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Figure 1: Sample visualization images from Vis410 ranked by our machine learning model regarding aesthetics (decreasing from
left to right) show effectiveness of our method.

ABSTRACT

Researchers assess visualizations from multiple aspects, such as
aesthetics, memorability, engagement, and efficiency. However,
these assessments are mostly carried out through user studies. There
is a lack of automatic visualization assessment approaches, which
hinders further applications like visualization recommendation, in-
dexing, and generation. In this paper, we propose automating the
visualization assessment process with modern machine learning ap-
proaches. We utilize a semi-supervised learning method, which first
employs Variational Autoencoder (VAE) to learn effective features
from visualizations, subsequently training machine learning models
for different assessment tasks. Then, we can automatically assess
new visualization images by predicting their scores or rankings with
the trained model. To evaluate our method, we run two different
assessment tasks, namely, aesthetics and memorability, on different
visualization datasets. Experiments show that our method can learn
effective visual features and achieves good performance on these
assessment tasks.

Keywords: Visualization, automated design, visualization assess-
ment, presentation

1 INTRODUCTION

Expressive visualizations served for presentation purposes have
become prevalent in news articles, presentation slides, scientific pub-
lications, and so on [8,24,25,30]. As a result, researchers in InfoVis
community have started to pay attention to a wide variety of assess-
ment perspectives, including memorability [4, 5], aesthetics [14],
engagement [16], and enjoyment [29]. These have become important
criteria for visualization assessment. Recent work has summarized
underlying factors and gained insights on good visualizations from
different aspects through in-lab user studies or crowd-sourcing exper-
iments [4, 5, 14, 16]. For example, Borkin et al. [5] conduct a study
using Amazon’s Mechanical Turk to analyze contributing attributes
to memorability scores of visualizations; Harrison et al. [14] study
how quickly aesthetic impressions are formed.
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While the findings from empirical studies are inspiring and
thought-provoking for designers to improve visualization design, it
is still inadequate, if not impossible, to derive standard and practica-
ble measurements for assessing expressive visualizations. Specific
assessment tasks, such as estimating the memorability of given
visualizations, or comparing the aesthetic scores of two visualiza-
tions, are still beyond attainment. This hinders further visualization
applications, such as recommendation, indexing, generation, and
mixed-initiative authoring of expressive visualizations.

In this paper, we explore the automatic assessment of expressive
visualizations with machine learning algorithms. We combine an
unsupervised module to extract effective features representing the
visualization images, and a supervised module to train task-oriented
learning models for various assessment tasks based on the features
extracted from prior module.

More specifically, since there is no large-scale visualization
dataset with human labels for assessment tasks, we first leverage
Variational Autoencoder (VAE) [23] to make use of the unlabeled
data to extract effective feature embeddings, which avoids the need
for huge datasets and expert-engineered features. With the obtained
features, we can train task-specific machine learning models for vi-
sualization assessment tasks. We can therefore benefit from previous
user experiment datasets and develop automatic models to tackle
various assessment tasks.

Our paper makes the first attempt to automate visualization assess-
ment. To understand the effectiveness of our approach, we evaluate
our method on two representative assessment tasks, namely, aes-
thetics and memorability. We leverage three public datasets to train
the models. Experiments on the datasets demonstrate the effective-
ness of our method. We believe our research can inspire further
study on automatic assessment of expressive visualizations. Many
applications such as visualization recommendation, generation, and
indexing can be developed based on visualization assessment tech-
niques. Our main contributions are as follows:

• We propose exploiting computational models to automatically
assess expressive visualization images.

• We implement a VAE that can learn representations for visu-
alizations without human supervision. The extracted features
from VAE can be adopted in different assessment tasks with
targeted machine learning models.

• We experiment on two visualization datasets for two different
assessment tasks, namely, memorability and aesthetics. The
results demonstrate the effectiveness of our approach.



