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When building a classifier in interactive machine learning (iML), human knowledge about the target class

can be a powerful reference to make the classifier robust to unseen items. The main challenge lies in find-

ing unlabeled items that can either help discover or refine concepts for which the current classifier has no

corresponding features (i.e., it has feature blindness). Yet it is unrealistic to ask humans to come up with an

exhaustive list of items, especially for rare concepts that are hard to recall. This article presents AnchorViz,

an interactive visualization that facilitates the discovery of prediction errors and previously unseen concepts

through human-driven semantic data exploration. By creating example-based or dictionary-based anchors

representing concepts, users create a topology that (a) spreads data based on their similarity to the concepts

and (b) surfaces the prediction and label inconsistencies between data points that are semantically related.

Once such inconsistencies and errors are discovered, users can encode the new information as labels or fea-

tures and interact with the retrained classifier to validate their actions in an iterative loop. We evaluated

AnchorViz through two user studies. Our results show that AnchorViz helps users discover more prediction

errors than stratified random and uncertainty sampling methods. Furthermore, during the beginning stages

of a training task, an iML tool with AnchorViz can help users build classifiers comparable to the ones built

with the same tool with uncertainty sampling and keyword search, but with fewer labels and more generaliz-

able features. We discuss exploration strategies observed during the two studies and how AnchorViz supports

discovering, labeling, and refining of concepts through a sensemaking loop.
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1 INTRODUCTION

Interactive machine learning (iML) is a growing and active field in machine learning (ML) that
emphasizes building models with humans in the loop [17]. A typical ML process involves (1) se-
lecting unlabeled items (hereafter, we refer to a data point or an example that can be labeled as
a whole as an “item”) that the model should understand and learn from, (2) examining and la-
beling the items appropriately according to the desired behavior of the model, and (3) choosing
the right representations (i.e., features) that describe the salient aspects of the labeled items that
correctly differentiate the target concept from the rest. In the traditional ML workflow, these steps
are performed sequentially and independently in batches; training and tuning of these models take
significant amount of time such that it is impractical for humans (i.e., model developers) to interact
with the model in real time. On the other hand, an iML workflow allows humans to take advantage
of interactive training to efficiently correct and teach the model and to focus on iteratively provid-
ing the most appropriate input given the model’s current deficiencies; as these models constantly
get feedback from humans, their evolving directions can better align with the developers’ goals.

Interactive training means that any model-changing input from humans (e.g., a new label, a new
feature) triggers a real-time training of the model such that any subsequent interaction reflects the
newly trained model’s updated behavior. Given the latest state of the model, an iML system may
focus on helping humans find [5] or generate [20] the most appropriate item to label (interac-
tive sampling), provide appropriate labels to correct the model’s current predictions [14, 18, 20,
47] (interactive labeling), or ideate [8] or select [55] the most appropriate feature to describe the
labeled data (interactive featuring). We illustrate this conceptual workflow of an iML system in
Figure 1. Our work focuses on the interactive sampling step to efficiently explore (or sample) and
label unlabeled items that the current model will predict incorrectly (i.e., errors in unlabeled items)
because, if the size of the unlabeled dataset is large, it is undesirable or impractical for a person to
label the whole dataset in an iML workflow.

One common, algorithmic approach for selecting unlabeled items is sampling based on uncer-
tainty (e.g., items with prediction scores near a decision boundary) or uniform distribution (i.e.,
items uniformly sampled based on the prediction score distribution). Although these sampling
methods can help pull out prediction errors, often the selected items can be ambiguous (i.e., hard
to judge) or random (i.e., the probability of finding a prediction error is as good as random selec-
tion). Errors with high prediction confidence, which can be disastrous in high-risk scenarios, are
not likely to be selected by these sampling algorithms. Hence, humans may not even be aware of
such defects in their models. Furthermore, these sampling methods do not fully leverage the value
of human insight; instead, these methods treat humans as mindless label generators, and focusing
on inherently ambiguous patterns cause them to feel annoyed, lose track of teaching progress, or
lose interest [3]. As the discovered prediction errors are mostly uncertain, it can be challenging
for humans to make sense of the errors to provide useful inputs.

Interactive sampling, on the other hand, allows humans to take advantage of their knowledge
about the target model and their understanding of the current model to explore and identify un-
labeled items that the model should learn from. Specifically, in classification problems, humans
usually possess knowledge about the target class; they can come up with hypotheses on what
underlying concepts (i.e., abstract notions that altogether represent the target class) are missing
from the model or are difficult for the model to interpret and try to fix the errors by providing
more labeled items or adding features. Such items could be found prescriptively (e.g., text search)
if humans could enumerate the missing information. In our work, we leverage semantic models
(i.e., models that have semantically meaningful feature representations [25]) to explore the dataset
when the missing information is not readily available or known until revealed. We propose an in-
teractive visualization, AnchorViz [11], to facilitate this interactive sampling process. We focus on
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Fig. 1. Interactive machine learning workflow. An iML workflow involves a quick, iterative loop between an

interactive use of the iML system and interactive training of the target model. Humans can interactively

select examples (A), label examples (B), or modify features (C) such that specific requirements of the target

model are met or identified deficiencies of the latest trained model are corrected. After such human inputs,

the model is quickly retrained for the human in the loop to interact with the model, assess its quality, and

determine the next best action to take.

helping users to sift the dataset with magnets that represent semantic concepts that we call anchors
and to leverage their domain knowledge in finding unlabeled items to which the model is blind.

We evaluated AnchorViz in two user studies. The first user study examined the users’ explo-
ration strategies and the use of anchors in improving an in-progress binary classifier (i.e., the model
developer spent some amount of effort already) and focused on evaluating the interactive sampling
step (Figure 1(A)) for a fixed model (i.e., interactive training and featuring is disabled in an iML
loop). Our results show that items highlighted through anchors are more likely to be prediction
errors for which the current classifier has no corresponding features (hereafter referred to as “fea-
ture blindness errors”) [44]. In addition, the participants used a variety of strategies to explore the
dataset and distill positive and negative concepts of the target class by creating anchors.

The second user study was a controlled experiment that compared the use of AnchorViz (a
human-driven approach) to the use of uncertainty sampling (a machine-driven approach) for build-
ing a classifier from scratch in an end-to-end iML loop (Figure 1). Our results show that AnchorViz
helped users to create a comparable model (i.e., similar in test accuracy) with fewer labels and
more generalizable features than the use of an uncertainty sampling and keyword search interface.
Achieving a certain model performance with fewer labels is beneficial for reducing the human la-
beling cost [56]. In addition, most participants preferred AnchorViz over the uncertainty sampling
and keyword search method, while a few preferred having access to both.

