturation extract EC

σe measured in siemens per meter (S/m). σe is a direct mea-
sure of how much salt is contained in soil, which can be
determined from apparent permittivity and EC [16]:

σe =
ϵwσa

ϵa − ϵσa=0

θ

θs
(4)

where ϵw is a the real part of permittivity of water, θs is
the moisture of saturated soil, and ϵσa=0 is the real part of
permittivity when σa = 0.
Wave propagation in soil. Wave propagation in soil

through a distance of d at frequency f is modeled as:

E(f ,d) = Ae−(α+jβ )d (5)

where α is the attenuation coefficient that determines sig-
nal attenuation introduced by soil, β is the phase coefficient
that determines phase variation during propagation, and A
is the signal amplitude. A is determined by antenna beam
patterns, distance d , and system parameters such as gain
settings at the transmitter/receiver and antenna gains. α and
β are both functions of permittivity and EC, given as:

α =
2π f
c

√
ϵ
′

r

2

[√
1 + tan2δ − 1

]
(6)



β =
2π f
c

√
ϵ
′

r

2

[√
1 + tan2δ + 1

]
(7)

where c = 3 × 108m/s is the speed of light.
As shown in Figure 1, the key to derive soil moisture

and salinity from RF wave properties is to find apparent
permittivity and apparent EC based on phase and amplitude
changes of RF wave in soil. Next we discuss how this is done
in existing RF sensing techniques.

Apparent permittivity estimation from velocity.
With Eq. 1, Eq. 7 can be written as β = 2π f √ϵa/c = 2π f /v ,
where v = c/

√
ϵa is the wave velocity in soil. Measuring

wave velocity v is threfore the key to estimate the apparent
permtitivity ϵa of soil. ToF-based RF techniques measure the
time τ it takes to travel through a known distance d in soil,
which gives an estimate of wave velocity as v = d/τ . The
apparent permtitivity ϵa can then be calculated as:

ϵa =
(cτ
d

)2
(8)

Apparent EC estimation from transmission loss. RF
techniques measure the signal transmission loss eαd of wave
traveling through a known distance d to estimate the attenu-
ation coefficient α . Using α together with ϵa estimated from
ToF measurement, the apparent EC σa can then be computed
from Eq. 3, Eq. 6 and Eq. 7.

2.3 Limitations of RF sensing techniques
Accurate ToF and signal attenuation measurements are the
key factors to get accurate moisture and EC estimation,
which impose a need for specialized hardware design to
give reliable results. Therefore, RF sensing systems is usually
very expensive, on the order of several thousand dollars.

ToF sensing systems require ultra-wide bandwidth to ob-
tain good performance, e.g., the bandwidth of systems like
GPRs usually spans multiple GHz. These systems typically
require specially designed hardware to allow operating on a
ultra-wide frequency range and high power efficiency con-
sidering the stringent FCC-imposed power limit for ultra-
wideband systems, which is -41.3 dBm/MHz.

RF-based EC sensing systems have complicated design
choices and calibration requirements since they rely on ab-
solute amplitude measurements. One needs to know system
parameters both during design and in operation. For TDR
systems that use transmission line to estimate permittivity
and EC, tradeoff exists when choosing probe design param-
eters for ToF and EC [17]. In antenna-based systems like
GPRs, system parameters, e.g., gain settings, together with
the whole propagation path from transmitter to receiver,
which includes multiple reflections and refractions, need to
be carefully modeled.

3 STROBE DESIGN
Strobe measures soil moisture and EC/salinity only using
Wi-Fi signals. A Wi-Fi transmitter, such as a phone or a
transmit device on a tractor, transmits packets which are
received by multiple antennas in soil, as shown in Figure 2.
All antennas are connected to a MIMO capable Wi-Fi device,
e.g., a 3-antenna Wi-Fi card. We first use a MUSIC-based
multipath resolving technique to recover the shortest path
from received signal. Since the receive antennas are buried
at different depths in soil, their shortest paths have different
phase and amplitude changes so that we can estimate the
relative ToF and amplitude among antennas, which are then
used to estimate soil properties including the intermediate
properties, i.e., apparent permittivity and apparent EC, and
the end results, i.e., moisture and salinity. We describe these
techniques in detail in the rest of this section.

Figure 2: Overview of Strobe’s hardware setup (left) and soft-
ware stack (right).

3.1 Estimating apparent permittivity
Overcoming bandwidth limitation with relative ToF.
Antennas and RF chains on a MIMO capable Wi-Fi device are
synchronized in time and frequency. Previous work [18–20]
has shown that such antennas can be utilized to estimate an-
gle of arrival (AoA) based on path difference across antennas
on an array. In air, this path difference, ∆l , corresponds to a
relative ToF of ∆τair = ∆l/c . Our insight here is: if the path
difference happens in soil, this relative ToF can be exploited to
estimate soil permittivity. Since wave velocity is √ϵa times
slower in soil than in air, the relative ToF in soil is given as
∆τsoil =

√
ϵa∆τair .

In contrast to traditional absolute ToF based techniques
which require ultra-wide bandwidth to achieve good accu-
racy, relative ToF can provide high accuracy of permittivity
estimation without using wide bandwidth. The reason is
that the resolution of relative ToF is constrained by carrier
frequency, not bandwidth. The high accuracy of relative ToF
has been demonstrated in prior AoA studies on commodity
Wi-Fi devices [18, 21]. They show that a less than 5-degree
median AoA error can be achieved for a Wi-Fi device with



3 antennas and 40 MHz bandwidth, which can be directly
mapped to a relative ToF error of 0.006 ns at 2.4 GHz.

Mapping relative ToF to soil permittivity. Strobe
places multiple antennas in soil to create the dependency of
relative ToF on soil permittivity. Typically, we are interested
in a scenario where the transmitter is in air and the receiver
antenna array is in soil. Since commodity Wi-Fi devices usu-
ally have three antennas, we consider using three antennas
for the receive array. Next we will show how to estimate
permittivity based on relative ToF estimation in this setup.

Figure 3: Model of plane wave propagating through air-to-
soil surface. Transmit and receive antennas are oriented per-
pendicular to the plane of the paper. The wave that travels
to antenna B has a delay of n∆l2/c +n∆l3/c −∆l1/c relative to
the wave travels to antenna A.

We use an air-to-soil wave propagation model as shown
in Figure 3 to derive the relationship between relative ToF
and path difference in soil. For simplicity, we use the term,
refractive index n, to describe the slow down effect of soil,
which relates to permittivity as follows:

n =
√
ϵa (9)

When a signal travels from the transmitter to the receive
antennas, it is refracted at the air-to-soil surface. The path
difference of two adjacent antennas now has three compo-
nents: ∆l1, ∆l2, ∆l3. ∆l1 happens in air and corresponds to a
speed of c , while ∆l2 and ∆l3 happen in soil and correspond
to a speed of c/n. Thus, the relative ToF of two adjacent
antennas is:

∆τ =
∆l1
c

−
n∆l2
c
+
n∆l3
c
=

∆l

c
(10)

where ∆l = ∆l1 − n∆l2 + n∆l3 is the effective total path
difference. Next, we rely on geometry and Snell’s law to find

out the relationship between ∆l and n. First, we compute ∆l1,
∆l2 and ∆l3 as follows:

∆l1 = d1sinθ1,∆l2 = d1sinθ2,∆l3 = dsinθ3 (11)
where d is the distance between antennas on the antenna

array, d1 is the distance between waves going to the antenna
array at the air-to-soil surface, θ1 is the angle of incidence,
θ2 is the angle of refraction, and θ3 is the angle of incidence
at the antenna array.
Since the refraction at air-to-soil surface follows Snell’s

law, θ1 relates to θ2 as sinθ1 = nsinθ2. Therefore, we have
∆l1 = n∆l2 and ∆l is simplified to ∆l = ndsinθ3. θ3 is deter-
mined by the angle of refraction θ2 and the angle of antenna
array’s rotation θ4, given as θ3 = θ4−θ2. We can then rewrite
∆l as a function of array parameters, i.e., d and θ4, angle of
incidence θ1, and refractive index n:

∆l = ndsin(θ4 − θ2) = ndsin(θ4 − arcsin(
sinθ1
n

)) (12)

From Eq. 9, Eq. 10 and Eq. 12, we can compute ϵa from
the relative ToF ∆τ = ∆l/c if we know d , θ4 and θ1, which
is possible because d , θ4 and θ1 are all independent of soil
moisture and we can control them to be constants during the
deployment of the receive antenna array and the transmit
antenna. Note that in the case of normal incidence, θ1 is 0
and Eq. 12 can be simplified to ∆l = ndsinθ4.