2 RELATED WORK

2.1 Assessment of Visualization Design and Encoding
Visualization design has gone beyond standard visual charts in the
InfoVis community [21, 26, 33, 34]. Consequently, there is a need to
understand the quality of visualizations from multiple aspects, such
as effectiveness [2], confidence [32], enjoyment [29], memorabil-
ity [10, 29], readability [2], aesthetics [2, 3], and learnability [10],
through empirical experiments. For example, Borkin et al. [4, 5]
pioneered the study of visualization memorability, showing that
visualizations are intrinsically memorable with consistency across
people. Harrison et al. [14] conduct online experiments to inves-
tigate people’s judgments of the aesthetic appeal of infographics.
Hung et al. [16] design a questionnaire to assess user engagement of
information visualizations from 11 different characteristics. Bate-
man et al. [1] measure accuracy and long-term recall of embellished
charts and plain ones, finding that the accuracy for embellished
charts are no worse but the recall is significantly better. Haroz et
al. [13] test the memorability, speed of finding information, and
engagement performance for pictographs. These research works
have shown the growing interest and importance of visualization
assessment. But there is still a lack of approaches to automatically
assess visualization designs and it hinders the application of these
research findings.

Another thread of research seeks machine learning approaches to
recommend visualization automatically. To generate suggestions for
data exploration, the systems use machine learning algorithms, such
as learning-to-rank and decision tree, to incorporate visualization
design knowledge or fit to empirical user data and promote effective
visual encoding [19, 27, 28]. However, these systems often rely on
handcrafted features, which is a labor-intensive and biased process.
Moreover, they only support a limited number of standard chart
types and encodings, which have well-defined and rather small
design space. We are still short of a method to assess visualization
images in real world, which are much more freeform, complex,
and flexible. In our work, we leverage machine learning models to
learn from a large set of visualization images and extract features
to support different assessment tasks when given new visualization
images.

2.2 Assessment of Generic Images
Generic images refer to natural photos taken in the real world, which
are usually available in large quantities. In the last decade, a num-
ber of researchers in the field of computer vision and multimedia
have tried to assess such images from various perspectives, such as
aesthetics [9, 31], memorability [7, 17, 20], and interestingness [12].

In such generic image assessment tasks, handcrafted image de-
scriptors (e.g. HOG, SIFT) and visual factors (e.g. color, saliency)
are traditionally used to train machine learning models to predict
their labels. With the development of deep learning algorithms,
CNNs are introduced into image assessment tasks. More accurate
estimation results have been achieved [20, 31].

However, visualization images show different characteristics.
They are designed and made up of visual elements such as shapes,
icons, text descriptions, annotations, etc., while generic images
typically contain irregular graphics, such as natural landscapes, ob-
jects, people, etc. Such discrepancies make their spatial and visual
properties different. Therefore, we need to train vision models on vi-
sualization images to capture distinct features from them. However,
the success achieved in computer vision tasks are largely attributed
to the availability of massive well-labeled datasets. For visualiza-
tions assessment, there is no such huge labeled dataset for us to train
an advanced deep CNN. As a first step, we make use of previous
user studies by utilizing a semi-supervised method.

3 METHOD

The overall pipeline of our machine learning-based assessment is
shown in Fig. 2. We incorporate both unsupervised and supervised
stages to make use of unlabeled and labeled visualizations.
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Figure 2: The pipeline of our semi-supervised assessment approach
for visualization assessment.
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Figure 3: Overview of the Variational Autoencoder model.

The first stage (Fig. 2a) is intended for unsupervised represen-
tation learning. Specifically, we fed a large amount of unlabeled
visualizations into a VAE, which can automatically learn representa-
tions from these images. Subsequently, the trained VAE can encode
any new input visualizations into low-dimensional feature vectors.

The second stage (Fig. 2b) utilizes the attained feature vectors
from VAE to train supervised machine learning models for different
assessment tasks. Hence, our model can extract features and assess
any visualization images automatically.

3.1 Learning Representations using VAE

An overview of the VAE model is shown in Fig. 3. Typically, a VAE
first transforms the input image x to a latent vector z=Encoder(x)∼
qφ (z|x) with an encoder network, and then a decoder network is used
to decode z back to an image x that will be as similar as the original
one: x = Decoder(z)∼ pθ (x|z).