The contributions of this work are as follows: First, we highlight the opportunity for leveraging
semantic data exploration to locate classifier errors in unlabeled items. Second, we design, build,
and present AnchorViz to support such exploration through an interactive visualization. Third,
we evaluate AnchorViz through two user studies and discuss people’s exploration strategies and
AnchorViz’s support for discovering, labeling, and refining concepts. As we discuss in the next
section, our work differentiates from existing literature in iML. Our work studies an end-to-end
experience of building a model where neither feature nor label sets are fixed. Our results show
that AnchorViz has the potential to improve the iML experience by requiring fewer labels and
producing more meaningful features, while opening a new research space for semantic interactions
within an iML system.

2 MOTIVATING SCENARIOS

Before we describe the background and details of AnchorViz, we provide the following two sce-
narios to illustrate how one can create and use concept magnets to explore unlabeled items while
building classification models. In both scenarios, the model builder is unaware of an important con-
cept such that a training example that includes the concept or a feature that describes the concept
cannot be produced a priori or recalled in any prescriptive manner; such a concept, when discov-
ered and added to the training set, would improve the generalization of the model. We base our sce-
narios and the design and evaluation of AnchorViz on building binary classifiers for a text dataset.
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Fig. 2. The use of concept magnets for separating the dataset when building a recipes classifier. A dataset

contains a mix of predicted positive or negative items according to the current classification model (A). When

a restaurant menu concept magnet is brought to a dataset, items that are more like the restaurant menu

concept are pulled toward the magnet while items that are less like the restaurant menu concept remain (B).

Notice a predicted positive catering item is amid restaurant menu related items. A catering concept magnet

is added to pull additional items that are catering related so that such items can be inspected and corrected

(C).

2.1 Discovering a Catering Concept for a Recipes Classifier

A food blogger wants to build a binary classifier for finding recipe webpages. We illustrate the use
of concept magnets in this scenario in Figure 2. The writer already considers restaurant menu pages
as negative, so he wants to separate out restaurant menu webpages from the rest of the dataset to
make sure they are predicted as negative (2(A)). He uses existing restaurant menu pages to create
a restaurant menu concept magnet to pull webpages like the concept of restaurant menus (2(B)).
Among the similar items that are pulled towards the restaurant menu concept magnet, the writer
notices some items that are being predicted as positive, which is unexpected. Upon inspection of
those predicted positive items, he discovers that they are catering webpages. The writer considers
catering webpages as not belonging to recipes, labels the discovered catering webpages as negative,
and creates a catering concept magnet. With both restaurant menu and catering concept magnets,
he can now see if there are other webpages pulled towards both magnets that are incorrectly
predicted as positive (2(C)). He adds a feature to describe the catering concept, and a new model
is trained to reflect that the webpages pulled towards the catering concept magnet are correctly
classified as negative.

2.2 Exploring an Unfamiliar Dataset while Building a Classifier from Scratch

A student is doing research on online communities that discuss issues related to current events.
She is interested in conversations about gun issues and wants to build a classifier to separate posts
about guns from the rest. She is unfamiliar with the dataset and what it contains but knows that
the content she is looking for is there. She starts her task by creating concept magnets about the
firearms and gun actions concepts, which starts attracting items that contain terms used to describe
the concepts (e.g., shoot, pistol, rifle). From this set of items, the student selects items which she
expects are positive examples for the main concept, so she can label them. To her surprise, some of
these items are not positive examples; some items are about the photography concept and contain
the term “to shoot” or “shot”. The student has learned an unexpected aspect about the dataset
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she did not know before, the presence of photography items. This knowledge helps her to create
a photography concept magnet that separates photography items from gun ones that she labels
as negative examples. She also adds the photography concept as a feature to describe the negative
examples she added to the training set. As the student repeats the process described above, she not
only keeps improving her gun issues classifier, she progressively gains familiarity with the dataset
and the information contained within.

3 BACKGROUND AND RELATED WORK

In an iML setting, humans build models through iteratively training the model and providing train-
ing items and features based on the current model’s state in a quick and continuous loop [3]. This
model-building approach has shown its success in building a well-performing model using fewer
features [68]. In addition, it provides meaningful interactions to improve the user’s trust and under-
standing of the system [62]. This interaction between humans and machines goes beyond simply
treating humans as label oracles and requires thoughtful design and careful user studies [3]. Like
traditional ML, iML systems need to support finding items and features to which the current model
is blind for better generalization performance in the real world.

As illustrated in Figure 1, an iML workflow involves selecting items to label, labeling items, and
featuring in an iterative loop, where one or more of these steps could incorporate human inputs
(i.e., interactive feature ideation) or leverage automatic or algorithmic techniques (i.e., uncertainty
sampling). Existing literature on iML systems focus on soliciting human labels while holding fea-
tures constant or allowing the algorithm to select features [14, 17, 18, 20] or soliciting human
features while holding labels constant [8, 12, 25]; very few works have tried to solicit both human
labels and features [5]. Others leverage a dual learning paradigm which allows users to label fea-
tures [55, 67] while holding features constant. We focus our work on facilitating human-driven,
interactive selection of unlabeled items in an iML setting.

3.1 Unknown Unknowns and Prediction Errors

Attenberg et al. [6] and Lakkaraju et al. [32] use a model’s confidence score to categorize prediction
errors into known unknowns and unknown unknowns. Known unknowns are errors for which
the model has low confidence, and correcting such errors is useful for fine-tuning the performance
of the model. Unknown unknowns are errors for which the model has high confidence, and such
errors can be potentially disastrous depending on the problem domain. These errors are unknown
to the human and the model because they happen on unlabeled data, and the model does not
identify them as suspicious.

Another approach is to characterize prediction errors as feature blindness, ignorance, misla-
beling, or learner errors [44]. Feature blindness errors arise because the model does not have the
appropriate feature representation to learn from the training items. In contrast, ignorance errors
will be correctly classified if they are added to the training set as the model already has the appro-
priate feature representation. Mislabeling errors come from mislabeled items by humans, whereas
learner errors refer to issues caused by the configurations of the learning algorithms. In our work,
we focus on finding feature blindness errors since these errors represent missing concepts in the
current model. Feature blindness errors can be important sources of feature ideation in iML, par-
ticularly when a model is built by adding features incrementally as opposed to having access to a
set of constant features (e.g., bag-of-words (BoW)).

3.2 Searching for Items to Label

There are two types of strategies for searching for items to label: machine-initiated and human-
initiated. The machine-initiated (or active learning) approach uses learning algorithms to suggest
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items for humans to label so that the model needs fewer training items to perform better [56].
Uncertainty sampling is one of the most commonly used active learning strategies. In binary clas-
sification, this strategy samples items whose confidence scores are near the decision boundary [35,
36]. Active learning strategies are not suitable for finding unknown unknowns or feature blindness
errors because they often rely on the model’s current training results, which cannot overcome the
model’s blind spots [6, 32, 44]. Other algorithmic sampling strategies such as diversity sampling
(i.e., look for items far away from the current training set) or density sampling (i.e., focus on low
density regions) [23] work with a fixed feature space; they cannot be used for finding items for
which the current model does not have the appropriate feature representation, or the feature space
needs to be sufficiently large which requires a large number of labels for effective feature selection.

