Dashboard Mechanisms for Online Marketplaces¹

¹https://arxiv.org/abs/1905.05750

Online Marketplaces

Online Marketplaces:

- short-lived users matched to strategic long-lived agents.
- matching algorithm:
 - marketplace prioritize agents
 - users select agents

Online Marketplaces

Online Marketplaces:

- short-lived users matched to strategic long-lived agents.
- matching algorithm:
 - marketplace prioritize agents
 - users select agents

Examples: ad auctions, booking.com, eBay, etc.

Algorithm Design: given input (agents' values), determine good output (agents to prioritize); goal: good welfare for input.

Algorithm Design: given input (agents' values), determine good output (agents to prioritize); goal: good welfare for input.

Mechanism Design: solicit bids from agents, determine outcome; goal: good welfare in equilibrium.

Algorithm Design: given input (agents' values), determine good output (agents to prioritize); goal: good welfare for input.

Mechanism Design: solicit bids from agents, determine outcome; goal: good welfare in equilibrium.

Reducing Mechanism Design to Algorithm Design:

- VCG mechanism, cf. second-price auction. [Vickrey '61, Clarke '71, Groves '73]
- unbiased payment mechanism [Archer, Tardos '01]
- implicit payment mechanism [Babaioff, Klienberg, Slivkins '10]

Algorithm Design: given input (agents' values), determine good output (agents to prioritize); goal: good welfare for input.

Mechanism Design: solicit bids from agents, determine outcome; goal: good welfare in equilibrium.

Reducing Mechanism Design to Algorithm Design:

- VCG mechanism, cf. second-price auction. [Vickrey '61, Clarke '71, Groves '73]
- unbiased payment mechanism [Archer, Tardos '01]
- implicit payment mechanism [Babaioff, Klienberg, Slivkins '10]

Main idea: carefully constructed truthful payment format.

Algorithm Design: given input (agents' values), determine good output (agents to prioritize); goal: good welfare for input.

Mechanism Design: solicit bids from agents, determine outcome; goal: good welfare in equilibrium.

Reducing Mechanism Design to Algorithm Design:

- VCG mechanism, cf. second-price auction. [Vickrey '61, Clarke '71, Groves '73]
- unbiased payment mechanism [Archer, Tardos '01]
- implicit payment mechanism [Babaioff, Klienberg, Slivkins '10]

Main idea: carefully constructed truthful payment format.

Challenge: almost all online markets have non-truthful payment format.

Algorithm Design: given input (agents' values), determine good output (agents to prioritize); goal: good welfare for input.

Mechanism Design: solicit bids from agents, determine outcome; goal: good welfare in equilibrium.

Reducing Mechanism Design to Algorithm Design:

- VCG mechanism, cf. second-price auction. [Vickrey '61, Clarke '71, Groves '73]
- unbiased payment mechanism [Archer, Tardos '01]
- implicit payment mechanism [Babaioff, Klienberg, Slivkins '10]

Main idea: carefully constructed truthful payment format.

Challenge: almost all online markets have non-truthful payment format.

Goal for Talk: sequential non-truthful mech. ≈ sequential truthful mech.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- run allocation algorithm.
- winners pay their bids.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive ad space)

• 1 item, 2 agents, winner-pays-bid highest-bids-win mechanism

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive ad space)

- 1 item, 2 agents, winner-pays-bid highest-bids-win mechanism
- values: 101 and 100.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive ad space)

- 1 item, 2 agents, winner-pays-bid highest-bids-win mechanism
- values: 101 and 100.
- equilibrium bids:* 100.01 and 100

* approximate Nash equilibrium.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive ad space)

- 1 item, 2 agents, winner-pays-bid highest-bids-win mechanism
- values: 101 and 100.
- equilibrium bids:* 100.01 and 100
- outcome: 101 wins at 100.01; welfare: 101; optimal welfare: 101.
 - * approximate Nash equilibrium.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive or shared ad space [cf., Dütting, Kesselheim '15])

1 exclusive item or 3 shared items.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive or shared ad space [cf., Dütting, Kesselheim '15])

- 1 exclusive item or 3 shared items.
- 2 exclusive agents, values: 101 and 100.
- 3 shared agents, values: 99, 98, 97.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive or shared ad space [cf., Dütting, Kesselheim '15])

- 1 exclusive item or 3 shared items.
- 2 exclusive agents, values: 101 and 100.
- 3 shared agents, values: 99, 98, 97.
- equilibrium bids:* 100.01, 100.00, 0, 0, 0.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive or shared ad space [cf., Dütting, Kesselheim '15])

- 1 exclusive item or 3 shared items.
- 2 exclusive agents, values: 101 and 100.
- 3 shared agents, values: 99, 98, 97.
- equilibrium bids:* 100.01, 100.00, 0, 0, 0.
- outcome: 101 wins at 100.01; welfare: 101; optimal welfare: 294.

Basic Challenge (for Winner-pays-bid Mechanism Design)

- agent strategies are non-trivial.
- equilibria can be very bad.