3.2 Estimating apparent EC
As discussed in Section 2, measuring apparent EC from ab-
solute signal attenuation is prone to errors, and is difficult
to implement and calibrate. Instead, we propose a new tech-
nique that uses the ratio of amplitudes across multiple anten-
nas, which we call relative attenuation, to estimate EC. This
eliminates the need to calibrate several system parameters,
such as antenna gains and impedance.

Absolute attenuation model. To explain the advantage
of using relative attenuation, we first look at the absolute
attenuation between omni-directional transmit and receive
antennas during air-to-soil transmission [22]:

Pt
Pr
= T︸︷︷︸

refraction

1
GtGr︸︷︷︸

antenna gains

(
4π (ds

√
ϵa + da)f

c

)2
︸                     ︷︷                     ︸

spreading loss

e2αds︸︷︷︸
transmission loss

(13)

where ds and da are the distances that the wave travels in
soil and air. T is a transmission coefficient due to refraction
at air-to-soil interface, which is a function of wave incident
angle and soil permittivity. To get the absolute attenuation,
a system needs to measure all the parameters along the air-
to-soil transmission path as shown in Eq. 13.



Reducing model complexity with relative attenua-
tion. In Strobe, the multiple receive antennas allow us to
simplify EC estimation with relative attenuation by leverag-
ing an insight: three closely-located and orientation-aligned
antennas experience similar signal attenuation along the trans-
mission path except the path differences among antennas.With
this insight, we can eliminate the need to measure the trans-
mission coefficient T and antenna gains, Gr and Gt , for the
computation of relative attenuation, thus making Strobe less
error-prone in practice. To derive the model for relative atten-
uation, we can assume a same T for the three receive anten-
nas because they have similar transmission paths. Further-
more, since soil moisture does not vary much within a small
area, the three antennas experience a similar impedance
change and hence can be assumed to have the same antenna
gain Gr . The receive antennas simultaneously receive the
same packet from the same transmitter and thus have the
same Gt . The model of relative attenuation between two
adjacent receive antennas is then given as:

Pr (ds1 ,da1 )

Pr (ds2 ,da2 )
=

(
ds2

√
ϵa + da2

ds1
√
ϵa + da1

)2
e2α (ds2−ds1 ) (14)

In the case of normal incident (da1 = da2 ) and far field, the
above equation can be reduced to Pr el (∆d) = e2α∆d .

3.3 Soil-specific design choices
As indicated by Eq.12 and Eq.14, the choice of antenna array
parameters play an important role in Strobe’s performance.
Specifically, these parameters are: (i) antenna array rotation
θ4 and (ii) antenna distance d . In addition, we need to choose
a proper frequency band as the wave’s carrier frequency.

Figure 4: A typical antenna array setup in soil. The antennas
are buried at different depths and the distance between two
adjacent antennas in the horizontal plane is small.

3.3.1 Choices of array parameters. We make our
choices of antenna distance d and antenna array rotation
θ4 to reduce the effects of soil surface roughness and soil
non-homogeneity. Figure 4 shows a real-world example of an
antenna setup in soil. We choose a small antenna distance in
the x-axis and a relatively big antenna distance in the z-axis,

i.e., a θ4 close to 90 degrees and a relatively big d . Next we
explain how such choices are derived.

All the equations in Section 3.1 are based on the assump-
tion that the soil surface is totally flat and soil is a homoge-
neous medium. However, in practice soil surface is always
rough and soil moisture can vary a lot when measured in a
small volume while it is stable when averaged over a large
volume. The roughness of soil surface and non-homogeneity
of soil medium, if not taken care of when choosing array
parameters, can make Eq.12 and Eq.14 inaccurate.

To reduce the impact of soil surface roughness, we should
constrain the incident points of waves going to different an-
tennas to be within a small area to make sure the assumption
that the waves have similar paths holds. In the ideal case, this
leads to θ4 = 90◦. However, when θ4 = 90◦, i.e., the antennas
are vertically aligned, the top antenna is likely to block the
line-of-sight (LoS) paths of the bottom two antennas. There-
fore, we choose θ4 to be a value around 90 degrees that does
not cause blockage.

Since the average soil moisture is more stable when aver-
aged over a larger volume, we should use a big d to reduce
the impact of soil non-homogeneity. However, it is also prob-
lematic when d is too big due to the fast signal attenuation
in soil as well as an ambiguity issue that we will discuss in
Section 3.5. Hence, d should fall in a range that is neither too
small nor too big. In practice, we determine the value of d
experimentally (Section 5.1.2).

3.3.2 Frequency band selection. Eq. 13 indicates that sig-
nal attenuation in soil is frequency-dependent. Higher fre-
quency signals have higher attenuation. In Strobe, we should
choose a relatively low frequency that at least allows the
wave to propagate to the bottom antenna.

To understand how Wi-Fi frequency bands, i.e., 2.4 GHz
and 5 GHz., attenuate in soil at different moisture levels,
we conduct measurements with a vector network analyzer
(VNA) in potting soil. With a transmission power of 15 dBm,
the VNA is not able to provide useful information when the
log magnitude is smaller than -90 dB. Figure 5 plots signal
attenuation in soil for the three receive antennas at depths
of 5 cm, 10 cm and 15 cm in soil. We can see that the 2.4 GHz
spectrum maintains larger than -80 dB log magnitudes at all
moisture levels while the 5 GHz spectrum does not have a
high-enough signal strength for the bottom antenna even
when soil is very dry. Due to the high attenuation, the 5 GHz
spectrum is not appropriate for soil sensing, although it has
a total bandwidth that spans about 665 MHz. These results
indicate that we should focus on using 2.4 GHz channels,
which only have around 70 MHz of available bandwidth.
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Figure 5: Channel attenuation in soil at different depthsmeasured by network analyzer. Generally, signal attenuation increases
as frequency, depth, or soil moisture increases.

3.4 Resolving multipath
The equations derived in Section 3.1 only consider the short-
est path from the transmit to the receive antennas. In practice,
channels always consist of multiple paths. In our measure-
ment setup, the shortest path is also the strongest path in
most cases. Therefore, we use the MUSIC algorithm to accu-
rately recover the shortest path from a multipath channel.
Another practical issue is that if there is no time and fre-
quency synchronization between the transmitter and the
receiver, the measured CSI would be corrupted by hardware
impairments, e.g., packet detection delay (PDD), sampling
frequency offset (SFO), and carrier frequency offset (CFO).
Similar to AoA-based methods, e.g., SpotFi [18], Strobe does
not require time and frequency synchronization to apply
MUSIC for relative ToF estimation. Next, we mathematically
explain the reason.
In a multipath environment, the CSI of themth antenna

and the nth frequency can be written as the sum of L paths:

hm,n =

L∑
l=1

al,me
−j2π (f0+∆f n)τl,m (15)

where al,m is a complex-valued amplitude of l th path, τl is
the absolute ToF of l th path and ∆f is the frequency spacing
between two adjacent frequency samples.