Recently, Lakkaraju et al. introduced an algorithmic approach to find unknown unknowns di-
rectly [32]. Their approach leverages systematic biases that are concentrated on specific places in
the feature space. Their explore-exploit strategy partitions a dataset based on similarities in fea-
ture space and confidence scores, and searches for partitions with high concentration of items with
a high confidence. The underlying assumption for their system is that any unknown unknowns
introduced to the algorithm can be characterized by the automatically extracted features (e.g.,
bag-of-words (BoW)), but using such features for training can have the undesired consequence of
losing interpretability [25]. In our work, we aim to preserve semantic meanings during exploration
to maximize interpretability.

The human-initiated approach allows humans to find the items that the model should learn.
Attenberg et al. introduced the notion of guided learning [7] and implemented Beat the Machine
(BTM), where crowd workers are tasked with finding items from the open world that the model
is incorrectly predicting [6]. Their results showed that BTM found more unknown unknowns as
compared to a stratified random sampler. Guided learning puts a significant load on humans to
find adversarial items since recalling is difficult, but when combined with other active learning
strategies, this method can help the model learn quickly, especially on skewed datasets. One unique
characteristic of BTM is that it leverages the open world as a search space, rather than a closed and
biased sample set used in traditional settings. However, this approach does not keep the concepts
or structures created and leveraged by users during the search process, so it has limited support
for subsequent searches.

In AnchorViz, humans do not play a passive role as labelers of items presented by algorithmic
techniques but take advantage of algorithmic techniques. For example, AnchorViz uses hierarchi-
cal clustering (HC) [60] to reduce the user’s search space, but ultimately, it is the user that chooses
to label the item. The system also computes the similarity between sets of items in the BoW feature
space and presents the results for users to take actions. In addition, we allow the users to exter-
nalize their concepts or structures so that they can decompose the target class, reuse previously
defined concepts, or redefine and evolve their search strategies as they explore the dataset.

3.3 Semantic Text Representations

Having the appropriate representations (i.e., features) is critical in training a classifier because the
learner cannot possibly search the hypothesis space (i.e., a space of all possible classifiers) for a
solution in the absence of a learnable classification function that can correctly predict the training
set [15, 44]. Thus, feature engineering—a process of producing appropriate representations that the
learner can understand – is often thought of as an art and a key factor in what makes or breaks an
ML project [15]. Integrating feedback from humans in the feature engineering process has been
known to improve the classifier performance [49]. Earlier works have supported human-driven
feature debugging and engineering [21], crowd-sourced feature labeling [12], and feature ideation
[8]. When the feature representations are semantically meaningful or understandable, humans can
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manipulate [63] them directly to improve the model or adjust them to debug the model efficiently
[31]. Two types of semantic, word-based representations for text classification are bag-of-words
(BoW) and dictionaries. While representations are typically used only as features for training the
model, we extend their use case by directly using them as semantic models with which to explore
(i.e., search and filter) the dataset.

BoW is a model that represents the occurrences of words in a set (or a bag) independent
of how they appear in text [43] and has been shown to be successful in experiments and in
practice [54]. The dimensionality (i.e., the number of words) in the resulting BoW can become
too large (e.g., hundreds) for humans to retain and analyze even after common feature selection
techniques [1, 69] are applied to reduce its dimensionality. In addition, the resulting BoW becomes
incoherent to humans because the context surrounding the words (e.g., paragraphs, sentences)
and the word orders are discarded [54]. Despite these drawbacks, BoW is commonly used for its
simplicity because it can be pre-computed and can represent any text as a computable vector,
where similarity or average can easily be computed for analysis [42]. In our first study, we use
a fixed BoW (i.e., the list of words was precomputed and never updated through interaction) for
exploring the dataset and clustering the dataset.

Dictionaries or lexicons are sets of semantically related keywords that can be generated and ma-
nipulated manually by the domain expert [63]. Even though the humans are left with the burden
of creating the dictionaries or recalling all possible words that belong to a dictionary, dictionaries
provide a way for humans to express a concept. For example, a dictionary containing the words
“apple, orange, banana” represents a very specific fruits concept that is aware only of the occur-
rences of these three defining words. In our second study, we experiment with dictionaries as tools
for both exploring the dataset and as features for training the model.

3.4 Interacting with Semantic Concepts

Categorization, or classification in ML terms, is an activity to determine if a specific item is a mem-
ber of a category [59]. Categories can be thought of as the classes or groupings of similar items, and
the concepts are mental representations of these classes that encode how these items are similar in
some way. Knowing that a certain item belongs to a category can help generalize its characteristics
based on your knowledge about the category. Therefore, concepts are powerful tools that allow us
to infer beyond what we know about the item. One of the many views of concepts is the family-
resemblance view: a concept is represented by a list of attributes or features where some may be
of more importance or weight than others [51]. A schemata view, on the other hand, presents “a
structured representation that divides up the properties of an item into dimensions (usually called
slots) and values on those dimensions (fillers of the slots)” [45]. Understanding the attributes that
define a concept (i.e., feature list), how the attributes are measured and evaluated (i.e., feature
dimensions and values), and the relationships between the attributes (i.e., feature importance or
correlation) are important parts of the categorization or classification task. We take inspirations
from these cognitive models to design new interactions and affordances that match human cogni-
tive processing of concepts. Specifically, our visualization allows users to define concepts through
examples or keywords, visualize concepts along their similarity or value dimensions, and define a
topology or layout for inspecting the relationships between concepts.

3.5 Visualization for ML

Visualization is an effective and important strategy for enabling the humans to interact with the
ML algorithms and the underlying dataset, to make appropriate decisions and actions to improve
the model, and to gain better understanding of the dataset and model [38, 40, 66]. There have
been several visualizations proposed and used throughout the model building process, supporting
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tasks such as data exploration and processing, feature selection, and model analysis, selection, and
evaluation [38, 40]. Interactive visualizations can help users directly influence the output model
by selecting features [8, 28], combining and tuning models [64], evaluating and diagnosing the
model’s performance [4, 13, 39, 50, 70], or manipulating clusters [34] or trees [65]. In addition, they
can help increase the understanding of the models through, for example, providing explanations
for black-box models [29] or describing the inner-workings of an ML algorithm or process [42].
However, existing work mostly focuses on understanding the current model, manipulating the
model given a fixed training set, or discovering errors in the training set with little attention to
discovering previously unknown errors in unlabeled items.

Visualization provides an important means for humans to interact with and understand data
by mapping data to visual representations (e.g., position, color, shape) [9]. A good visualization
provides an appropriate interaction language and data representations such that it becomes easy
to make sense of the data and gain actionable insights. In AnchorViz, since the main user task is
to locate previously unknown errors in the unlabeled items, we focus our attention on techniques
for laying out and interacting with the multi-dimensional dataset.