Basic Challenge (for Winner-pays-bid Mechanism Design)

- agent strategies are non-trivial.
- equilibria can be very bad.

Our Solution: Bidding Dashboards (estimated price-quantity curve)

- agents can easily optimize bids for dashboard.
- design mechanism that is aware of dashboard.

Basic Challenge (for Winner-pays-bid Mechanism Design)

- agent strategies are non-trivial.
- equilibria can be very bad.

Our Solution: Bidding Dashboards (estimated price-quantity curve)

- agents can easily optimize bids for dashboard. what dashboard?
- design mechanism that is aware of dashboard. what mechanism?

Informal Definition (Dashboard Mechanism)

The dashboard mechanism is (for given dashboard and allocation alg):

- publish dashboard (estimated bid-allocation rule)
- solicit bids.
- infer values for bids (as best response to dashboard)
- execute desired allocation algorithm on values.
- charge winners their bids.

Informal Definition (Dashboard Mechanism)

The dashboard mechanism is (for given dashboard and allocation alg):

- publish dashboard (estimated bid-allocation rule)
- solicit bids.
- infer values for bids (as best response to dashboard)
- execute desired allocation algorithm on values.
- charge winners their bids.

Main Question

Informal Definition (Dashboard Mechanism)

The dashboard mechanism is (for given dashboard and allocation alg):

- publish dashboard (estimated bid-allocation rule)
- solicit bids.
- infer values for bids (as best response to dashboard)
- execute desired allocation algorithm on values.
- charge winners their bids.

Main Question

This seems wrong!

Informal Definition (Dashboard Mechanism)

The dashboard mechanism is (for given dashboard and allocation alg):

- publish dashboard (estimated bid-allocation rule)
- solicit bids.
- infer values for bids (as best response to dashboard)
- execute desired allocation algorithm on values.
- charge winners their bids.

Main Question

This seems wrong! For what dashboards is dashboard mechanism "right"?

Informal Definition (Dashboard Mechanism)

The dashboard mechanism is (for given dashboard and allocation alg):

- publish dashboard (estimated bid-allocation rule)
- solicit bids.
- infer values for bids (as best response to dashboard)
- execute desired allocation algorithm on values.
- charge winners their bids.

Main Question

This seems wrong! For what dashboards is dashboard mechanism "right"?

Note: Allocation is correct if agents follow dashboard. Issue: payments?

Recall Goal: sequential non-truthful mech. ≈ sequential truthful mech.

Recall Goal: sequential non-truthful mech. ≈ sequential truthful mech.

Overview of Results:

construct dashboards.

Recall Goal: sequential non-truthful mech. ≈ sequential truthful mech.

- construct dashboards.
- static environment, static values

Recall Goal: sequential non-truthful mech. ≈ sequential truthful mech.

- construct dashboards.
- static environment, static values
 - ⇒ following dashboard converges to equilibrium.

Recall Goal: sequential non-truthful mech. ≈ sequential truthful mech.

- construct dashboards.
- static environment, static values
 - ⇒ following dashboard converges to equilibrium.
- dynamic environment, static value

Recall Goal: sequential non-truthful mech. ≈ sequential truthful mech.

- construct dashboards.
- static environment, static values
 - ⇒ following dashboard converges to equilibrium.
- dynamic environment, static value
 - ⇒ following dashboard: average payments converge to correct payments

Recall Goal: sequential non-truthful mech. ≈ sequential truthful mech.

- construct dashboards.
- static environment, static values
 - ⇒ following dashboard converges to equilibrium.
- dynamic environment, static value
 - ⇒ following dashboard: average payments converge to correct payments
- dynamic environment, dynamic values

Recall Goal: sequential non-truthful mech. ≈ sequential truthful mech.

- construct dashboards.
- static environment, static values
 - ⇒ following dashboard converges to equilibrium.
- dynamic environment, static value
 - ⇒ following dashboard: average payments converge to correct payments
- dynamic environment, dynamic values
 - ⇒ approx. strategic equivalence to sequential truthful mechanism.

Outline

- Introduction and Motivation
- Single-agent Winner-pays-bid Mechanisms
- Dashboard Construction and Analysis
- Single-call Dashboard Mechanisms
- Discussion and Directions

Overview of Results

Recall Goal: sequential non-truthful mech. ≈ sequential truthful mech.

Overview of Results:

- construct dashboards.
- static environment, static values
 - ⇒ following dashboard converges to equilibrium.
- dynamic environment, static value
 - ⇒ following dashboard: average payments converge to correct payments
- dynamic environment, dynamic values
 - ⇒ approx. strategic equivalence to sequential truthful mechanism.

Dashboard Mechanisms

Informal Definition (Dashboard Mechanism)

The dashboard mechanism is (for given dashboard and allocation alg):

- publish dashboard (estimated bid-allocation rule)
- solicit bids.
- infer values for bids (as best response to dashboard)
- execute desired allocation algorithm on values.
- charge winners their bids.