Specifically, the encoder model qφ (z|x) with variational parameter
φ is parametrized as a multivariate normal distribution following
rule qφ (z|x) =N (z; µ,diag(σ)), where µ and σ denotes vectors of
means and variance respectively. Both µ and σ are learned through
the encoder network: (µ, logσ) = EncoderNeuralNetφ (x). Then,
the latent vector can be constructed by z = µ +σ �N (0, I), so that
z has the characteristic of being independent unit Gaussian random
variables, i.e., z∼N (0, I). Hence, instead of deterministic mapping
image x, the probabilistic encoder qφ (z|x) will produce a robust
vector conditioned on the input, and thus we use the vector z as the
low-dimensional representation of x.

We design our model based on the general VAE architecture. The
details of the model are described in the supplementary materials.

The training procedure of our model follows the approach of the
Variational Autoencoder [23], where the loss function is the sum
of two terms: the reconstruction loss LR, and the Kullback-Leibler
(KL) divergence loss LKL.

LVAE = LR +LKL

=−Eqφ (z|x)[log pθ (x|z)]+KL[qφ (z|x)||pθ (z)]
(1)

Therefore, after training on massive visualization images, the
VAE can effectively encode new input images into low-dimensional
vectors z. As described in previous research [11, 22], such feature
vectors are high-level representations of the original image, and
thus can be used in machine learning models to tackle different
assessment tasks.



3.2 Task-Specific Visualization Assessment
The aforementioned trained VAE can encode each visualization
image into an effective low-dimensional feature vector. With fea-
ture vectors obtained from labeled visualization images, we further
train task-specific assessment model based on machine learning
techniques.

Because previous user studies provide a number of labeled visual-
izations regarding aesthetics and memorability, we select these two
tasks. Concerning aesthetics, we usually grade or rank each given
visualization image based on our impression [14]. For memorabil-
ity tasks, scores are typically calculated based on the experimental
results [4, 5]. Generally, these assessment tasks can be categorized
and formulated as regression and ranking problems, and thus corre-
sponding machine learning methods can be applied.

The regression problem requires mapping from input data to
target numeric labels. In our assessment task, we need a model to
estimate the score (memorability or aesthetics) of each visualization
image. Following previous work [17, 20], we choose Support Vector
Regressor (SVR), a robust regression model, to learn a non-linear
function to map features obtained from VAE to assessment score.

When objective scores are hard to get, we rank the data by rel-
atively comparing them. We address such a task by training a
learning-to-rank model to predict the order of input visualizations.
Specifically, we adopt the LambdaRank algorithm provided by Light-
GBM [18] to learn the order labeled by users, and predict the ordinal
score of each visualization image.

Our proposed model can attain high-level and task-independent
features from visualization image via VAE, and these features can
be further exploited depending on the type of the task. Thus, apart
from the two tasks we addressed here, our method has the potential
to be extended to other assessment tasks in the future.

4 EXPERIMENTS

To understand the effectiveness of our proposed method, we evaluate
on two assessment datasets. We describe the evaluation metrics and
our results with comparisons against other conventional approaches.

4.1 Datasets
We adopt three different visualization datasets for training, Vis6K,
Aes330, and Vis410, from multiple sources. We explain how we use
these datasets in Sect. 4.3.

Vis6K: Bylinskii et al. [6] scraped a dataset containing more than
60K visualization images. We filtered images which have abnormal
aspect ratio, and randomly selected 6,000 images, which is almost
20 times the size of the following labeled datasets. It allows our
VAE model to learn effective representations for visualizations.

Aes330: The dataset for aesthetics assessment is from a previous
work [14], which has 330 visualizations evaluated by 1,278 on online
participants with two-stage ratings (1 to 9). The average ratings are
calculated as the aesthetic assessment score.

Vis410: Borkin et al. [5] assess 410 visualizations through a user
study. In our experiments, we use the memorability scores from this
dataset for memorability assessment. Additionally, we ask users to
label the aesthetic rankings, as described later in Sect. 4.3.

4.2 Metrics
To evaluate the performance of our method, we adopt two metrics
used in previous assessment works [4, 17, 20].

Spearman’s rank correlation coefficient (SRCC) measures
consistency between the predicted and ground truth rankings, within
the range [−1,+1] where 1 represents prefect agreement and −1
indicates the maximum disagreement. It means that higher ρ values
indicate better prediction result, where N is the total number of test-
ing samples, r̂i is a rank of the ith ground truth score, and ri the rank
of the ith prediction. This rank correlation is defined as follows:

ρ(r̂,r) = 1−
6∑

N
i (r̂i− ri)

2

N(N2−1)
(2)

Mean squared error (MSE) is used as a secondary means for
regression models. SRCC shows monotonic relationships between
the reference and observations but does not reflect the absolute nu-
merical errors between them. In the MSE equation: MSE(ŷ,y) =
1
N ∑

N
i=1(ŷi− yi)

2, yi is the prediction and ŷi the ground truth evalua-
tion score, and N the number of tested samples.

