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Influence Propagation Modeling and Optimizations

* How to model influence propagation
in a social network?

— Stochastic diffusion models
* How to optimize the influence
propagation effect?
— Influence maximization and its variants
* One core problem: Influence
maximization

— Find a small number of individuals in a
network to generate a large influence
— Applications in viral marketing, diffusion w4
monitoring, rumor control, etc.

ISAAC'2019, Dec. 11, 2019 2



== Microsoft

Model and Problem

-
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Independent Cascade (IC) Model

» Social graph G = (V,E), n = |V|

« Each edge (u,v) has an influence
probability p(u, v)

* Initially seed nodes in S are activated

« At each step t, each node u
activated at step t — 1 activates its
neighbor v independently with
probability p(u, v)

* Influence spread a(S): expected
number of activated nodes
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INnfluence Maximization

 Given a social network, a diffusion model with given parameters,
and a number k, Tind a seed set S of at most k nodes such that
the influence spread of § is maximized.

e Based on submodular function maximization

— Submodularity of set functions f: 2V - R:
eforall SESTCV,allveV\T, f(Su{v}) —f(S) = f(Tu{v} — f(T
— Monotonicity: forall S € T €V, f(S) < f(T)

* Influence spread function a(S) in IC model is submodular
» Greedy algorithm achieves 1 — 1/e approximation

Kempe D, Kleinberg J M, and Tardos E. Maximizing the spread of influence through a social network. KDD’2003



Feedback Model: Realization and Partial Realization

» Realization ¢ (Random realization ®): all realization (live-edge graph) ¢
randomness in a propagation

— In IC model, ¢ (or @) is a (random) live-
edge graph: each edge (u, v) is selected ()
with probability p(u, v)

— For full-adoption feedback, for each node i,

¢ (1) is the full cascade sequence and edge
status, i.e., all reachable edges and nodes in

ive-edge graph ¢
* Partial realization ¥ (random partial
realization W): feedback collected
(partial propagation) from the currently
selected seeds dom(y) === blocked edge
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Adaptive Influence Maximization

» Adaptive policy m: given any y, select the next node ()

— adaptive influence spread o (m): expected number of nodes activated
by

» Adaptive influence maximization: find best policy T* that selects
at most k nodes, and maximizes adaptive influence spread o ()
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Adaptivity Gap

« Supremum ratio of the adaptive optimal vs. non-adaptive optimal
OPT, (G, k)
sup

¢k OPTy (G, k)
* Important to measure the effectiveness of adaptivity
 Related work (with two different approaches)

— [ANSO8, ANT15]: stochastic submodular optimization on matroid, adaptivity gap:

e
e—1
« Approach: multilinear extension + Poisson process

— [GNST6, GNS1/, BSZ19]: stochastic probing, adaptivity gap: 2

« Approach: decision tree + random-walk + fictitious hybrid policy
— Implicitly rely on adaptive submodularity and feedback independence
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Adaptive Submodularity

 Adaptive Submodularity [GK11]: a node u's marginal influence is higher on
a smaller partial realization than on a larger partial realization

-~ Sy’ = Auly’) < Auly)
 Adaptive Monotonicity: a node u's marginal influence on any partial
realization is nonnegative

— A(uly) = 0, as long as ¥ has non-zero probability to occur
 |C + Full-adoption is adaptive submodular [GK1T]

Golovin D and Krause A. Adaptive submodularity: theory and applications in active learning and stochastic
optimization. Journal of Artificial Intelligence Research, 2011
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Adaptivity Gap in IC Model with
Full-Adoption Feedback
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|C Model + Full-Adoption Feedback

* But not feedback-independent: Random realization &
— Propagation from two nodes may b (i)
overlap
— And thus the feedback are
dependent 0

 Thus prior results on adaptivity
gap do not apply

» Adaptivity gap on general graphs
s still open

) |ive edge

= == =P blocked edge
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Our Results

e 2e
e |Nn-arborescences: [ , ]
e—1 e—1

— In-arborescence: a tree structure with directed
edges all pointing towards the root

. Out-arborescences: [iZ]
— Qut-arborescence: a tree structure with

directed edges all pointing towards the leaves
* One-directional bipartite graphs: i

— Directed edges all pointing from one side to
the other side
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Analysis tfor In-Arborescence, Gap < —

« Adapted from the approach in [AN16]

— Multilinear extension + Poisson process + handling correlated feedback
« Multilinear extension F of influence spread function o(S)

Flxy,...,2,) = Z {(H T; H (1— -.Ir.j_;_)) J(S)]

SCV ieS igS

 Poisson process, with parameters (x4, ..., X,,)
— n independent Poisson clocks Cy, ..., C,,, C; has rate x;
— when C; signals, node i is selected as a seed, and get feedback ¢ (i)
— W(t) is the partial realization by time t, process stops att =1

Asadpour A and Nazerzadeh H. Maximizing stochastic monotone submodular functions. Management Science, 2016
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Connecting Multilinear Extension to Poisson Process

» Lemma 3.2. E[f (U(1)] = F(l—e 1, 1—e ™)< F(ay,... o).