Without time and frequency synchronization between the
transmitter and the receiver, the corrupted CSI is given as:

ĥm,n =

L∑
l=1

al,me
−jθ0e−j2π (f0+∆f n)(τl,m+τ0) (16)

where θ0 is the phase shift caused by CFO and τ0 is the
ToF shift caused by PDD, SFO, and other possible delays
in hardware. θ0 and τ0 are the same across all the paths,
subcarriers, and antennas within a single channel because
these samples are measured at the same time and therefore
experience the same hardware impairments. Hence, although
we do not know what τ0 is, the relative ToF between two

antennas is not affected by hardware impairments, i.e., ∆τ =
τl,i −τl, j = (τl,i +τ0)−(τl, j +τ0). For a uniform linear antenna
array, the path difference remains the same for all adjacent
antenna pairs under far-field assumption, so does the relative
ToF, i.e., ∆τl = τl,i − τl,i+1 = τl,i+1 − τl,i+2. Similar to SoptFi,
we can then use MUSIC to jointly estimate absolute ToF
(τl,m − τ0) and relative ToF (τl,i − τl, j ) from corrupted CSIs.
The absolute ToF here contains PDD, SFO, and delays from
hardware, and thus is discarded by Strobe. Only the relative
ToF is remained and used for later apparent permittivity and
EC estimation.

3.5 Resolving ambiguity in relative ToF
Existing over-the-air AoA methods usually adopt a half-
wavelength antenna distance to avoid ambiguous results.
In soil, however, ambiguity is easier to occur due to the
higher permittivity (a physical distance of d is equivalent
to an effective distance of nd) and hard to avoid because
antenna distance cannot be too small (Section 3.3.1).
We first explain how phase ambiguity leads to relative

ToF ambiguity. For the three receive antennas in our setup,
the phase rotations of received signals are: θ1 = −2π f τ ,
θ2 = −2π f (τ + ∆τ ) and θ3 = −2π f (τ + 2∆τ ), where τ is
the absolute ToF, ∆τ is the relative ToF, and f is the carrier
frequency. We measure the phase rotations to estimate the
relative ToF ∆τ . However, the measured values are ambigu-
ous because the actual value of a phase rotation can be all
possible values of 2πk + θ , where k is an arbitrary integer
and θ is the measured phase rotation falling in [0, 2π ). The
relative ToF thus can have ambiguous values of ∆τ , ∆τ + τ0,
∆τ + 2τ0 , etc., where τ0 = 1/f is the time for the phase to
rotate 2π .
This ambiguity is also known as spatial aliasing in previ-

ous work, e.g., AWL [23]. AWL proposes a method to resolve
this issue by exploiting both 2.4 GHz and 5 GHz bands. How-
ever, this method does not apply to Strobe because 5GHz
signals do not propagate well through soil. Next we show
how Strobe leverages the knowledge of soil properties to



remove this ambiguity. First, we rely on the knowledge about
the range of soil’s refraction index n, which is usually be-
tween 2 and 6, to reduce the number of ambiguous values.
For example, when the antenna depth difference is 4.5 cm,
the corresponding range of relative ToF is 0.3-0.9 ns, where
ambiguity only occurs when the relative ToF falls in 0.3-0.5
ns or 0.7-0.9 ns for a 2.4 GHz signal (τ0 =0.4 ns). Thus, there
are at most 2 ambiguous results. From these limited number
of results, we can rely on signal amplitudes to pick the correct
one. In practice, the gap between the amplitudes correspond-
ing to the ambiguous ToF ranges is big enough to make this
method reliable, e.g., 20 dB as shown in Figure 5. We can
further improve the reliability by utilizing amplitudes mea-
sured by all three antennas and at multiple transmit antenna
locations to reduce the impacts of multipath and transmit
antenna location change.

3.6 Calibration for frequency-dependent
soil properties

Similar to most dielectric-based commodity soil sensors,
Strobe measures apparent permittivity ϵa and EC σa of soil,
which are frequency-dependent as shown in Eq. 1 and Eq. 3.
Commodity soil sensors usually use ϵa to approximate the
real part of permittivity ( i.e., ϵa ≈ ϵ ′r ) and σa to approximate
the actual EC (i.e., σa ≈ σ ) to simplify their conversions to
moisture and salinity, which could lead to erroneous results
when the approximations do not hold [24–26]. Specifically,
at lower frequencies, σ has a significant impact on ϵa so that
ϵa can largely overestimate ϵ ′r ; at higher frequencies, ϵ ′′r has
a significant impact on σa so that σa can largely overestimate
σ . Since Strobe operates at a high frequency, i.e., 2.4 GHz,
we calibrate estimated σa to get σ . For permittivity, Strobe
is able to compute ϵ ′r from ϵa . We note that they are almost
the same at 2.4 GHz, so we use ϵa to approximate ϵ ′r .

Calibration method for EC. Similar to the calibration
methods adopted by existing soil sensors, we perform a linear
regression to match EC estimated by Strobe with ground
truth EC. The linear relationship is given as:

σcali = a(σraw − b) (17)

The choice of the linear model is based on our experiments.
We notice that such a linear relationship has been reported
in prior work on TDR [26]. A possible reason for why this
linear relationship holds is that both ϵ

′′

r and σ increases as
soil moisture increases.

Converting to moisture and salinity. Strobe exploits
models given in a soil sensor manual [16] to convert the raw
apparent permittivity ϵa and calibrated apparent EC σcali to
soil moisture and salinity.

4 IMPLEMENTATION
We implement Strobe on multiple platforms including USRP,
WARP, and off-the-shelf Wi-Fi cards to measure soil mois-
ture and EC at 2.4 GHz. USRP allows us to do wideband
experiments for ground truthing. The WARP board allows us
to replicate CSI measurements similar to Wi-Fi cards. Since
WARP has better support for manual configurations, espe-
cially gain settings, we microbenchmark the performance of
Strobe mainly with WARP. To show that Strobe can be de-
ployed on low-cost commodity hardware, we validate our re-
sults with off-the-shelf Wi-Fi cards. We test two open source
CSI tools [27, 28] with Intel Wi-Fi Link 5300 NIC and Atheros
AR9590 Wi-Fi NIC. Since the Intel Wi-Fi cards have a well
known issue of random phase jumps at 2.4 GHz [20], we
choose to use the Atheros cards in our experiments.

USRP setup and calibration. We take wideband mea-
surements that span from 400 MHz to 1400 MHz using two
USRP N200 devices with SBX daughterboards, one as trans-
mitter and the other as receiver. We choose a much smaller
frequency range than the range the boards can operate on,
i.e., 400-4400 MHz, because we observe that at higher fre-
quencies, the SBX daughterboards have very low transmis-
sion power, thus producing unreliable CSI data. To emulate a
MIMO capable receiver equipped with multiple antennas as
described in Section 3, we switch antennas during the mea-
surements. For each antenna, the system sweeps through
the 400-1400 MHz spectrum with a step size of 5 MHz.
To allow such an emulation, PLL offsets, CFO, SFO, and

PDD must be consistent for all the receiver antennas. We
employ three methods to calibrate them: (i) We exploit a
PLL phase offset resync feature on the SBX daughterboards
to synchronize PLL phase offsets on two USRPs after each
frequency retune; (ii) We use a MIMO cable to get time and
frequency synchronization of two devices. (iii) We use a
narrowband sinusoid for CSI estimation to reduce PDD effect.

WARP and Wi-Fi card setup and calibration. With
WARP boards and Wi-Fi cards, we take narrower bandwidth
measurements that only exploit the 70 MHz Wi-Fi spectrum
at 2.4 GHz. Unlike the USRPmeasurements, here we consider
a more practical case that transmitter and receiver are not
time and frequency synchronized.