Algorithmic approaches to laying out a multi-dimensional dataset on a two-dimensional space
[37] include Principal Component Analysis [26], t-Distributed Stochastic Neighbor Embedding
(t-SNE) [41]), force-directed graph algorithms [19, 42], and Sammon mapping [53]. However, these
automatic approaches produce dimensions that may not be semantically meaningful or require ex-
pert understanding of the algorithms. Several works have been proposed to allow users to directly
define the dimensions [27] or manipulate the parameters of the layout algorithms [24] through
direct, instance-based manipulations. In AnchorViz, we allow the users to directly define the di-
mensions, and we support an arbitrary number of dimensions via a radial visualization [57].

Our interaction design is inspired by VIBE [47] and Dust and Magnet (D&M) [61]. D&M uses
a magnet metaphor to attract similar items using pre-defined dimensions in the data. However,
the existing dimensions in our iML scenario (i.e., features) may not have any connections with
unlabeled items to attract them. Like Adaptive VIBE [2], we allow the users to create and refine
anchors as our version of magnets. We explain anchors in further details in the next section.

4 ANCHORVIZ

In this section, we describe AnchorViz, an interactive visualization to help ML classifier developers
locate prediction errors in an unlabeled dataset by using semantic concepts. AnchorViz facilitates
this by letting users define concepts and find items where the model’s prediction disagrees with
theirs.

4.1 Design Objectives

When designing AnchorViz, we aimed at answering the following research question:

“How might we help users use semantic concepts to discover potential prediction
errors or useful concepts for a classifier through interactive data visualization?”

Discovering a prediction error in a large dataset can be like finding a needle in a haystack.
This problem is aggravated by the lack of certainty of a needle actually being in the haystack at
all (i.e., unknown unknowns). When looking for a rare item in a large dataset, there are many
strategies one can follow, the simplest one being randomly sampling through the dataset (i.e.,
sifting through the haystack) haphazardly. This is an inefficient (and potentially painful) method
of finding a needle. But what if we could pull that rare item away from the pile in which it is
hidden? We use the analogy of magnets to shape our item-seeking solution (Figure 2). We think
about different magnets to find different kinds of needles, each representing a missing concept in

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 7. Publication date: August 2019.



AnchorViz: Facilitating Semantic Data Exploration for IML 7:9

the model. Since the items that are sought may be unknown, it can be difficult to automatically
define corresponding magnets to pull them out.

Our work leverages this magnet analogy to generate the following design objectives that answer
our research question.

4.1.1 Let Users Define Concepts of the Target Class and Unrelated Classes. To begin the ex-
ploration of the dataset for potential classifier errors, the users need to define concepts to sift and
separate out the dataset. We allow users to define semantic concepts in two specific ways: example-
based and dictionary-based. Example-based concepts are defined by one or more archetype exam-
ples of the concept that the user simply groups together. This is a common way for people to
articulate concepts in their heads [46]. For example, a chicken recipe concept is defined by a set of
webpages containing recipes with chicken as the main ingredient. Dictionary-based concepts are
defined by a dictionary or a set of semantically related keywords that the user inputs. For exam-
ple, a firearms concept is defined by “pistols, rifles, shotguns, and machine guns.” We chose these
two types of concepts as candidates for our initial design exploration and user studies for their
simplicity and ease of understanding. Studies of other types of concepts, such as concepts based
on trained ML models, are out of scope for this article.

4.1.2 Spread the Dataset Based on Concepts. Once the concepts are defined, the users need to
see the correlation between the concept and the items to verify that their concepts are well-defined
and useful by spreading the dataset based on the presence or the lack of the concepts. We call the
artifacts, that define a specific concept and pull items containing some representation of the con-
cept towards it, as concept anchors (or anchors, in short). The relationship between the anchor and
each item is determined by a function that takes anchor properties (e.g., items, keywords) as inputs
and outputs a score in a continuous space or an order in an ordinal space. This function defines an
anchor. For instance, anchors can be defined by any model (a function that takes data and outputs
predictions) that the user has previously built or any externally trained models (e.g., sentiment
analysis service). Advanced users can create a custom distance function that composes multiple
models and functions. Such flexibility allows trivial integration of standard active learning algo-
rithms and opens several opportunities to support a richer interaction language and expressiveness
for anchors. An anchor can be fully transparent (e.g., number of times the term “apple” appears) or
fully opaque (e.g., score output of a third-party sentiment model). Regardless of how the anchor is
defined, the user can interact with one or more of these anchors to gain insight about the dataset
as well as the anchors themselves.

For example-based anchors, we use BoW to automatically turn items into numerical vectors
and compute concept dimension as the cosine similarity in the BoW space between the concept-
defining examples and other items. Intuitively, example-based anchors pull items that share more
words with the concept-defining examples than items that share fewer words. For dictionary-based
anchors, we compute the concept dimension as the number of times the dictionary keywords occur
in the items. Intuitively, dictionary-based anchors are a form of basic keyword search where items
that contain more of the keyword are separated from items that do not contain the keyword (which
would remain unaffected just as the hay would remain unaffected when a magnet is brought to it).

4.1.3 Show How User-Defined Concepts Impact the Positions of Items. The users can spread the
items with anchors, but to see the relationship between several concepts with respect to the items,
we need to define a topology or a layout where the positioning of the items represent the relative
importance or influence of each concept to the items. We aim to define a topology such that an
item that is equally related to two concepts is positioned in the middle of the anchors while an item
that is relatively more influenced by one concept sits closer to that anchor in relation to the other
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anchor. For example, an item is more like catering and less like restaurant menu if it is attracted
by one and not the other. An item is unrelated to both if it is not attracted by either anchor. We
introduce the precise mathematical formulation of the layout in the later Section (4.2.3).

4.1.4 Provide Information about the Model’s Current Prediction along the User’s Labels. To help
users find prediction errors, we need to involve the classification model being built into the ex-
ploration process. By surfacing the model predictions and the labels on the semantic topology
defined by concepts, users can contrast the predictions with concepts and look for prediction dis-
agreements in two different ways (also see Figure 10). First, the user can look for items that are
predicted to be in the opposite class as the class expected to be close to a concept. For example,
restaurant menus should be treated as a negative concept for the recipe class. If an item near a
restaurant menu anchor is predicted as positive, then the item is a potential prediction error. Sec-
ond, if an item is predicted or labeled as positive in an area of negatively predicted or labeled items,
that item is an outlier worth inspecting.