In the following experiments, regression and ranking models are
trained on different datasets according to the type of assessment
label. We apply SRCC and MSE on regression results (i.e. predicted
assessment scores), to evaluate both relative relationships and ab-
solute errors between the estimation and ground truth. For ranking
models, where relative orders are predicted, SRCC is suitable for
computing consistency.

4.3 Performance Evaluation
We evaluate the performance of our method on memorability and
aesthetics with Vis410 and Aes330, respectively. Because the labels
of Vis410 and Aes330 are scores and ratings, we naturally treat them
as a regression problem and evaluate them with SRCC and MSE. Fur-
thermore, we collect ranking labels for Vis410 regarding aesthetics.
The benefits are three-fold: we can (1) evaluate our ranking model,
(2) verify our method on the same dataset for different tasks, and
(3) understand the relationship between visualization memorability
and aesthetics. We collected the rankings from 4 users with different
backgrounds (aged between 22 to 28, one female and three males)
to independently rank the 410 visualizations based on their own
judgment of aesthetics. Among them, two have art or design back-
ground and two have no design experience. The average ranking is
calculated for each image.

Our VAE model is first trained on the unlabeled Vis6K dataset and
converges after 500 epochs. Then, the model is used to extract latent
feature vectors on both Vis410 and Aes330 datasets. We randomly
split the datasets 5 times, where 80% and 20% are used for training
and testing respectively. We average the predicted results from
regression and ranking models. For comparison, we choose the
following methods in our experiments:

• HOG: Histogram of oriented gradients (HOG) has been used
as a handcrafted feature in many generic image assessment
tasks [17]. We extract 512-dimensional feature vector from the
input visualizations, and then machine learning (ML) models
(SVR, LambdaRank) are trained to make prediction.

• PCA: We use principal component analysis (PCA) to trans-
form the input into a low-dimensional vector. The output
dimension of PCA is set to 512. We first train a PCA model on
the unlabeled Vis6K dataset, and then apply it to the labeled
datasets for ML models.

• ResNet: We use ResNet-18 [15] pre-trained on ImageNet to
extract 512-dimensional feature vectors from its penultimate
layer. ML models are then applied.

• CNN: We build a simple end-to-end CNN which directly pre-
dicts the score given an input visualization image. Thus, it can
not be applied to rank the aesthetics of Vis410 dataset.

• VAE: The VAE is first trained on Vis6K and then used to map
new inputs into 512-dimensional feature vectors on testing
datasets, followed by ML models.

Results Analysis As shown in Table 1, our method has
achieved better results (higher rank correlation and lower abso-
lute error) on both aesthetics and memorability assessment tasks,
even though the VAE is not directly trained on these two datasets.
ResNet is trained on millions of generic images, but the learned
prior knowledge doesn’t not directly contribute to the assessment
of visualizations. For the supervised regression task, the end-to-end
CNN trained on these two assessment datasets performs poorly, due
to insufficiently labeled training data. The correlations between
the predicted and ground truth results are visualized in Fig. 4a and
Fig. 4b. We also find results on Aes330 are lower by about 20%
compared to Vis410. After further investigation, we notice that all
the visualizations in this dataset are manually chosen with quite



Table 1: Results on Aes330 and Vis410 datasets for two assessment
tasks (aesthetics and memorability) using both regression and rank-
ing models. The higher SRCC (Spearman’s rank correlation) and
lower MSE (Mean squared error) indicate better performance. VAE
performs better compared to a few other methods.

Task Aesthetics Memorability
Dataset Aes330 Vis410 Vis410
Metric SRCC↑ MSE↓ SRCC↑ SRCC↑ MSE↓
HOG 0.281 0.685 0.425 0.474 0.524
PCA 0.221 0.741 0.537 0.591 0.452

ResNet 0.272 0.667 0.124 0.352 0.582
CNN 0.122 1.004 N/A 0.394 0.682
VAE 0.365 0.636 0.645 0.651 0.401

similar quality, so the aesthetic ratings do not vary too much (75.1%
falls between 4 and 6 out of 1 to 9).