We use the WARPLab reference design [29] to implement
CSI measurement on WARP boards. To emulate the Wi-Fi
cards, we use the pilot sequence from the 802.11n Wi-Fi
standard to estimate CSI. OneWARP board connects to three
receive antennas and another connects to a single transmit
antenna. In all the experiments, we use a fixed transmit
power of 8 dBm, which is much lower than the FCC-imposed
power limit for 2.4 GHz channels.
For the Wi-Fi cards, we use the Atheros CSI tool [28] to

collect CSI and set the cards into monitor-injector mode to



get CSI with stable phase. We install the two Wi-Fi cards
on two laptops through mini-PCIe to ExpressCard apdaters.
We use one Wi-Fi card connected with three antennas as
the receiver and another connected with one antenna as the
transmitter.
To use the entire 70MHz bandwidth, we switch all the

radio frequencies across the 2.4 GHz channels. We exploit
two common procedures to calibrate the inconsistent im-
pacts of hardware impairments across channels for both
WARP boards and Wi-Fi cards: (i) We use a wired connec-
tion between the transmit antenna and the three receive
antennas to calibrate the PLL phase offsets. Based on our
experiments1, such a calibration only needs to be performed
once for all channels and there is no need to re-calibration
unless radios are reset. (ii) We adopt SpotFi’s phase sanitiza-
tion algorithm [18] to equalize the impact of PDD and SFO on
channel phase slopes across multiple channel measurements.

Data analysis framework. We implement a data analy-
sis framework in Matlab that can analyze CSI data in real-
time and display soil moisture and EC values over time. The
framework can either read CSI data collected by the WARP
board usingWARP’sMatlab APIs or import CSI data from the
Atheros CSI tool by opening up a TCP connection between
the CSI tool and the Matlab framework.

Antenna array. To reduce deployment efforts, we use a
box to hold the antennas at correct relative positions, i.e.,
fixed antenna distance and array rotation, as shown in Fig-
ure 6(a). This box is made waterproof to protect the connec-
tors of antennas. There is a rod coming out from soil surface
to tell the farmers where the antennas are buried.

Experimental setup. In our experiments, only the re-
ceive antennas are buried and they are connected to either a
WARP board or a Wi-Fi card installed on a laptop through
SMA cables with the same length. As shown in Figure 6, we
setup potting soil boxes in a tent to conduct measurements
with controlled salinity and moisture levels, and test real
soils in outdoor environments.

5 PERFORMANCE EVALUATION
We first microbenchmark Strobe’s relative ToF accuracy
under various settings, i.e., different receive antenna dis-
tances, bandwidths, and moisture levels, and then evaluate
its performance of estimating different levels of soil permit-
tivity/moisture and EC/salinity at 2.4 GHz Wi-Fi spectrum
with fixed antenna distance and bandwidth.

Baselines. In our microbenchmarks, we compare narrow-
band relative ToF adopted in Strobe against absolute ToF
1We observe that on WARP boards, PLL phase offset of a channel remains
the same after frequency retune, although different channels have different
offsets. For the Wi-Fi cards, tracking phase jump after frequency retune is
simple because the RF chains share the same PLL and their random phase
only has two possible states separated by π .

(a) (b) (c)

Figure 6: Soil measurement setup for multi-antenna system.
Antennas are at different depths in soil while there is a rod
coming out from soil surface to indicate the location of an-
tenna array in soil. (a) Receive antenna array on a water-
proof box. (b) Tent with soil boxes. (c) Measurement setup
on a farm.

and wideband relative ToF. For all the soil experiments, we
compare Strobe against a commodity soil sensor. More specif-
ically, we make the following comparisons: (i) Absolute ToF
vs. relative ToF: We perform this comparison in air to demon-
strate the advantage of using relative ToF in achieving high
accuracy. (ii) Wideband vs. narrowband: For relative ToF, we
compare its accuracy when operating with different band-
widths, both in air and in soil, to show that its accuracy is
not constrained by bandwidth. We use USRPs for the first
two comparisons because USRPs allow flexible bandwidth
settings within a 1 GHz total bandwidth. (iii) 2.4 GHz wide-
band vs. 2.4 GHz narrowband: Since the USRPs we use do
not work well at 2.4 GHz (Section 4), we compare narrow-
band results measured by WARPs against wideband results
measured by a VNA. (iv) Commodity sensor vs. Strobe: We
compare Strobe’s permittivity and EC performance against
a commodity soil sensor, Decagon GS3, which can simul-
taneously measure apparent permittivity, apparent EC and
temperature. The sensor has ±1 accuracy of measuring per-
mittivity in 1-40 range and ±15% accuracy in 40-80 range.
It has ±10% accuracy of apparent EC measurement in the
range of 0-0.5 S/m. The sensor operates at 70 MHz.

Metrics. (i) We use ToF for over-the-air evaluations. (ii)
We report apparent permittivity (unitless) and EC (S/m) val-
ues, which are the default outputs from the Decagon GS3
sensor and commonly adopted by commodity soil sensors.
(iii) To make the results more intuitive, we also report soil
moisture (i.e., volumetric water content) and salinity (i.e.,
saturated extract EC), which are the metrics widely used
in soil moisture and salinity studies. We apply the models
given in the Decagon GS3 sensor manual [16] for both the
soil sensor and Strobe to convert permittivity to moisture
and apparent EC to saturated extract EC.

5.1 Relative ToF estimation accuracy
In this evaluation, we show that Strobe is able to accu-
rately estimate relative ToF with a very small bandwidth. We



first use USRPs operating over 1 GHz bandwidth to micro-
benchmark, and then use WARPs to evaluate the perfor-
mance at 2.4 GHz.

5.1.1 ToF accuracy over the air . Since soil is not a homo-
geneous medium and has permittivity/moisture variations,
we first conduct over-the-air measurements to isolate ToF
estimation error introduced by Strobe from the variations
introduced by soil. We evaluate Strobe’s relative ToF estima-
tion accuracy with different receive antenna distances and
bandwidths. To emulate moisture level increase in soil, we
increase antenna distances in air to get longer relative ToFs.
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Figure 7: Strobe’s joint relative and absolute ToF estimation
performance over the air. (a) Relative ToF: Using 3 antennas
to jointly estimate relative ToF and absolute ToF gives very
accurate results even with a small bandwidth. (b) Absolute
ToF of the antenna closest to the transmit antenna: Absolute
ToF deviates more with smaller bandwidths.

We use USRPs to collect CSI data in an indoor environ-
ment under strong LoS conditions. We vary the distance
between adjacent receive antennas from 0.1 m to 0.5 m. The
distance between the transmit antenna and the receive an-
tenna closest to it is 1.2 m and remains the same across all
the measurements. The ground truth ToF is the distance
measured by a tape measure and divided by speed of light.
Since the two USRP devices are time and frequency synchro-
nized, we estimate both relative ToF and absolute ToF from
collected CSI data using a joint estimation method, which
estimates relative ToF and absolute ToF at the same time.
We observe from Figure 7 that the errors of relative ToF

are small even with only 50 MHz bandwidth while the errors
of absolute ToF increase significantly as bandwidth reduces.
Note that this absolute ToF is produced from the joint esti-
mation method which exploits data from all three antennas
to improve the accuracy of absolute ToF. If only using one
antenna, the absolute ToF errors will be even larger. These re-
sults indicate that Strobe can indeed overcome the bandwidth
limit that constrains the accuracy of absolute ToF. However,
the slight increase of relative ToF error with smaller band-
width also indicates that larger bandwidth can help further
improve Strobe’s accuracy in a multipath environment.

5.1.2 Relative ToF Accuracy in Soil . Here we first use
USRPs to microbenchmark Strobe’s performance of estimat-
ing relative ToF in soil with different antenna distances, band-
widths and moisture levels, and then use WARPs to examine
Strobe’s performance with 70 MHz bandwidth at 2.4 GHz.
We conduct the experiments in a potting soil box. We bury
the receive antennas at different depths in soil and put the
transmit antenna at a certain height above soil surface. We
use a small horizontal distance of 2cm between two adjacent
antennas. The height is 1.08m in USRP measurements and
0.36m in WARP measurements. In each experiment, we com-
pare Strobe’s results against the Decagon GS3 soil sensor.
We use the soil sensor to measure moisture at more than 10
locations in the area around the antenna array to take care
of soil heterogeneity.