Main Question

This seems wrong! For what dashboards is dashboard mechanism "right"?

Dashboard Mechanisms

Informal Definition (Dashboard Mechanism)

The dashboard mechanism is (for given dashboard and allocation alg):

- publish dashboard (estimated bid-allocation rule)
- solicit bids.
- infer values for bids (as best response to dashboard)
- execute desired allocation algorithm on values.
- charge winners their bids.

Main Question

This seems wrong! For what dashboards is dashboard mechanism "right"?

Note: Allocation is correct if agents follow dashboard. Issue: payments?

Overview of Results

Recall Goal: sequential non-truthful mech. ≈ sequential truthful mech.

Outline

- Introduction and Motivation
- Single-agent Winner-pays-bid Mechanisms
- Dashboard Construction and Analysis
- Single-call Dashboard Mechanisms
- Discussion and Directions

Notation: single agent with value v

Notation: single agent with value v

• truthful mechanism (x, p) defines: allocation rule x; payment rule p.

Notation: single agent with value v

- truthful mechanism (x, p) defines: allocation rule x; payment rule p.
- winner-pays-bid mechanism (\tilde{x}, \tilde{p}) defines: bid allocation rule \tilde{x} ; bid payment rule \tilde{p} with $\tilde{p}(b) = b \tilde{x}(b)$.

Notation: single agent with value v

- truthful mechanism (x, p) defines: allocation rule x; payment rule p.
- winner-pays-bid mechanism (\tilde{x}, \tilde{p}) defines: bid allocation rule \tilde{x} ; bid payment rule \tilde{p} with $\tilde{p}(b) = b \tilde{x}(b)$.
- bid strategy b maps values v to bids b.

Notation: single agent with value v

- truthful mechanism (x, p) defines: allocation rule x; payment rule p.
- winner-pays-bid mechanism (\tilde{x}, \tilde{p}) defines: bid allocation rule \tilde{x} ; bid payment rule \tilde{p} with $\tilde{p}(b) = b \tilde{x}(b)$.
- bid strategy b maps values v to bids b.

Revelation Principle: if b is optimal for (\tilde{x}, \tilde{p}) then (x, p) with $x(v) = \tilde{x}(b(v))$ and $p(v) = \tilde{x}(b(v))$ is truthful.

Notation: single agent with value v

- truthful mechanism (x, p) defines: allocation rule x; payment rule p.
- winner-pays-bid mechanism (\tilde{x}, \tilde{p}) defines: bid allocation rule \tilde{x} ; bid payment rule \tilde{p} with $\tilde{p}(b) = b \tilde{x}(b)$.
- bid strategy b maps values v to bids b.

Revelation Principle: if b is optimal for (\tilde{x}, \tilde{p}) then (x, p) with $x(v) = \tilde{x}(b(v))$ and $p(v) = \tilde{x}(b(v))$ is truthful.

Theorem (Myerson '81)

- **a** monotonicity: allocation rule $x(\cdot)$ is monotonically non-decreasing.
- payment identity: payment rule $p_i(v) = v x(v) \int_0^v x(z) dz + p_i(0)$.

Notation: single agent with value v

- truthful mechanism (x, p) defines: allocation rule x; payment rule p.
- winner-pays-bid mechanism (\tilde{x}, \tilde{p}) defines: bid allocation rule \tilde{x} ; bid payment rule \tilde{p} with $\tilde{p}(b) = b \tilde{x}(b)$.
- bid strategy b maps values v to bids b.

Revelation Principle: if b is optimal for (\tilde{x}, \tilde{p}) then (x, p) with $x(v) = \tilde{x}(b(v))$ and $p(v) = \tilde{x}(b(v))$ is truthful.

Theorem (Myerson '81)

- **monotonicity**: allocation rule $x(\cdot)$ is monotonically non-decreasing.
- payment identity: payment rule $p_i(v) = v x(v) \int_0^v x(z) dz + p_i(0)$.

Notation: single agent with value v

- truthful mechanism (x, p) defines: allocation rule x; payment rule p.
- winner-pays-bid mechanism (\tilde{x}, \tilde{p}) defines: bid allocation rule \tilde{x} ; bid payment rule \tilde{p} with $\tilde{p}(b) = b \tilde{x}(b)$.
- bid strategy b maps values v to bids b.

Revelation Principle: if b is optimal for (\tilde{x}, \tilde{p}) then (x, p) with $x(v) = \tilde{x}(b(v))$ and $p(v) = \tilde{x}(b(v))$ is truthful.

Theorem (Myerson '81)

- **monotonicity**: allocation rule $x(\cdot)$ is monotonically non-decreasing.
- payment identity: payment rule $p_i(v) = v x(v) \int_0^v x(z) dz + p_i(0)$.

Notation: single agent with value v

- truthful mechanism (x, p) defines: allocation rule x; payment rule p.
- winner-pays-bid mechanism (\tilde{x}, \tilde{p}) defines: bid allocation rule \tilde{x} ; bid payment rule \tilde{p} with $\tilde{p}(b) = b \tilde{x}(b)$.
- bid strategy b maps values v to bids b.