4.1.5 Optimize for Efficient Reviewing Process. After a user defines a topology with anchors
(concepts) and decides on a set of filters, there can still be hundreds of items to inspect to find
prediction errors. We aim to support the users in efficiently sifting through and inspecting items
and their predictions. Among the many ways to approach visual clutter, we explore two options:
clustering and subsampling. The complexity and the number of items displayed in AnchorViz can
be reduced by pre-processing the dataset and grouping similar items under a BoW embedding
into hierarchical clusters. Another way to reduce the number of items is to subsample the dataset.
Any selection algorithm can be applied here, and we explore a mixed-initiative approach where an
active learning algorithm (e.g., uncertainty sampling) is used for item selection as it is traditionally
used to reveal items where the model is likely to be uncertain about. We describe the algorithms
for clustering and subsampling in detail in later Sections (4.2.5, 4.2.6).

4.2 Interface and System Design

We now describe the core design and functionalities of AnchorViz, and in the subsequent Sec-
tions (5, 6), we illustrate how the visualization was embedded in two different iML contexts.

4.2.1 Main Interaction Area. The main interface for AnchorViz (Figure 3(A)) contains a
RadViz-based visualization that shows both labeled and unlabeled items as glyphs inside the ring
(Figure 3(B)). The main area also shows anchors representing concepts (Figure 3(C)) on the ring.
Without any anchors, the visualization displays all items, or glyphs (Figure 3(D)), at the center of
the ring. As users define concepts, the item’s layout will change to reveal affinities between items
and concepts. This main visualization area is accompanied by a legend area (Figure 3(E)) to help
users differentiate and focus on different types of glyphs.

4.2.2 Anchor Definition through Examples and Dictionaries. As we discussed earlier, we de-
signed and implemented two types of the anchors that the users can define (4.1.1): example-based
and dictionary-based. To create an example-based anchor, users can drag an item to the ring. Users
can also drag an item to an existing anchor to update the corresponding concept. A user can click
on an anchor to reveal the anchor details in a dedicated area (or a dialog can be used as an alter-
native) of the interface that hosts AnchorViz (Figure 3(G)). There, users can provide a meaningful
name for the anchor, view the list of items that belong to the anchor, and remove items that no
longer belong to the anchor.

To create a dictionary-based anchor, users can click on the ring to bring up a dialog that solicits
the dictionary name and keywords that belong to the dictionary (Figure 3(H)). Like example-based
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Fig. 3. AnchorViz wireframe. The main interface (A) contains the visualization and shows data points (D)

within the ring (B) on which the anchors (C) are positioned. The legend for data points (E) also acts as

filters. The navigator (F) shows which cluster the visualization is displaying in the current navigation stack.

Clicking on an anchor shows a dedicated interface for its details appropriate for its type (G, I). Clicking on

the ring shows a dedicated interface for creating a dictionary-based anchor (H). Clusters are represented as

treemap-style squares (J).

anchors, users can click on an anchor to reveal the anchor details where they can modify the
dictionary or hide the anchor from the visualization (Figure 3(I)).

4.2.3 Layout and Anchor’s Manipulation. Once users create an anchor, they can see the cor-
relation between the concept represented by the anchor and the items (4.1.2) or the relationship
between several concepts with respect to the items (4.1.3). When users move the anchor along
the ring, they see items follow concepts that they are related to. We encode the relative similarity
between items and the surrounding concepts into their position inside the ring. We do this using
a non-orthogonal coordinate system, defined by the center point of the ring and the axis passing
through each anchor. Namely, an axis k is a vector with the length of the outer circle’s radius r
and an angle θ to the corresponding anchor (Equation (1)):

�Vk = (r · cosθ , r · sinθ ). (1)

An item along an axis forms a vector with an angle identical to that of the axis and a magnitude
of the cosine similarity in the BoW space between the item and the items or words defining the
anchor. Given a set of anchors, then the position of an item inside the ring is the sum of the vectors
to each anchor (Equation (2)):

Position(i ) = (xi ,yi ) =
∑

k

valuek (i )∑
j valuej (i )

· �Vk (2)

This formulation satisfies our design goals (i.e., the items that are closer to an anchor are more
like the items or words defining the anchor). Items that are attracted to an anchor will move along
with it, whereas items dissimilar to an anchor’s concept will remain still (4.1.3). By creating and
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manipulating anchors, users are effectively creating a topology in the semantic space defined by
the anchors’ concepts. Since we want to ensure all items stay inside the ring, we normalize an
item’s value on an axis by the sum of all its values on all the axes. This normalization follows the
typical normalization used in RadViz [22].

While there are other techniques for visualizing the aforementioned topology, we chose RadViz
because of its support for an arbitrary number of axes and its flexibility in the positioning of axes
while preserving the relative independence of the axes [57]. In this article, we do not explore these
alternatives and leave them as opportunities for future work.

4.2.4 Contrasting Model Predictions against Concepts. We encode model predictions and user
labels into the color and shape of items as illustrated in Figure 3(E) such that the users can leverage
their visual perception to quickly find prediction errors or inconsistencies between predictions and
their expectations based on the concepts at hand (4.1.4). As displaying many items can become
visually complex, we provide users with the ability to filter the types of items displayed inside the
ring. Users can do this by toggling categories in the legend area near the ring.

4.2.5 Hierarchical Clustering. We cluster items in the dataset based on the cosine similarity in
the BoW space as the distance between any two items. The distance between clusters (Ca and
Cb ), including single-point clusters, is the average distance between pairs among two clusters
(Equation (3)):

distance(Ca ,Cb ) =

∑
i

∑
j distance(Cai ,Cbj )

|Ca | |Cb |
(3)

We group items using a hierarchical clustering algorithm. In each step, the algorithm selects a
pair of items with the shortest distance and merges the two as a new cluster. The step is repeated
until there is only one cluster left. We reorganize the result of the hierarchical cluster, which is a
binary tree, into a n-ary tree from the top tree node and expand the tree in a breadth-first order.
At any given node of the n-ary tree, it can contain leaves (items) or sub-trees (clusters) which can
further divide into sub-trees and leaves. For our user study, we used n = 500 which is neither too
cluttered nor sparse. We leave choosing an optimal value of n for future work.

The groupings built using this algorithm help reduce the search space items by limiting the
number of visible data elements and allowing users to review groups of similar items rather than
individual items. These groups or clusters do not change in composition when anchors vary in
definition or location, since they group items close in a BoW semantic space, not items that are
visually close according to the anchor topology. However, clusters move along with the anchors
that they are most similar to, just like any individual items. A cluster’s position is based on the
average similarity of all the leaf items inside the cluster.

We display these pre-processed groups of similar items (hereafter, we refer to a group of similar
items as a cluster) as treemap-style squares (Figure 3(J)). The size of the square is a function of
the number of items inside the cluster. Each square is a single-level treemap [58] representing the
composition of items in four categories (labeled positive, labeled negative, predicted positive and
predicted negative). By using treemaps as glyphs, we aim to provide an at-a-glance understanding
of the distribution of items within so that users can make a quick decision to navigate into the
cluster. For example, if the cluster contains predicted negative items and labeled positive items,
there may be potential inconsistencies between the clustering, the classifier, or the labels that
need to be investigated and resolved. We display the same treemap for each anchor as a way to
visualize their item composition as well as their class association along with the descriptive name.