Impact of antenna depth difference. As discussed
in 3.3.1, antenna distance is a key factor in our antenna array
design that affects the relative ToF estimation accuracy. We
vary the distance between receive antennas in the vertical
plane in this evaluation. Figure 8(a) plots the permittivity
estimated from relative ToF. We observe that the heteroge-
neous nature of soil affects both the sensor and Strobe. The
permittivity data collected by soil sensor shows that soil
moisture can vary within a certain range in an area. We ob-
serve that when using Strobe with a depth difference of 1.5
cm, the estimated permittivity can deviate a lot from sensor
data and wider bandwidth cannot help improve performance.
This is because 1.5 cm is relatively small compared to possi-
ble path length variations caused by soil heterogeneity. With
a larger depth difference, the permittivity values estimated
with different bandwidths are more converged. Based on
these observations, we use a depth difference of 4.5 cm in
the following evaluations.

Relative ToF at differentmoisture levels.We vary soil
moisture by adding tap water into soil, which has a EC value
of 0.006 S/m according to the soil sensor. We measure the
accuracy of Strobe in determining different soil moisture
levels. In each experiment, we stir the soil thoroughly to
mix water into soil before burying the antenna array. Fig-
ure 8(b) shows results fromUSRPs at different moisture levels
and with different bandwidths. At all moisture levels, the
estimated permittivity does not deviate too much from the
sensor data, even with a small bandwidth. For the highest
moisture level, we observe the results of different bandwidths
diverge more. This is because of the hardware impairment of
SBX daughterboards discussed in 4. At a high moisture level,
signal attenuates a lot so that the CSIs at higher frequencies
become unreliable.
Figure 8(c) shows the estimated permittivity at 2.4 GHz

measured by WARP with a bandwidth of 70 MHz. We com-
pare Strobe against both the soil sensor and VNA. For the
VNA measurements, we only change the signal generator
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Figure 8: Soil permittivity estimation based on relative ToF. (a) USRP experiments over antenna depth differences: a small
depth difference results in large estimation error. (b) USRP experiments over moisture levels: even a small bandwidth is
enough to distinguish soil moisture levels. (c) 2.4 GHzWARP experiments: permittivity estimation byWARP is more accurate
compared against VNA; permittivity estimated at 2.4 GHz is smaller than soil sensor results measured at 70 MHz. (d) CDF of
permittivity deviations when using smaller bandwidth: using 20 MHz can result in slightly higher variations.

and recorder fromWARP to VNA while leaving the antennas
at the same locations. We measure channel phase rotation
over 1 GHz bandwidth to get the absolute ToF for all the
antennas and then calculate relative ToF between antennas.
We observe that the soil sensor and Strobe have a consistent
permittivity increase as moisture level increases. However,
the VNA is only consistent with the soil sensor and Strobe
under low moisture levels. Since we do not perform mul-
tipath processing for VNA data, it does perform well very
under high moisture levels. We also notice that permittivity
values estimated at higher frequencies by both WARP and
VNA are slightly smaller than those measured by the soil sen-
sor. This is because soil permittivity is frequency-dependent,
as discussed in Section 3.6.

Relative ToF with narrower bandwidths. Here we
evaluate the impact of bandwidth on permittivity estimation
at 2.4 GHz. For all moisture levels shown in Figure 8(c), we
compute permittivity values for 20 MHz and 50 MHz band-
widths by subsetting the 70 MHz data collected by WARP.
We include all possible subsets in Figure 8(d), which shows
that a smaller bandwidth can result in more variations of
permittivity. However, we observe that even for a 20 MHz
bandwidth, the maximum permittivity deviation is only 0.6,
which is negligible for soil moisture estimation.

(a) Potting mix (b) Sandy loam (c) Silt loam

Figure 9: Soil types used in experiments

5.2 Permittivity and EC at Wi-Fi Spectrum
Here we seek to answer a key question: does the permit-
tivity and EC estimated by Strobe match the results in well-
established soil studies under various soil conditions? We con-
sider three major factors, soil moisture, soil salinity and soil
type, that affect permittivity and EC in soil. We evaluate how
Strobe acts on soil permittivity and EC changes introduced
by these factors. We control them separately: (i) Moisture:
We add tap water into soil to create different moisture levels.
(ii) Salinity: Since controlling salinity in-situ is non-trivial,
we setup three potting soil boxes with three salinity levels
by adding different amounts of salt into them. (iii) We test
three types of soil as shown in Figure 9: potting mix and two
types of real soil – sandy loam and silt.
We conduct measurements with WARP at 2.4 GHz and

compare the results against the Decagon GS3 soil sensor.
Figure 11(a) plots the raw permittivity and EC outputs from
Strobe and the soil sensor, each with 5 curves. Each curve
contains data at different moisture levels with a single soil
type and at a single salinity level. For each data point, we
average WARP results at multiple heights of the transmit
antenna from 0.15 m to 0.6 m and sensor results at more than
10 locations around the antenna array.
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Figure 10: Soilmoisturemeasured by soil sensor at two salin-
ity levels. The sensor reports higher moisture values at the
higher salinity level.
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Figure 11: Soil permittivity and EC estimation with Strobe and Decagon GS3 sensor. Strobe calibration: EC is calibrated based
on ground truth EC measured by the soil sensor. Salinity level: S3>S2>S1.
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Figure 12: Salinity estimated by soil sensor and calibrated
Strobe. At high salinity levels, Strobe is more accurate than
the soil sensor.

Accuracy of soil sensor. Before comparing Strobe
against the soil sensor, we need to understand the accu-
racy of the soil sensor itself. Previous studies [24, 30] show
that soil sensors’ permittivity estimation could suffer at high
salinity but they can provide accurate EC reading, which
matches the discussion in Section 3.6. To test whether this
behavior also exists in the sensor we use, we setup two pot-
ting soil boxes with two salinity levels. We add the same
amount of water into the two boxes to create 9 different
moisture levels. We compute the ground truth moisture from
the ratio of water volume to soil volume. Figure 10 compares
the performance of the two boxes. Since we add the same
amount of water into the two boxes at each moisture level,
the soil sensor is supposed to report the same moisture value
for the two boxes. However, it is obvious that the increase
of salinity would increase measured moisture value, which
means moisture measured by the sensor is inaccurate under
high salinity levels.

Strobe’s accuracy of soil moisture detection. All
curves in Figure 11(a) present an increase of permittivity
as moisture increases, indicating that Strobe can correctly
detect soil moisture change in all three soil types under dif-
ferent salinity levels. We compare the moisture estimated by
Strobe against that by the soil sensor in Figure 11(b). For the
three potting soil boxes, since we add water to each box until
soil is saturated, the boxes are supposed to have the same sat-
urated soil moisture in the end, which is around 0.5m3/m3

based on our measurements with the volumetric method.
Strobe reports moisture at saturation with errors less than
0.03m3/m3. In contrast, the soil sensor overestimates mois-
ture for all potting soil boxes, similar to the results shown
in Figure 10. The sensor has a maximum error of 0.1m3/m3

as shown in Figure 11(b). For the other two soil types both
having low EC, we treat moisture measured by the soil sen-
sor as the ground truth. We observe a good match in silt
loam and a deviation in sandy loam between soil sensor and
Strobe. A possible reason for the deviation is that the real part
of permittivity in sandy loam changes over frequency [31].
However, more experiments are needed to validate it.