Revelation Principle: if b is optimal for (\tilde{x}, \tilde{p}) then (x,p) with $x(v) = \tilde{x}(b(v))$ and $p(v) = \tilde{x}(b(v))$ is truthful.

Theorem (Myerson '81)

- monotonicity: allocation rule $x(\cdot)$ is monotonically non-decreasing.
- payment identity: payment rule $p_i(v) = v x(v) \int_0^v x(z) dz + p_i(0)$.

Theorem (Myerson '81)

- **monotonicity**: allocation rule $x(\cdot)$ is monotonically non-decreasing.
- payment identity: payment rule $p_i(v) = v x(v) \int_0^v x(z) dz + p_i(0)$.

Theorem (Myerson '81)

A single-agent mechanism (x, p) is truthful if and only if

- **a** monotonicity: allocation rule $x(\cdot)$ is monotonically non-decreasing.
- payment identity: payment rule $p_i(v) = v x(v) \int_0^v x(z) dz + p_i(0)$.

Definition

The single-agent winner-pays-bid implementation of x is \tilde{x} satisfying:

Theorem (Myerson '81)

- **monotonicity**: allocation rule $x(\cdot)$ is monotonically non-decreasing.
- payment identity: payment rule $p_i(v) = v x(v) \int_0^v x(z) dz + p_i(0)$.

Theorem (Myerson '81)

A single-agent mechanism (x, p) is truthful if and only if

- **a** monotonicity: allocation rule $x(\cdot)$ is monotonically non-decreasing.
- payment identity: payment rule $p_i(v) = v x(v) \int_0^v x(z) dz + p_i(0)$.

Definition

The single-agent winner-pays-bid implementation of x is \tilde{x} satisfying:

Theorem (Myerson '81)

A single-agent mechanism (x, p) is truthful if and only if

- **a** monotonicity: allocation rule $x(\cdot)$ is monotonically non-decreasing.
- payment identity: payment rule $p_i(v) = v x(v) \int_0^v x(z) dz + p_i(0)$.

Definition

The single-agent winner-pays-bid implementation of x is \tilde{x} satisfying:

• agent's bid strategy:* $b(v) = p(v)/x(v) = v - \frac{1}{x(v)} \int_0^v x(z) dz + \frac{p(0)}{x(v)}$.

* monotone iff $p(0) \leq 0$

Theorem (Myerson '81)

A single-agent mechanism (x, p) is truthful if and only if

- **a** monotonicity: allocation rule $x(\cdot)$ is monotonically non-decreasing.
- **payment identity:** payment rule $p_i(v) = v x(v) \int_0^v x(z) dz + p_i(0)$.

Definition

The single-agent winner-pays-bid implementation of x is \tilde{x} satisfying:

- agent's bid strategy:* $b(v) = p(v)/x(v) = v \frac{1}{x(v)} \int_0^v x(z) dz + \frac{p(0)}{x(v)}$.
- bid allocation rule: $\tilde{x}(b) = x(b^{-1}(b))$ * monotone iff $p(0) \leq 0$

Theorem (Myerson '81)

A single-agent mechanism (x, p) is truthful if and only if

- **a** monotonicity: allocation rule $x(\cdot)$ is monotonically non-decreasing.
- payment identity: payment rule $p_i(v) = v x(v) \int_0^v x(z) dz + p_i(0)$.

Definition

The single-agent winner-pays-bid implementation of x is \tilde{x} satisfying:

- agent's bid strategy:* $b(v) = p(v)/x(v) = v \frac{1}{x(v)} \int_0^v x(z) dz + \frac{p(0)}{x(v)}$.
- bid allocation rule: $\tilde{x}(b) = x(b^{-1}(b))$ * monotone iff $p(0) \leq 0$

Main Challenge: inverting bids in multi-agent settings.

Outline

- Introduction and Motivation
- Single-agent Winner-pays-bid Mechanisms
- Oashboard Construction and Analysis
- Single-call Dashboard Mechanisms
- Discussion and Directions

use historical allocation rule as dashboard.

- use historical allocation rule as dashboard.
- infer agents' values from response to dashboard.

- use historical allocation rule as dashboard.
- infer agents' values from response to dashboard.
 - ⇒ "following dashboard" converges to Nash.

- use historical allocation rule as dashboard.
- infer agents' values from response to dashboard.
 - ⇒ "following dashboard" converges to Nash.
- update dashboard only when agent is allocated.