* I'(y): set nodes activated from seeds in
dom(y), based on feedback

« Function f(y) = |T(y)]|, number of activated
nodes in Y

e Proof:

ISAAC'2019, Dec. 11, 2019
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Parametrized Optimal Adaptive Influence Spreac
-unction

f(z1,...,2p) = sup {G’[ﬂ') : (IE;}D ieV(m, @) =x;, Vi € [n]} .

il

« fT:the adaptive influence spread of the best adaptive policy,
among all adaptive policies T guaranteeing that node i is
selected as a seed with probability x; (for all i)
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15



Connecting Poisson Process with Optimal Adaptive
Influence Spread

» Lemma 3.3. For anyt € |0, 1] and any fized partial realization 1, we have

E {df (j"(t)) | U(t) = 'u'l'] > fH(zq,..., T ) _[J (r(.ug,))jzl due to feedback correlation
T N ' | J

Intuition: differential on process W(t) is related to adaptive marginal A(i|y)

Poisson process is the bridge linking non-adaptive influence spread (Lemma
3.2) with adaptive influence spread (Lemma 3.3)
a(T(¥)) is due to feedback correlation,

— If feedback were independent, it would be |T'(y)| [AN16]
— resulting in the extra factor of 2 in adaptivity gap

Require T'(y) € T(W") = A(uly’) < A(uly), slightly stronger than adaptive
submodularity
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In-arborescence --- Shrinking Boundary

« d(y): boundary of ¥, nodes separating internal nodes in I'(y) from
outside nodes iIn V\ T'(y)

« Boundary d(y) shrinks from dom(y) in in-arborescences

» Lemma 3.7. When the influence graph is an in-arborescence, for any partial realization
Y, we have |0(1)| < |[dom(w))|.

» Lemma 3.8. For any partial realization 1
o(L(¢)) < L)+ a(0(9)).
Moreover, when the influence graph is an in-arborescence, we have

o(T()) < |T(x)| + OPT N (G, |dom(a))]). — |ive edge

= == =P h|ocked edge
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Weak Concaveness of OPTy (G, k)

» Lemma 3.9. For any fized influence graph G, let X be a random variable taking value
from {0,1...,n}, with mean value E[X]| = k. Then we have

€ — € —

« Non-adaptive optimal solution OPTy (G, k) is weakly concave
over k

* Prove through greedy solution, which is concave over k by
submodularity
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Putting Together

 Differential inequality

d
EE[f(l‘:[j(t))] E f—l_(:rl:“ . 11:?1) o e — 1
e Solution, when t = 1:
1 ,
B 2 (1) [ m) -
By pipage rounding, and previous results:
OPTN(G, k) = sup Flzq,....z,)
r1+--Fr,=k
> sup E[f(\P(1))]
ri4--4r,=k
> sup (1—1) [f+{$1,...,:13u)—
r1+-Frn=~k €

1y )

> (1 _ —) OPT4(G, k) — OPTN(G. k).
e
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OPTN(G. k) —E[f(T(t))]

OPTy (G, k)

e

OPTx (G, k)
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Other Results

« Qut-arborescences, gap < 2:
— multilinear extension but no Poisson process
— direct linking multilinear extension F with optimal adaptive solution f*

o 2F(xq, ., xp) = fH(xq, ooy Xp)
* by observation: each node is only influenced by its closest ancestor seed

* In- (out-) arborescences, gap = i
— directed line of length kt, edge probability 1 — 1/t

 best non-adaptive solution: one seed every t nodes
* best adaptive solution: select next node not activated as a seed

« One-directional bipartite graph
— gap < i: direct showing F (X1, ..., Xp) = (1 — i)]”(xl, iy X))
— gap = i: [PC19], myopic feedback = full-adoption feedback here
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Many Open Problems

. - . IC model LT model Triggering model
aciaptiviy gop: | N Rl et

Full-adoption result on general graphs? ? unbounded
tighter result for special graphs?
Myopic [ﬁ, 4], tight result? ? ?
« Greedy adaptivity
an: IC model LT model Triggering model
gap. (more general)
Full- upper bound? upper bound? lower: 1 —1/e
adoption upper: unbounded
Myopic upper bound < e upper bound? upper bound?
—e—-1
e Better adaptive tight upper bound?
algorithms than
greedy?
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Thanks!
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https://www.bilibili.com/video/av75971597