Strobe’s accuracy of soil salinity detection. Here we
evaluate Strobe’s capability of detecting different salinity
levels. In Figure 11(a), we observe that the curves of Strobe
are clearly separated while the curves of the soil sensor are
overlapped at high salinity, which is caused by the sensor’s
erroneous permittivity reading. This means Strobe outper-
forms the soil sensor to tell different salinity levels.
However, as shown in Figure 11(c), Strobe always pro-

duces higher EC than the soil sensor since it operate at a
high frequency, which is consistent with the discussion in
Section 3.6. Here we treat the sensor results as the ground
truth and apply Eq. 17 to calibrate Strobe. After the calibra-
tion, we observe a maximum EC deviation of 0.026 S/m.
Then we convert apparent EC to salinity, i.e., saturation

extract EC, to present more intuitive results, as shown in
Figure 12. We only plot calibrated data for Strobe since its
raw EC would cause significant overestimation of salinity.
For each data point, we average the results for each soil box
over salinity values estimated from the 3 highest moisture
levels. We discard data of lower moisture levels because the
method we use to compute salinity is imprecise for dryer
soils [16]. Figure 12 shows that the soil sensor is not able
to tell the salinity difference of the three potting soil boxes
while Strobe can correctly distinguish all the salinity levels.

Comparing WARP with Atheros Wi-Fi card. Al-
though the capability of commodity Wi-Fi cards to give accu-
rate relative phase information has been proved by the rich



Table 1: Comparison of WARP and Wi-Fi card results.
Permittivity EC (S/m) Corr Corr

WARP Wi-Fi WARP Wi-Fi (phase) (power)
Test 1 6.59 6.59 0.15 0.18 0.9597 0.9971
Test 2 8.80 9.00 0.26 0.21 0.9981 0.9652
Test 3 14.95 14.95 0.41 0.48 0.9972 0.9226

AoA-related studies, such as SpotFi [18], we still need to ver-
ify that they work in soil. To do this, we conduct experiments
with both WARP boards and Atheros Wi-Fi cards and use
WARP results as a reference. When switching the data trans-
mit and record devices from WARP boards to Wi-Fi cards,
we keep transmit and receive antennas at the same locations.
The Atheros Wi-Fi cards do not report reliable amplitudes,
so we instead use RSSIs reported for each channel to esti-
mate EC. Table 1 shows results of three tests with different
moisture levels. WARP and Wi-Fi card report very similar
apparent permittvity and EC results. We also compute the
correlations between WARP results and Wi-Fi card results.
As shown in Table 1, both phase and receive power have
good correlations. Figure 13 shows the detailed data points
in test 2 at the center frequencies of 2.4 GHz channels. To
get a clearer comparison, all RSSIs from the Wi-Fi card are
subtracted by a constant in the figure. Overall, all the results
of WARP and Wi-Fi card correlate well and the small devi-
ations do not lead to significant deviations of permittivity
and EC results shown in Table 1.
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Figure 13: WARP and Wi-Fi card report similar phase and
receive power.

6 RELATEDWORK
While RF-based soil sensing has been well studied, our work
is the first that makes it possible to use off-the-shelf low-cost
Wi-Fi devices for detecting soil properties. We discuss related
work in four main categories.

Soil sensing using RF. RF sensing techniques can be
classified into two types. (i) Remote sensing techniques [32–
34] use the dependency of soil reflectivity on soil moisture
to sense soil moisture. These approaches have low spatial
resolution from 1 m to 10s of km, and can only detect soil
moisture on shallow soil surface with a depth of a few cen-
timeters. (ii) ToF-based techniques such as GPR [35] and
TDR [36] provide good spatial resolution. However, these

approaches rely on specialized ultra-wideband systems to
get accurate ToF estimation, thus are very expensive. A re-
cent study, LiquID[37], shows that lower cost UWB chips
can be used for liquid identification. However, such a system
still requires a lot of calibrations and the whole system can
potentially cost 100s of dollars.

Underground wireless sensor networks. The under-
ground sensor networks [38–40] typically consist of un-
derground soil probes and wireless communication nodes,
where RF is responsible for communication, not sensing. The
soil probes are usually commercially available soil sensors,
whose high cost limits the scales of sensor networks. Using
low-cost soil probes, however, is not ideal considering the
loss of accuracy and capability. Most low-cost sensors, e.g.,
a capacitive sensor, can only sense moisture, not EC. A few
studies [41–44] seek to reduce the cost by designing new
moisture/EC-sensitive probes that can work with low-cost
communication nodes, e.g., RFID or backscatter. However,
designing a specialized probe could potentially increase cost.

AoA and ToF estimation on Wi-Fi devices. We build
Strobe on existing AoA and ToF estimation technologies
developed for commodity Wi-Fi devices [18, 19, 28, 45–47].
However, these technologies do not work for wave propaga-
tion in soil due to different reasons. It is unlikely to achieve
the sub-nanosecond accuracy of Chronos [45] in soil due
to the high attenuation of 5 GHz signals. SpotFi’s [45] ac-
curacy benefits from 40 MHz bandwidth and the carrier
frequency of 5 GHz. To combat signal attenuation in soil, we
instead use 20 MHz channels at 2.4GHz. To deal with mul-
tipath and amplitude variations due to impedance change
or soil heterogeneity, we spliced all 2.4 GHz channels. Ex-
isting work on channel splicing, however, only works for a
single antenna [28, 47]. Our observations about hardware
eliminates the exhaustive search for both PLL phase offset
calibration [20] and channel splicing [28, 47] in prior work.

Other low-cost techniques. Besides ultra-wideband
systems and Wi-Fi devices, there are some other commer-
cially available RF devices that can provide ToF estimation,
such as global positioning system (GPS) receivers [48]. GPS
relies on ToF between satellites and the receiver for local-
ization. However, its ToF resolution and penetration depth
limit its use in ToF-based soil moisture sensing. Ranging
techniques using ultrasound [49, 50] have been well studied
for over-the-air wave propagation. However, ultrasound is
not appropriate for ToF-based soil moisture estimation since
it does not correlate very with moisture, which limits its
applications of soil sensing to rely on reflectivity[51, 52].

7 DISCUSSION & FUTUREWORK
Strobe takes the first step in leveragingWi-Fi communication
for estimating soil properties. However, for it to achieve



its true potential, where a farmer with any Wi-Fi enabled
device can infer soil properties, we plan to take Strobe in the
following directions.

Conducting extensive evaluations. In this paper, we
have shown limited results due to the difficulty of setting up
measurements. These results, as a very first step, have shown
Strobe’s large potential in achieving good performance with
simple calibrations. However, more measurements under
more conditions need to be performed to rigorously evaluate
Strobe’s performance, just like how the existing commercial
soil sensors are tested.

Making calibrations easier. Strobe requires two kinds
of calibrations. (i) Calibrating frequency-dependent soil prop-
erties measured at 2.4 GHz (Section 3.6): Similar to existing
agricultural sensor solutions, this calibration only needs to
be performed once for each soil type. The calibration data
can then be reused over time and under different weather
conditions. In the future, we will collect calibration data for
the major soil types that only have a limited number; so
we do not expect an enormous effort. Additionally, we can
possibly reuse some calibration data from existing soil stud-
ies. (ii) Calibrating the hardware platform: Similar to AoA
applications, currently we use cables with known lengths to
calibrate the relative phase among antennas. We are inves-
tigating methods to get this done at the factory so that the
system can be much easier to deploy and maintain.

Integration with commercial Wi-Fi devices. The In-
tel and Qualcomm Atheros 11n chipsets have shown the
feasibility of providing CSI information to the user level, and
we are working with other chip vendors to expose these val-
ues. Strobe’s transmitter side, e.g., a smartphone, is simpler,
which only requires a single antenna, and doesn’t need to
expose CSI values. Furthermore, since 2.4 GHz of the spec-
trum is available in nearly all countries, we expect Strobe to
be universally usable.