- use historical allocation rule as dashboard.
- infer agents' values from response to dashboard.
 - ⇒ "following dashboard" converges to Nash.
- update dashboard only when agent is allocated.
 - ⇒ payments converge to truthful payments for static valued agents

- use historical allocation rule as dashboard.
- infer agents' values from response to dashboard.
 - ⇒ "following dashboard" converges to Nash.
- update dashboard only when agent is allocated.
 - ⇒ payments converge to truthful payments for static valued agents
- \odot rebalance incorrect payments in subsequent stages (\approx "add to p(0)")

- use historical allocation rule as dashboard.
- infer agents' values from response to dashboard.
 - ⇒ "following dashboard" converges to Nash.
- update dashboard only when agent is allocated.
 - ⇒ payments converge to truthful payments for static valued agents
- \odot rebalance incorrect payments in subsequent stages (\approx "add to p(0)")
 - ⇒ approx. strategic equivalent to sequential truthful mech.

- use historical allocation rule as dashboard.
- infer agents' values from response to dashboard.
 - ⇒ "following dashboard" converges to Nash.
- update dashboard only when agent is allocated.
 - ⇒ payments converge to truthful payments for static valued agents
- \odot rebalance incorrect payments in subsequent stages (\approx "add to p(0)")

- use historical allocation rule as dashboard.
- infer agents' values from response to dashboard.
 - ⇒ "following dashboard" converges to Nash.
- update dashboard only when agent is allocated.
 - ⇒ payments converge to truthful payments for static valued agents
- \odot rebalance incorrect payments in subsequent stages (\approx "add to p(0)")
 - ⇒ approx. strategic equivalent to sequential truthful mech.

Model

Dynamic model:

- dynamic iterated environment, in stage $s \in \{1, ..., t\}$:
 - *n* agent valuation profile: $\mathbf{v}^{(s)} = (\mathbf{v}_1^{(s)}, \dots, \mathbf{v}_n^{(s)})$
 - stochastic allocation algorithm: $x^{(s)} : \mathbb{R}^n \to [0,1]^n$.
- linear utility: $u_i = \sum_{s=1}^t [v_i^{(s)} x_i^{(s)} p_i^{(s)}].$
- payment format: winner-pays-bid.

Model

Dynamic model:

- dynamic iterated environment, in stage $s \in \{1, ..., t\}$:
 - *n* agent valuation profile: $\mathbf{v}^{(s)} = (\mathbf{v}_1^{(s)}, \dots, \mathbf{v}_n^{(s)})$
 - stochastic allocation algorithm: $x^{(s)} : \mathbb{R}^n \to [0,1]^n$.
- linear utility: $u_i = \sum_{s=1}^{t} [v_i^{(s)} x_i^{(s)} p_i^{(s)}].$
- payment format: winner-pays-bid.

Static model: $\mathbf{v}^{(s)} = \mathbf{v}$ and $\mathbf{x}^{(s)} = \mathbf{x}$ for all stages s.

Model

Dynamic model:

- dynamic iterated environment, in stage $s \in \{1, ..., t\}$:
 - *n* agent valuation profile: $\mathbf{v}^{(s)} = (\mathbf{v}_1^{(s)}, \dots, \mathbf{v}_n^{(s)})$
 - stochastic allocation algorithm: $x^{(s)} : \mathbb{R}^n \to [0,1]^n$.
- linear utility: $u_i = \sum_{s=1}^t [v_i^{(s)} x_i^{(s)} p_i^{(s)}].$
- payment format: winner-pays-bid.

Static model: $\mathbf{v}^{(s)} = \mathbf{v}$ and $\mathbf{x}^{(s)} = \mathbf{x}$ for all stages s.

Goal: sequential winner-pays-bid mechanism to implement $x^{(1)}, \ldots, x^{(t)}$.

Model

Dynamic model:

- dynamic iterated environment, in stage $s \in \{1, ..., t\}$:
 - n agent valuation profile: $\mathbf{v}^{(s)} = (\mathbf{v}_1^{(s)}, \dots, \mathbf{v}_n^{(s)})$
 - stochastic allocation algorithm: $x^{(s)} : \mathbb{R}^n \to [0,1]^n$.
- linear utility: $u_i = \sum_{s=1}^t [v_i^{(s)} x_i^{(s)} p_i^{(s)}].$
- payment format: winner-pays-bid.

Static model: $\mathbf{v}^{(s)} = \mathbf{v}$ and $\mathbf{x}^{(s)} = \mathbf{x}$ for all stages s.

Goal: sequential winner-pays-bid mechanism to implement $x^{(1)}, \ldots, x^{(t)}$.

Note: for single and and single stage analysis, will drop i and s.

Dashboard Mechanisms

Definition (Dashboard)

A dashboard $\tilde{y}:(\mathbb{R}\to [0,1])^n$ specifies a bid allocation rule for each agent.

Dashboard Mechanisms

Definition (Dashboard)

A dashboard $\tilde{y}:(\mathbb{R}\to[0,1])^n$ specifies a bid allocation rule for each agent.

Notation:

- for algorithm: x, p, \tilde{x} , b.
- for dashboard: y, q, \tilde{y} , c.

Dashboard Mechanisms

Definition (Dashboard)

A dashboard $\tilde{y}: (\mathbb{R} \to [0,1])^n$ specifies a bid allocation rule for each agent.