Memorability vs. Aesthetics We further explore the relation-
ship between memorability and aesthetics on Vis410. The rank cor-
relation between memorability and aesthetics is displayed in Fig. 4c.
We observe ρ = 0.461, which means a high aesthetic ranking doesn’t
guarantee a memorable visualization, and vice versa.

Human Consistency Are aesthetic scores consistent between
different users? Are machine predicted scores comparable to human
users? To answer these questions, we separate the users who ranked
Vis410 into two groups and compare their results of the ranking for
multiple times. We observe an average rank correlation of 0.694
between the two user groups, as shown in Fig. 4d. It is close to
the result in previous studies for memorability [4] , where ρ = 0.62
is obtained. Our method has achieved ρ = 0.645 for aesthetics on
the same dataset, close to the human consistency 0.694 here. Thus,
the relatively high correlation in our study further demonstrates the
stable consistency of aesthetics rank of visualizations.

Feature Visualization Our VAE model trained on Vis6K can
encode any visualization into a 512 dimensional feature vector. We
further use t-SNE to cast the high dimensional features onto a 2D
plane, and visualize them in Fig. 5. The visualization samples with
lower memorability score gather at the top right corner while those
with higher scores tend to appear at the bottom left. This pattern
intuitively shows us that our VAE model encodes visualizations
effectively and can facilitate subsequent assessment task.

Finally, sample images from the testing set of Vis410 are displayed
in Fig. 1, sorted by aesthetics order estimated by our method. The
aesthetics rankings are generally consistent with our own judgments,
which shows our method can effectively assess visualizations.

5 DISCUSSION

Our study has demonstrated the capability of machine learning al-
gorithms to understand and evaluate visualization images in the
wild. We envision that many creative applications will be enabled
by automatic visualization assessment. For example, it can further
support mixed-initiative authoring systems to assist designers by
giving feedback and optimizing their visualization designs; it can
be used as a discriminator to facilitate automatic visualization gen-
eration by generative models such as GAN; it can be extended as
a tool for designers and researchers to understand the design space
of visualizations in the wild; it can be embedded into visualization
searching and recommendation systems to select and present best
results to from different assessment perspectives.

Our method has achieved a rank correlation that reaches near
human consistency on memorability and aesthetics. However, it still
remains unclear how extensible it is to other assessment tasks. For
instance, interactive visualizations require users to have in-depth
analysis; personal difference may affect learnability of visualizations
to a great extent. These issues might stop machine learning models
from capturing effective features. We hope to gather more data and
experiment on different assessment tasks in the future.
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Figure 4: Rank correlations for different comparisons on Vis410,
where x and y axes represent rankings for each sample point, and the
yellow line indicates y=x: (a) predicted memorability result (ρ =
0.637); (b) predicted aesthetics result (ρ = 0.652); (c) correlation
between aesthetics and memorability (ρ = 0.461); (d) consistency
between two user groups (ρ = 0.694).
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Figure 5: Visualization of feature vectors in a 2D plane using t-SNE.
They are extracted by VAE on Vis410. The darker the color, the
higher the ground truth memorability score.

Given the relatively small labeled datasets, our approach performs
best among all the tested methods. However, when the labeled
datasets are large enough, other supervised methods may perform
better. We plan to collect a larger amount of well-labeled data to
analyze the underlying facts that influence the intrinsic attributes of
an visualization image. We hope researchers and designers could
gain more insights into the characteristics of such images through
statistical analysis.

6 CONCLUSION

Visualization assessment is crucial to visualization research. How-
ever, expressive visualization assessments are mostly carried out
through user studies. We propose a machine learning approach for
automatic visualizations assessment. We first learn low-dimensional
representations from visualization images using Variational Autoen-
coder in an unsupervised manner. Then, we exploit the learned
VAE to extract efficient features to facilitate the training of machine
learning models for target assessment tasks. Our method has been
evaluated through two assessment tasks, aesthetics and memorability.
We envision our technique to be applied to multiple domains and
foster future research.
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