Sensing deeper in soil.We have tested Strobe over the
2.4 GHz spectrum with depths up to 30 cm. To make it sense
deeper, our key insight is to use beamforming to increase the
SNR. The challenge is to change the direction of the beam-
formed signal based on the moisture level of soil. We are
actively investigating solutions to this problem. An alterna-
tive is to use the TV white space spectrum that can sense
soil at depths deeper than 1 m, which is sufficient for most
broadacre crops and for horticulture.

Non-intrusive Sensing. Strobe measures the soil prop-
erties across two antennas. If the antennas are placed further
apart, Strobe can help image soil. Such a technique makes
it possible to map roots of plants without destroying them,
which is known to be a hard problem in agriculture. It is also
possible to use Strobe to measure physical properties of soil,
such as compaction or porosity.

Price andBattery Life. Existing commercial soil sensors
cost 100s to 1000s of dollars, especially the industrial grade
soil EC sensors, and the ones we are now actively working
with in a large scale multi-year agricultural IoT project.

Currently Strobe costs 10s of dollars. Multiple features of
Strobe can help bring down the system’s overall cost to be
sub-10 dollars. (i) Strobe does not require a specialized reader.
(ii) Strobe only needs a single-band (2.4 GHz) Wi-Fi device
to communicate with the device in soil. (iii) For the device
in soil, although it is recommended to use a chipset with 3
antennas, a 2-antenna radio can work as well. The price of a
typical IoT board with a 2-antenna 2.4 GHz Wi-Fi chipset, an
onboard ARM processor and batteries is similar to a Vocore2,
or C.H.I.P., both of which cost less than 10 dollars.

The biggest cost in the system now is batteries, since the
AA batteries we propose to use need replacements. We are
actively researching on methods to recharge the batteries. In
addition, we can use the deep sleep mode of Wi-Fi chipset to
make batteries last longer, e.g., 4 AA batteries can last over a
year. The device in soil only needs to wake upwhen receiving
packets from a close-by surveying device containing a BSSID
stored in it. Else, it operates in deep sleep mode.
To further reduce cost and improve battery life, we are

investigating the use of a Wi-Fi based backscatter system in
soil instead of an active transmitter. Based on our discussion
with chip vendors, we also expect the cost of the system to
be lower when manufactured at a larger scale, e.g., 10s of
thousands of devices.
8 SUMMARY
In this paper we present a new technique, called Strobe, for
estimating soil moisture and EC using Wi-Fi signals. The
system estimates these parameters by measuring the relative
time of flight of Wi-Fi signals between multiple antennas,
and the ratios of the amplitudes of the signals. We have
implemented Strobe on two SDR platforms and Wi-Fi cards.
Our results show that Strobe can accurately estimate soil
moisture and EC at various moisture and salinity levels.

Our vision is to enable a future where any farmer can take
their smartphone close to soil and learn more about it. By
avoiding expensive sensors that cost more than 100 dollars
each, Strobe reduces the price for soil sensing, thereby taking
a big step in enabling the adoption of data-driven agriculture
techniques by small holder farmers.

ACKNOWLEDGMENTS
We sincerely thank our shepherd, Domenico Giustiniano,
and the anonymous reviewers for their valuable feedback.
We thank Colleen Josephson, Deepak Vasisht, andManikanta
Kotaru for their constructive input and help. This research
was done at Microsoft. Jian Ding was supported in part by
NSF Award #1518916.



REFERENCES
[1] Soil electrical conductivity, soil quality kit – guide for educators,

usda nrcs. https://www.agric.wa.gov.au/horticulture/soil-moisture-
monitoring-selection-guide.

[2] Soil moisture monitoring: a selection guide, department of primary
industries and regional development, government of australia, 5th
sep, 2018. https://www.agric.wa.gov.au/horticulture/soil-moisture-
monitoring-selection-guide.

[3] Carlos MP Vaz, Scott Jones, Mercer Meding, and Markus Tuller. Eval-
uation of standard calibration functions for eight electromagnetic soil
moisture sensors. Vadose Zone Journal, 12(2), 2013.

[4] G Kargas and P Kerkides. Evaluation of a dielectric sensor for mea-
surement of soil-water electrical conductivity. Journal of Irrigation
and Drainage Engineering, 136(8):553–558, 2010.

[5] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer
Chandra, Sudipta N. Sinha, Ashish Kapoor, Madhusudhan Sudarshan,
and Sean Stratman. FarmBeats: An IoT platform for data-driven agri-
culture. In Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’17), pages 515–529, 2017.

[6] Milton Whitney et al. Instructions for taking samples of soil for
moisture determinations. 1894.

[7] EA Colman. The place of electrical soil-moisture meters in hydrologic
research. Eos, Transactions American Geophysical Union, 27(6):847–853,
1946.

[8] Harrison E Patten. Heat transference in soils. 1909.
[9] LA Richards. Soil moisture tensiometer materials and construction.

Soil Sci, 53(4):241–248, 1942.
[10] Wilford Gardner and Don Kirkham. Determination of soil moisture

by neutron scattering. Soil Science, 73(5):391–402, 1952.
[11] G Clarke Topp, JL Davis, and Aa P Annan. Electromagnetic determi-

nation of soil water content: Measurements in coaxial transmission
lines. Water resources research, 16(3):574–582, 1980.

[12] Kurt Roth, Rainer Schulin, Hannes Flühler, and Werner Attinger. Cal-
ibration of time domain reflectometry for water content measure-
ment using a composite dielectric approach. Water Resources Research,
26(10):2267–2273, 1990.

[13] John O Curtis. Moisture effects on the dielectric properties of soils.
IEEE transactions on geoscience and remote sensing, 39(1):125–128, 2001.

[14] MA Hilhorst. A pore water conductivity sensor. Soil Science Society of
America Journal, 64(6):1922–1925, 2000.

[15] Harry M Jol. Ground penetrating radar theory and applications. elsevier,
2008.

[16] Decagon Devices. GS3 water content, ec temperature sensor: Opera-
torâĂŹs manual. Pullman: Decagon Devices, 2016.

[17] DA Robinson, Scott B Jones, JM Wraith, Daniel Or, and SP Friedman.
A review of advances in dielectric and electrical conductivity measure-
ment in soils using time domain reflectometry. Vadose Zone Journal,
2(4):444–475, 2003.

[18] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti.
SpotFi: Decimeter level localization using WiFi. In Proceedings of the
2015 ACM SIGCOMM Conference, volume 45, pages 269–282. ACM,
2015.

[19] Jie Xiong and Kyle Jamieson. ArrayTrack: A fine-grained indoor
location system. In Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’13), pages 71–84,
Lombard, IL, 2013. USENIX.

[20] Jon Gjengset, Jie Xiong, GraemeMcPhillips, and Kyle Jamieson. Phaser:
Enabling phased array signal processing on commodity WiFi access
points. In Proceedings of the 20th annual international conference on
Mobile computing and networking (MobiCom’14), pages 153–164. ACM,
2014.

[21] Yaxiong Xie, Yanbo Zhang, Jansen Christian Liando, and Mo Li. SWAN:
StitchedWi-Fi antennas. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking (MobiCom’18), pages
51–66. ACM, 2018.

[22] ZHI Sun, Ian F Akyildiz, and Gerhard P Hancke. Dynamic connectiv-
ity in wireless underground sensor networks. IEEE Transactions on
Wireless Communications, 10(12):4334–4344, 2011.

[23] Zhe Chen, Zhongmin Li, Xu Zhang, Guorong Zhu, Yuedong Xu, Jie
Xiong, and XinWang. AWL: Turning spatial aliasing from foe to friend
for accurate WiFi localization. In Proceedings of the 13th International
Conference on Emerging Networking EXperiments and Technologies
(CoNEXT ’17), pages 238–250, New York, NY, USA, 2017. ACM.

[24] Ullrich Dettmann and Michel Bechtold. Evaluating commercial mois-
ture probes in reference solutions covering mineral to peat soil condi-
tions. Vadose Zone Journal, 17(1), 2018.