Notation:

- for algorithm: x, p, \tilde{x} , b.
- for dashboard: y, q, \tilde{y} , c.

Definition (Dashboard Mechanism)

The dashboard mechanism $\tilde{x}: \mathbb{R}^n \to [0,1]^n$ for dashboard \tilde{y} , algo x is:

- \bigcirc publish dashboard \tilde{y} ; solicit bids **b**.
- ② infer values $\hat{\mathbf{v}}$ as $\hat{\mathbf{v}}_i = c_i^{-1}(\mathbf{b}_i)$ for \tilde{y}_i .
- **3** run x on $\hat{\mathbf{v}}$ to get allocation $\mathbf{x} \sim x(\hat{\mathbf{v}})$ and payments \mathbf{p} as $\mathbf{p}_i = \mathbf{b}_i \mathbf{x}_i$.

Last-stage Dashboard

Definition (Last-stage Dashboard)

In stage s:

- last stage inferred values: $\hat{\mathbf{v}}^{(s-1)}$
- last stage allocation rules: $\mathbf{y}^{(s)}$ as $\mathbf{y}_{i}^{(s)}(z) = \mathbf{x}_{i}^{(s-1)}(z, \hat{\mathbf{v}}_{-i}^{(s-1)})$.
- dashboard: $\tilde{y}^{(s)}$ with $\tilde{y}_i^{(s)}$ corresponding to $y_i^{(s)}$.

Last-stage Dashboard

Definition (Last-stage Dashboard)

In stage s:

- last stage inferred values: $\hat{\mathbf{v}}^{(s-1)}$
- last stage allocation rules: $\mathbf{y}^{(s)}$ as $\mathbf{y}_{i}^{(s)}(z) = \mathbf{x}_{i}^{(s-1)}(z, \hat{\mathbf{v}}_{-i}^{(s-1)})$.
- dashboard: $\tilde{y}^{(s)}$ with $\tilde{y}_i^{(s)}$ corresponding to $y_i^{(s)}$.

Theorem (Static Analysis)

For last-stage dashboard and static environment, the action profile for "follow the dashboard" strategy converges (in two rounds) to Nash equilibrium of stage game.

Definition (Last-winning-stage Dashboard)

dashboard is allocation rule from last winning stage.

Definition (Last-winning-stage Dashboard)

dashboard is allocation rule from last winning stage.

Theorem (Mixed Analysis)

For last-winning-stage dashboard and dynamic environment, the average outcome from following the dashboard with static value converges to the average outcome of the sequential truthful mechanism.

Definition (Last-winning-stage Dashboard)

dashboard is allocation rule from last winning stage.

Theorem (Mixed Analysis)

For last-winning-stage dashboard and dynamic environment, the average outcome from following the dashboard with static value converges to the average outcome of the sequential truthful mechanism.

Proof.

fix value v.

Definition (Last-winning-stage Dashboard)

dashboard is allocation rule from last winning stage.

Theorem (Mixed Analysis)

For last-winning-stage dashboard and dynamic environment, the average outcome from following the dashboard with static value converges to the average outcome of the sequential truthful mechanism.

- fix value v.
- consider successive winning stages $s_{k-1} < s_k$:

Definition (Last-winning-stage Dashboard)

dashboard is allocation rule from last winning stage.

Theorem (Mixed Analysis)

For last-winning-stage dashboard and dynamic environment, the average outcome from following the dashboard with static value converges to the average outcome of the sequential truthful mechanism.

- fix value v.
- consider successive winning stages $s_{k-1} < s_k$:
 - \Rightarrow bid in stage s_k is correct for stage s_{k-1} , i.e., $c^{(s_k)}(v) = b^{(s_{k-1})}(v)$.

Definition (Last-winning-stage Dashboard)

dashboard is allocation rule from last winning stage.

Theorem (Mixed Analysis)

For last-winning-stage dashboard and dynamic environment, the average outcome from following the dashboard with static value converges to the average outcome of the sequential truthful mechanism.

- fix value v.
- consider successive winning stages $s_{k-1} < s_k$:
 - \Rightarrow bid in stage s_k is correct for stage s_{k-1} , i.e., $c^{(s_k)}(v) = b^{(s_{k-1})}(v)$.
- payment difference summed over τ winning stages:

Definition (Last-winning-stage Dashboard)

dashboard is allocation rule from last winning stage.

Theorem (Mixed Analysis)

For last-winning-stage dashboard and dynamic environment, the average outcome from following the dashboard with static value converges to the average outcome of the sequential truthful mechanism.

- fix value v.
- consider successive winning stages $s_{k-1} < s_k$:
 - \Rightarrow bid in stage s_k is correct for stage s_{k-1} , i.e., $c^{(s_k)}(v) = b^{(s_{k-1})}(v)$.
- payment difference summed over τ winning stages:
 - \Rightarrow total difference from truthful is: $c^{(s_1)}(v) b^{(s_\tau)}(v)$

Intuition for Payment Rebalancing

Goal: dashboard robust to changing values and environment.