4.2.6 Subsampling. We sample at most 100 items where the uncertainty sampling picks the
top 50 predicted positive and 50 predicted negative closest to the decision boundary. Unlike
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hierarchical clustering which is a pre-processing step, subsampling can be done in real-time with
every iteration of classifier training. With this type of visual reduction, we can render a simpler
visualization without clusters or a navigation affordance.

4.2.7 Interacting with Items and Groups. When users click an item, the corresponding interface
reveals the details of the item in a dedicated area. This item detail area lets users inspect the item,
its label, and the model’s prediction. It gives users a quick way to check if the model predicts
the item correctly and provide a correct label (4.1.5). If example-based anchors are available, the
interface also provide users with the ability to create an anchor from the details of an item.

Users can navigate into a cluster, if present, by clicking on it, and the visualization will update to
show the items and clusters that are children of the cluster they clicked. We provide users with a
navigation affordance (Figure 3(F)) that shows the current navigational path inside the hierarchical
cluster structure. The root cluster at the top of the path or stack represents the entire dataset. Users
can navigate back to a previous level through the navigator or double click on any empty area
inside the ring.

4.3 Implementation

Our system consists of two components—a self-hosted web service and a web application. We im-
plemented the web service using .NET, ASP.NET Core and the Nancy framework; we implemented
the web application using Typescript, React, and D3. All relevant data, including the exploration
dataset, training data, client states, and classifier configurations, is persisted to disk on the web
server to support browser refreshes and for evaluation of the study results.

5 USER STUDY 1: CLASSIFIER ERROR DISCOVERY

We conducted a user study to evaluate our visualization and its effectiveness in helping users to
discover classifier errors. To the best of our knowledge, AnchorViz is the only visualization tool for
error discovery that allows interactive exploration with the users’ explicit semantic formulations,
so there is no baseline to compare purely on its contribution to facilitating data exploration. Thus,
the focus of our study is to understand the different strategies people use to explore the dataset and
observe people’s interactions with the anchors while all other conditions (e.g., features, distribu-
tion of positives) are fixed. This section describes the design of the user study and data collection,
and we introduce definitions of several metrics that can be used for analysis and comparison in
the future.

5.1 User Study

5.1.1 Study Design and User Task. To evaluate the visualization, we provided the participants
with a specific scenario. The premise for the user study is that the participant is developing a
binary classifier using an iML tool (i.e., iteratively sampling for items, labeling the items, adding
features, and debugging the target classifier). Through this iterative process, the participant has
achieved almost 100% accuracy on the training set. Despite high training accuracy, the classifier
performs poorly on a held-out test set, and the participant does not know a priori any items or
features where the classifier could be making a mistake. Therefore, the participant switches to
explore a large unlabeled dataset to find potential sources of errors.

Based on the above scenario, we asked participants to (1) explore the unlabeled set to find items
where the classifier is making a mistake, (2) find a set of items that are diverse from each other,
and (3) try to understand the dataset and classifier performance in the process.

Even though the study is set up as an iML scenario, we disabled featuring and interactive training
of the model. The goal of this study was not to observe the compounding effect of choosing the

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 7. Publication date: August 2019.



7:14 J. Suh et al.

Fig. 4. Overview of the first user study interface. The interface contains the Explore pane on the left which

hosts AnchorViz (A) and the Items pane on the right (B) which shows a paginated grid of thumbnails of all

currently visible items in the visualization. Anchor repository (C) contains unused anchors.

right item and retraining the model to inform the next sampling activity. Instead, the goal was to
evaluate the quality of the selected items. Therefore, we only allowed interactive sampling and
labeling.

5.1.2 Interface Design. For the first study, we integrate AnchorViz in an interface that uses
example-based anchors and hierarchical clusters and supports an exploration experience designed
specifically for webpage data. The interface (Figure 4) is divided into two main areas: Explore pane
on the left and Items pane on the right.

The Explore pane (Figure 4(A)) contains the main AnchorViz visualization, and is the place
where users explore and select items from the dataset. Below the visualization, there is an Anchor
Repository (Figure 4(C)) containing anchors that the user removes and are available for reuse. The
Items pane (Figure 4(B)) shows a paginated, grid view of the items currently displayed in the main
visualization. When users click an item, the Items pane (Figure 4(B)) will switch to show the detail
of the selected item, cluster or anchor.

5.1.3 Dataset, Classifier, and Setup. To set up the user study according to the scenario above,
we built a binary classifier whose training accuracy is 100% in an iML tool. The binary classifier
outputs prediction scores from 0 to 1 and uses 0.5 to be the decision threshold. For our dataset,
we took webpages and categories from the Open Directory Project (http://www.dmoz.org/) where
the webpages were voluntarily organized into hierarchical categories by the community editors.
After rendering the webpages, we discarded the webpage markup and retained only rendered
and visible text tokens for each webpage. Following the categorization descriptions provided by
the dataset, we built binary classifiers for several hours in an iterative model-building loop using
logistic regression as the learning algorithm, text search and uncertainty sampling for item selec-
tion, and human-generated dictionaries (single weight for a group of n-grams) as features. Out of
nine binary classifiers, we picked a classifier for predicting cooking-related webpages which had
the highest train accuracy (97.5%) with 674 labeled items and 37 human-generated features. The
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choice of the learning algorithm is independent of the problem of discovering errors and is out of
scope for this article.

To control for the ratio between the labeled set and the unlabeled set, we uniformly sampled for
4,000 items from the full dataset (50% positive for cooking) and 400 items in the labeled items such
that approximately 8–10% of the dataset was labeled. To simulate blindness to concepts within pos-
itive and negative classes of cooking, we removed 25 features related to cooking (e.g., appliances,
seasoning), and we left only one n-gram in each feature to degrade its test accuracy further. After
training the classifier, we subsequently removed incorrect items to achieve 100% training accuracy.
The final cooking classifier had 309 labeled items (130 positive), 12 features, 100% train accuracy
and 75.8% test accuracy. This starting point emulates an early stage of an interactive session where
a user builds a classifier by providing both labels and features. For participants to practice, we also
picked a travel-related binary classifier to use throughout the tutorial. This classifier only appeared
during the practice round.

A limitation of the current interface design is that the visualization requires at least one anchor
to be present to begin the exploration process. In an ideal case, we would provide the users with
ways to bootstrap the visualization such as selecting items based on keyword search or choosing
a set of labeled items to seed an example-based anchor. Evaluating the cold-start scenario is out of
scope for this study, and therefore, we bootstrapped the visualization with one pre-defined anchor
containing a positively labeled item and another containing a negatively labeled item.