[25] Svatopluk Matula, Kamila Bát’ková, and Wossenu Legese. Laboratory
performance of five selected soil moisture sensors applying factory
and own calibration equations for two soil media of different bulk
density and salinity levels. Sensors, 16(11):1912, 2016.

[26] GC Topp, M Yanuka, WD Zebchuk, and S Zegelin. Determination of
electrical conductivity using time domain reflectometry: Soil and water
experiments in coaxial lines. Water Resources Research, 24(7):945–952,
1988.

[27] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall.
Tool release: Gathering 802.11n traces with channel state information.
SIGCOMM Comput. Commun. Rev., 41(1):53–53, January 2011.

[28] Yaxiong Xie, Zhenjiang Li, and Mo Li. Precise power delay profiling
with commodity WiFi. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking (MobiCom’15), pages
53–64. ACM, 2015.

[29] Rice University. WARP project. http://warpproject.org.
[30] SJ Lim, MN Shin, JK Son, JD Song, KH Cho, SH Lee, JH Ryu, and

JY Cho. Evaluation of soil pore-water salinity using a decagon gs3
sensor in saline-alkali reclaimed tidal lands. Computers and Electronics
in Agriculture, 132:49–55, 2017.

[31] Myron C Dobson, Fawwaz T Ulaby, Martti T Hallikainen, and Mo-
hamed A El-Rayes. Microwave dielectric behavior of wet soil-part II:
Dielectric mixing models. IEEE Transactions on Geoscience and Remote
Sensing, (1):35–46, 1985.

[32] JR Wang and BJ Choudhury. Remote sensing of soil moisture content,
over bare field at 1.4 ghz frequency. Journal of Geophysical Research:
Oceans, 86(C6):5277–5282, 1981.

[33] Thomas J Jackson. III. measuring surface soil moisture using passive
microwave remote sensing. Hydrological processes, 7(2):139–152, 1993.

[34] Binayak P Mohanty, Michael H Cosh, Venkat Lakshmi, and Carsten
Montzka. Soil moisture remote sensing: State-of-the-science. Vadose
Zone Journal, 16(1), 2017.

[35] JA Huisman, SS Hubbard, JD Redman, and AP Annan. Measuring soil
water content with ground penetrating radar. Vadose zone journal,
2(4):476–491, 2003.

[36] K Noborio. Measurement of soil water content and electrical con-
ductivity by time domain reflectometry: a review. Computers and
electronics in agriculture, 31(3):213–237, 2001.

[37] Ashutosh Dhekne, Mahanth Gowda, Yixuan Zhao, Haitham Hassanieh,
and Romit Roy Choudhury. Liquid: A wireless liquid identifier. In Pro-
ceedings of the 16th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys’18), pages 442–454. ACM, 2018.

[38] M Can Vuran and Agnelo R Silva. Communication through soil in
wireless underground sensor networks–theory and practice. In Sensor
Networks, pages 309–347. Springer, 2010.

https://www.agric.wa.gov.au/horticulture/soil-moisture-monitoring-selection-guide
https://www.agric.wa.gov.au/horticulture/soil-moisture-monitoring-selection-guide
https://www.agric.wa.gov.au/horticulture/soil-moisture-monitoring-selection-guide
https://www.agric.wa.gov.au/horticulture/soil-moisture-monitoring-selection-guide
http://warpproject.org


[39] Yiwei Zhuo, Hongzi Zhu, Hua Xue, and Shan Chang. Perceiving
accurate CSI phases with commodity WiFi devices. In INFOCOM 2017-
IEEE Conference on Computer Communications, IEEE, pages 1–9. IEEE,
2017.

[40] Mahta Moghaddam, Dara Entekhabi, Yuriy Goykhman, Ke Li, Mingyan
Liu, Aditya Mahajan, Ashutosh Nayyar, David Shuman, and Demos-
thenis Teneketzis. A wireless soil moisture smart sensor web using
physics-based optimal control: Concept and initial demonstrations.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 3(4):522–535, 2010.

[41] Azhar Hasan, Rahul Bhattacharyya, and Sanjay Sarma. A monopole-
coupled rfid sensor for pervasive soil moisture monitoring. InAntennas
and Propagation Society International Symposium (APSURSI), 2013 IEEE,
pages 2309–2310. IEEE, 2013.

[42] Shuvashis Dey, Nemai Karmakar, Rahul Bhattacharyya, and Sanjay
Sarma. Electromagnetic characterization of soil moisture and salinity
for UHF RFID applications in precision agriculture. In Microwave
Conference (EuMC), 2016 46th European, pages 616–619. IEEE, 2016.

[43] Spyridon-Nektarios Daskalakis, Stylianos D Assimonis, Eleftherios
Kampianakis, and Aggelos Bletsas. Soil moisture scatter radio net-
working with low power. IEEE Transactions on Microwave Theory and
Techniques, 64(7):2338–2346, 2016.

[44] Md Mazidul Islam, Kimmo Rasilainen, and Ville Viikari. Implemen-
tation of sensor rfid: Carrying sensor information in the modulation
frequency. IEEE Transactions on Microwave Theory and Techniques,
63(8):2672–2681, 2015.

[45] Deepak Vasisht, Swarun Kumar, and Dina Katabi. Decimeter-level
localization with a single WiFi access point. In Proceedings of the 13th

USENIX Symposium on Networked Systems Design and Implementation
(NSDI’16), pages 165–178, 2016.

[46] Swarun Kumar, Stephanie Gil, Dina Katabi, and Daniela Rus. Accurate
indoor localization with zero start-up cost. In Proceedings of the 20th
annual international conference on Mobile computing and networking
(MobiCom’14), pages 483–494. ACM, 2014.

[47] Jie Xiong, Karthikeyan Sundaresan, and Kyle Jamieson. ToneTrack:
Leveraging frequency-agile radios for time-based indoor wireless lo-
calization. In Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking (MobiCom ’15), pages 537–549,
New York, NY, USA, 2015. ACM.

[48] Elliott Kaplan and Christopher Hegarty. Understanding GPS: principles
and applications. Artech house, 2005.

[49] Andy Ward, Alan Jones, and Andy Hopper. A new location technique
for the active office. IEEE Personal communications, 4(5):42–47, 1997.

[50] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The
cricket location-support system. In Proceedings of the 6th Annual Inter-
national Conference on Mobile Computing and Networking (MobiCom
’00), pages 32–43, New York, NY, USA, 2000. ACM.

[51] DA Robinson, CS Campbell, JWHopmans, Brian K Hornbuckle, Scott B
Jones, R Knight, F Ogden, J Selker, and O Wendroth. Soil moisture
measurement for ecological and hydrological watershed-scale obser-
vatories: A review. Vadose Zone Journal, 7(1):358–389, 2008.

[52] Nobutaka Hiraoka, Takefumi Suda, Kazuhiro Hirai, Katsuhiko Tanaka,
Kazunari Sako, Ryoichi Fukagawa, Makoto Shimamura, and Asako
Togari. Improved measurement of soil moisture and groundwater
level using ultrasonic waves. Japanese Journal of Applied Physics,
50(7S):07HC19, 2011.


	Abstract
	1 Introduction
	2 Background
	2.1 Sensing soil moisture and EC
	2.2 Soil sensing using RF
	2.3  Limitations of RF sensing techniques

	3 Strobe Design
	3.1 Estimating apparent permittivity
	3.2 Estimating apparent EC
	3.3 Soil-specific design choices
	3.4 Resolving multipath
	3.5 Resolving ambiguity in relative ToF
	3.6 Calibration for frequency-dependent soil properties

	4 Implementation
	5 Performance Evaluation
	5.1 Relative ToF estimation accuracy
	5.2 Permittivity and EC at Wi-Fi Spectrum

	6 Related Work
	7 Discussion & Future Work
	8 Summary
	Acknowledgments
	References