Definition (Last-winning-stage Dashboard)

dashboard is allocation rule from last winning stage.

Theorem (Mixed Analysis)

For last-winning-stage dashboard and dynamic environment, the average outcome from following the dashboard with static value converges to the average outcome of the sequential truthful mechanism.

- fix value v.
- consider successive winning stages $s_{k-1} < s_k$:
 - \Rightarrow bid in stage s_k is correct for stage s_{k-1} , i.e., $c^{(s_k)}(v) = b^{(s_{k-1})}(v)$.
- payment difference summed over τ winning stages:
 - \Rightarrow total difference from truthful is: $c^{(s_1)}(v) b^{(s_\tau)}(v) \le v$.

Intuition for Payment Rebalancing

Goal: dashboard robust to changing values and environment.

Intuition: For empirical values dashboard:

- When $x_i^{(s)} \neq x_i^{(s-1)}$:
 - allocation is correct (for estimated value $\hat{v}_i^{(s)}$)
 - payment is incorrect.
- calculate error in payment (positive or negative), add to balance.
- future dashboards include lump sum payment to reduce balance.

Fix a stage s and agent i (dropping superscript and subscript):

• inferred value: $\hat{\mathbf{v}}$; implemented allocation: $x(\hat{\mathbf{v}})$.

Fix a stage s and agent i (dropping superscript and subscript):

- inferred value: $\hat{\mathbf{v}}$; implemented allocation: $x(\hat{\mathbf{v}})$.
- actual bid: $c(\hat{\mathbf{v}})$; desired bid: $b(\hat{\mathbf{v}})$

Fix a stage s and agent i (dropping superscript and subscript):

- inferred value: $\hat{\mathbf{v}}$; implemented allocation: $x(\hat{\mathbf{v}})$.
- actual bid: $c(\hat{\mathbf{v}})$; desired bid: $b(\hat{\mathbf{v}})$
- payment residual: $[b(\hat{\mathbf{v}}) c(\hat{\mathbf{v}})] x(\hat{\mathbf{v}})$.

Fix a stage s and agent i (dropping superscript and subscript):

- inferred value: $\hat{\mathbf{v}}$; implemented allocation: $x(\hat{\mathbf{v}})$.
- actual bid: $c(\hat{\mathbf{v}})$; desired bid: $b(\hat{\mathbf{v}})$
- payment residual: $[b(\hat{\mathbf{v}}) c(\hat{\mathbf{v}})] x(\hat{\mathbf{v}})$.

Approach

Fix a stage s and agent i (dropping superscript and subscript):

- inferred value: $\hat{\mathbf{v}}$; implemented allocation: $x(\hat{\mathbf{v}})$.
- actual bid: $c(\hat{\mathbf{v}})$; desired bid: $b(\hat{\mathbf{v}})$
- payment residual: $[b(\hat{\mathbf{v}}) c(\hat{\mathbf{v}})] x(\hat{\mathbf{v}})$.

Approach

add payment residual to balance L

Fix a stage s and agent i (dropping superscript and subscript):

- inferred value: $\hat{\mathbf{v}}$; implemented allocation: $x(\hat{\mathbf{v}})$.
- actual bid: $c(\hat{\mathbf{v}})$; desired bid: $b(\hat{\mathbf{v}})$
- payment residual: $[b(\hat{\mathbf{v}}) c(\hat{\mathbf{v}})] x(\hat{\mathbf{v}})$.

Approach

- add payment residual to balance L
- adjust dashboard payment rule to partially resolve balance as q(0).

Fix a stage s and agent i (dropping superscript and subscript):

- inferred value: $\hat{\mathbf{v}}$; implemented allocation: $x(\hat{\mathbf{v}})$.
- actual bid: $c(\hat{\mathbf{v}})$; desired bid: $b(\hat{\mathbf{v}})$
- payment residual: $[b(\hat{\mathbf{v}}) c(\hat{\mathbf{v}})] x(\hat{\mathbf{v}})$.

Approach

- add payment residual to balance L
- adjust dashboard payment rule to partially resolve balance as q(0).
- (cannot actually add q(0) > 0, but can approximate, details omitted)

Fix a stage s and agent i (dropping superscript and subscript):

- inferred value: $\hat{\mathbf{v}}$; implemented allocation: $x(\hat{\mathbf{v}})$.
- actual bid: $c(\hat{\mathbf{v}})$; desired bid: $b(\hat{\mathbf{v}})$
- payment residual: $[b(\hat{\mathbf{v}}) c(\hat{\mathbf{v}})] x(\hat{\mathbf{v}})$.