5.1.4 Participants. We recruited 20 participants from a large software company. We used four
participants for the pilot study, and we used data from the remaining 16 participants (7 female) for
the analysis. We categorized participants into four groups according to their ML background. Four
participants took some courses in ML (P1-4), four occasionally build ML models in practice (P5-
8), three frequently build ML models (P9-11), and five have a doctoral degree in ML-related fields
(P12-16). Our participants’ professional roles in the company are that of applied data scientist (9),
program manager (2), researcher (1), financial manager (1), and software engineer (3).

5.1.5 Procedure. We conducted our study through video conferencing sessions which we
recorded. During the sessions, participants shared their screens and thought aloud while perform-
ing their tasks. The user study consisted of four parts: The first part took about 20 minutes and
involved an introduction to basic ML knowledge such as classification, errors, precision and re-
call, description of the data set, overview of the study interface, and introduction of the travel class
(webpages about traveling and tourism). The second part took between 10–20 minutes and was
a practice round using the travel class as a reference to get familiar with the interface, followed
by an introduction of the cooking class (webpages about home cooking) which was to be used for
the actual task. The third part was the main study task and took about 20 minutes. During this
part, we asked the participants to use AnchorViz to find and label a diverse set of items where the
participants disagreed with the classifier’s predictions. At the end of the study, we asked partici-
pants to complete a small survey to assess their satisfaction and to collect open-ended feedback.
Each study session lasted between 70–90 minutes. We compensated each participant with a $30
gift card.

5.2 Quantitative Data Analysis

We focused our analysis on the items that the participants discovered and the circumstances and
the behaviors surrounding their discovery. We also instrumented the web application for user
behavior to replay their interactions with anchors or items. Since we are not studying the effec-
tiveness of user interactions on the model performance, we do not report the usage statistics.
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5.2.1 Anchor Effectiveness. To measure the effectiveness of anchors on discovering errors, we
define two metrics: anchor error precision (AEP) and anchor error recall (AER). The two metrics
have similar concepts as the common precision and recall metrics in ML, but instead of measuring
based on the target classes (positive/negative), AEP and AER look at whether items are errors or
not.

Before further defining AEP and AER, we first define contrasted items. Contrasted items aim
to capture items that become salient through anchors. The use of contrasted items is a form of
automatic discovery once the anchors are given. The steps to determine whether an item is a
contrasted item are:

(1) Collect neighbor anchors: Given an item, take up to three of its nearest neighbor anchors.
Note that an anchor must be within r/2 range of an item to be its neighbor.

(2) Determine the class label for each neighbor anchor: For every neighbor anchor, we deter-
mine its label based on majority voting from its items’ ground truth labels. That is, if an
anchor has three items, with two of their ground truth labels are positive and the other is
negative, then the label of this anchor is positive.

(3) Determine the contrasted base label: The contrasted base label is determined by majority
voting from all the neighbor anchors’ labels. The contrasted base label is unsure in a tie.

(4) Determine if the item is a contrasted item: If the item’s predicted label is opposite to the
contrasted base label (not including unsure), then the item is a contrasted item.

Then we can define AEP and AER as follows:

AEP =
# true errors in contrasted items

# contrasted items
(4)

AER =
# true errors in contrasted items

total # true errors
(5)

An intuitive explanation of these two metrics is that they help examine how many error items
a setup of anchors can bring into attention. Note that we calculated these two metrics based on all
of the contrasted items given the whole layout of anchors and points at a time, not merely a single
anchor. We also consider all items by their spread-out positions, not their clusters’ positions, as
our goal of the two metrics is to measure the anchors’ effectiveness, not the clustering algorithm.

We calculated AEP and AER for all active anchor settings of each participant over time. By active
anchor settings, we refer to the layout of anchors and items when participants actively interact
with items, which include: creating an anchor, adding/removing items in an anchor, navigating
into a cluster, viewing an item, and labeling an item. Thus, if a participant interacts with 10 items,
the participant will have 10 measurements for AEP and AER.

Figure 5(B) shows the average AEP and AER of each participant. The reference line “Random” of
AEP shows the baseline for AEP to be 0.26, the error rate in the dataset. This baseline is how likely
an item is an error if randomly selected by a user. As the figure shows, 12 out of 16 participants
had an average AEP greater than random. This indicates that contrasted items are likely to pull
errors to attention.

For AER, we plotted the average across participants as a reference line since the same analogy
in random is 1 (all the errors are in the dataset). The average AER (0.13) indicates that only about
13% of the errors are the contrasted items. However, the goal of our tool is not to find all errors,
but to find errors that are critical. We further analyzed the types of errors in contrasted items and
found most errors in contrasted items have a higher chance to find feature blindness errors than
other approaches, including the algorithmic samplers, as we described in Section 5.2.3.
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Fig. 5. (A) Test accuracy improvements across participants and algorithmic samplers. All participants built

better performing classifiers than an uncertainty sampler, and three participants built better performing

classifiers than random samplers. While random samplers performed well on the test set, they discover less

feature blindness errors as indicated by Figure 6(B). (B) Average anchor effectiveness metrics (AEP/AER) for

each participant. Most participants have better AEP than random.

5.2.2 Error Categorization and Generalization. We evaluated the effectiveness of our visualiza-
tion on discovering prediction errors in two ways. First, we computed the number of prediction
errors that the participants discovered. Then we examined whether these errors were feature blind-
ness errors by individually retraining the classifier with every item and seeing if that item was still
a prediction error. Second, we looked at the score distribution of the discovered items to see how
many high confidence errors the participants were able to find. We computed the magnitude of er-
ror as the absolute difference between the prediction score and 0.5. For comparison, we computed
the same metrics with other samplers (e.g., uncertainty, stratified random samplers) given a fixed
number of items comparable to that of the participants.

We also measured the quality of items by evaluating a classifier trained with the discovered
items against a held-out test set. There are several challenges here. One is in simulating a human’s
featuring ability which is required in an iML loop that we operate in. Another is that the test set
may not include a representative item for a concept that the participant discovered. For example,
when building a cooking-related webpage classifier, it can be the case that there is not a single
item with a reference to “insect recipes” (a positive concept) in the test set which can be found
during exploration of the unlabeled set. Fully acknowledging the challenges in evaluating the
classifier’s generalization performance, we computed the classifier’s accuracy on the held-out test
set using the original feature set (37 features). Our justification is that comparing two classifiers
with or without the discovered items on a fixed feature set would provide us with a glimpse into
the quality of the items added.

5.2.3 Error Analysis. For the analysis of the items discovered by the participants, we used the
ground truth labels provided by the original dataset as well as 4000 exploration candidate items
(50% positive) and 1600 test items (50% positive).