Approach

- add payment residual to balance L
- adjust dashboard payment rule to partially resolve balance as q(0).
- (cannot actually add q(0) > 0, but can approximate, details omitted)

Definition (Rebalancing Dashboard)

The rebalancing dashboard for dashboard \tilde{y} , rebalancing rate $\eta \in (0,1]$, and outstanding balance L is \tilde{y}^\dagger for payment rule and bid strategy

$$q^{\dagger}(\mathsf{v}) = q(\mathsf{v}) + \mathsf{L}\,\eta \qquad \qquad c^{\dagger}(\mathsf{v}) = c(\mathsf{v}) + \mathsf{L}\,\eta/y(\mathsf{v}).$$

Recall Definition (Rebalancing Dashboard)

The rebalancing dashboard for dashboard \tilde{y} , rebalancing rate $\eta \in (0, 1]$, and outstanding balance L is \tilde{y}^{\dagger} for payment rule and bid strategy $q^{\dagger}(v) = q(v) + L \eta$ $c^{\dagger}(v) = c(v) + L \eta/y(v)$.

Recall Definition (Rebalancing Dashboard)

The rebalancing dashboard for dashboard \tilde{y} , rebalancing rate $\eta \in (0, 1]$, and outstanding balance L is \tilde{y}^{\dagger} for payment rule and bid strategy $q^{\dagger}(v) = q(v) + L \eta$ $c^{\dagger}(v) = c(v) + L \eta/y(v)$.

Lemmas

- The payment residual for inferred value \hat{v} is in $[-\hat{v}, \hat{v}]$.
- For $\eta \leq y(0)$, the balance resolved in winning stage is in $[L \eta, L]$.
- Unresolved payment residual after k winning stages $\leq (1 \eta)^k \hat{v}$.

Recall Definition (Rebalancing Dashboard)

The rebalancing dashboard for dashboard \tilde{y} , rebalancing rate $\eta \in (0, 1]$, and outstanding balance L is \tilde{y}^{\dagger} for payment rule and bid strategy $q^{\dagger}(v) = q(v) + L \eta$ $c^{\dagger}(v) = c(v) + L \eta/y(v)$.

Lemmas

- The payment residual for inferred value $\hat{\mathbf{v}}$ is in $[-\hat{\mathbf{v}}, \hat{\mathbf{v}}]$.
- For $\eta \leq y(0)$, the balance resolved in winning stage is in $[L \eta, L]$.
- Unresolved payment residual after k winning stages $\leq (1 \eta)^k \hat{v}$.

Theorem

The unresolved balance at any stage t is at most $\frac{\bar{v}}{\eta}$ (for values $\leq \bar{v}$).

Recall Definition (Rebalancing Dashboard)

The rebalancing dashboard for dashboard \tilde{y} , rebalancing rate $\eta \in (0, 1]$, and outstanding balance L is \tilde{y}^{\dagger} for payment rule and bid strategy $q^{\dagger}(v) = q(v) + L \eta$ $c^{\dagger}(v) = c(v) + L \eta/y(v)$.

Lemmas

- The payment residual for inferred value \hat{v} is in $[-\hat{v}, \hat{v}]$.
- For $\eta \leq y(0)$, the balance resolved in winning stage is in $[L \eta, L]$.
- Unresolved payment residual after k winning stages $\leq (1 \eta)^k \hat{v}$.

Theorem

The unresolved balance at any stage t is at most $\frac{\bar{v}}{\eta}$ (for values $\leq \bar{v}$).

Corollary (Dynamic Analysis)

For payment rebalancing dashboard and dynamic environment, seq. dashboard mech. is $\frac{\bar{v}}{\eta t}$ -approx. strat. equiv. to seq. truthful mech.

Outline

- Introduction and Motivation
- Single-agent Winner-pays-bid Mechanisms
- Dashboard Construction and Analysis
- Single-call Dashboard Mechanisms
- Discussion and Directions

Single-call Algorithms

Definition (Single-call Model)

Only access to algorithm x is by implementing its outcome, i.e., $\mathbf{x} \sim x(\hat{\mathbf{v}})$.

Recall Motivation: online markets:

- short-lived users matched to long-lived agents.
- matching algorithm, e.g.:
 - marketplace prioritize agents
 - users select agents

Discussion:

- online market can have bad equilibria.
- sequential dashboard mechanisms can implement outcome of any sequence of truthful mechanisms.
- rebalancing only when values change.
- single-call implementation.

Directions:

extensions: revenue, non-monotone allocation algs, non-linear utility, frugal instrumentation,

Commission

10%

Discussion:

- online market can have bad equilibria.
- sequential dashboard mechanisms can implement outcome of any sequence of truthful mechanisms.
- rebalancing only when values change.
- single-call implementation.

Directions:

extensions: revenue, non-monotone allocation algs, non-linear utility, frugal instrumentation, your favorite mechanism design question

Commission

10%

Discussion:

- online market can have bad equilibria.
- sequential dashboard mechanisms can implement outcome of any sequence of truthful mechanisms.
- rebalancing only when values change.
- single-call implementation.

Directions:

- extensions: revenue, non-monotone allocation algs, non-linear utility, frugal instrumentation, your favorite mechanism design question
 - broad theory for non-truthful mechanism design. [cf. Hartline, Taggart '19]

Commission