On average, participants discovered 40.9 errors (σ = 19.6). We looked at the percentage, instead
of the count, of errors in the total number of discovered items because of high variability in the
number of discovered items. We also looked at the first 50 (mean number of items found by partic-
ipants with doctoral degrees in ML) items returned from algorithmic samplers. Of the unlabeled
items (3691 items), the initial cooking classifier made prediction errors on 943 or 25.5% of the items
and feature blindness errors on 886 or 24.0% of the items. Except for P10 who discovered errors
at a rate of 24%, all participants discovered errors at a higher rate than the total error distribu-
tion, random, stratified random, or uncertainty sampler. The uncertainty sampler selected errors
at 47.8% but only 8.7% of the sampled items were feature blindness errors. Again, except for P10,
all participants discovered feature blindness errors at a rate higher than any algorithmic samplers.
Figure 6(A) shows the distribution of errors among discovered items across participants.
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Fig. 6. (A) Distribution of items across participants and algorithmic samplers. Text in each bar shows the

percentage of items in different item categories. All participants except for P10 discovered feature blindness

errors at a rate higher than any algorithmic samplers. (B) The total number of discovered items (top) and the

percentage of items (bottom) in different item categories and in four error magnitude bins. The distribution

is skewed towards high magnitude errors (0.375–0.5). Among high magnitude errors, participants discovered

and contrasted more feature blindness errors than algorithmic samplers.

Figure 6(B) shows the distribution of the magnitude of errors across different samplers. Here, we
looked at all the unique items discovered by the participants (n = 493) and contrasted items (defined
in Section 5.2.1) among the discovered items (n = 111), and we selected the first 493 items from
each of the algorithmic samplers. According to the distribution of discovered items, the dataset
is skewed towards high confidence scores and high magnitude of error. However, the percentage
of errors indicates that the items selected by participants and the contrasted items had a higher
chance of discovering errors than algorithmic samplers. The uncertainty sampler selects more
ignorance errors than any other samplers. This was expected because uncertainty sampling selects
examples that are ambiguous for the existing features. Discovering a feature blindness error can
be considered as blind luck.

5.2.4 Test Accuracy. While keeping the features fixed to the original set of 37 features, we com-
pared the classifier accuracy on the held-out test set before and after the discovered items were
added to the training set. As before, we selected first 50 items from algorithmic samplers for com-
parison. Figure 5(A) shows that all participants made test accuracy improvements, and their clas-
sifiers performed better than the uncertainty sampler. Because the dataset is skewed towards high
confidence scores, random samplers were able to select high magnitude error items and improved
test accuracy. However, random samplers discovered fewer feature blindness errors as indicated
by Figure 6(B), and three of our participants (P9, P13, P16) had classifiers with higher test accuracy
than the ones created by random samplers.

5.3 Qualitative Analysis of Participant Exploration Strategies

We captured the participants’ interaction and behavior through recordings of their conversation
and usage of the tools. We coded their actions (e.g., click cluster, move anchor), the motivations
for their actions (e.g., inspect prediction inconsistencies, see how items move), and the reactions
to the actions they performed (e.g., whole cluster is positive, anchor is not very good). We used the
results of the qualitative analysis to catalog different exploration strategies used by the participants
and insights they obtained.

We outline different exploration strategies that the participants used when interacting with the
visualization tool from qualitative analysis. We focus on three key aspects of the participants’ use:
(1) their reasons for creating anchors, (2) their exploration strategies, and (3) their understanding
of classifier performance.
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5.3.1 Reasons for Creating Anchors. All participants created anchors when they discovered a
concept that could be useful for defining positive or negative classes (e.g., desserts, biography,
Turkish cuisine). Anchors were also used to capture items that could potentially be confusing to
the classifier. For example, P16 found a webpage containing a recipe, but a majority of the web-
page was dedicated to explaining the benefits of a certain ingredient. P3 found a personal blog
webpage of someone who enjoys eating food, but the webpage was not about cooking. One partic-
ipant (P8) created anchors to group the items based on the confusion categories (i.e., false positive,
false negative, true positive, true negative). P14 created an anchor from an entire cluster of items
from a single recipe site to create a good recipe anchor. One participant (P1) tried to create an-
chors to differentiate webpages with recipes that did not have typical recipe headers (e.g., ingredi-
ents, instructions, prep time) from webpages with prototypical recipe structures. Some participants
(P11, P13, P14) created anchors to capture or filter potential issues with the dataset. For example,
there were webpages with recipes translated into two languages, webpages written only in one
foreign language and are still cooking related, and webpages written in foreign languages and are
not cooking related. Some participants created anchors to validate their hypothesis formed from
exploration. For example, P9 discovered that the classifier was making a mistake on a webpage
with lists of recipes and suspected that a lot of webpages with lists of recipes would be errors. He
created an anchor to look at similar items around the anchor and said, “basically pages that index
a lot of recipes is not [correct].”

5.3.2 Exploration Strategies. Participants used various aspects of the visualization to explore
the dataset, and different strategies were used to meet their needs and at different points in time.
Below, we enumerate an exhaustive list of how the participants explored the dataset.

Participants leveraged the visual encoding (i.e., position, color) to look for discrepancies or items
that stood out. All participants looked at outliers in color (e.g., labeled positive in the sea of pre-
dicted negatives) or outliers in position (e.g., an item positioned away from the cloud of items in
the middle. One participant (P1) looked at discrepancies between the global distribution and the
local cluster distribution. Some participants used the cluster treemap to search for a specific cluster
distribution (e.g., cluster with mixed predictions).

All participants, at some point, used the placement of anchors to define and modify the ex-
ploration topology. Most participants placed positively associated anchors on one side and nega-
tively associated anchors on the other side of the visualization. P13 spread out the anchors to see
items better. Some participants overlaid anchors on top of each other to combine concepts or to
strengthen their effects (P7, P11, P12, P16). One participant (P3) removed anchors because he was
not making any forward progress, and another participant (P16) removed anchors because he did
not understand their meanings. One participant with a good understanding of BoW similarity (P9)
inspected words in items both close to the anchors and far away from the anchors.

Participants used the anchors to pull or push items of specific prediction class, label class, or
concept from the cloud of items. As mentioned earlier, some participants used the anchors to
validate that there were a lot of non-English webpages in the dataset. Some participants used the
labeled items as a way to validate that the anchors were pulling correct items. Some participants
moved the anchors to create a parallax effect to see which items were impacted by the anchor or to
determine the effectiveness of anchors they created. Most of the time, the participants were using
the anchors to look for items near the anchors that were predicted to be in the opposite class from
the labels of the items in the anchors.

As participants interacted with anchors, they refined the anchors to make them more effective.
P11 added similar items to an existing anchor to make the anchor stronger. P9 and P11 removed
items from an anchor because the definition of the anchor had deviated from its initial intent P4
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renamed the anchor from “cucumber” to “vegetables” because the anchor’s representative concept
evolved over time. Most participants added items of a similar concept to existing anchors. When
the participants discovered an item and they could not decide on its label, they added the item to
an anchor as a way to collect similar items and to defer the decision until a later point (P12 - “Cook
book can be negative in my opinion, but I’m not sure. It’s about cooking and maybe it’s related to
cooking. Let’s treat it as positive for now.”).

All the participants navigated into a cluster at some point, but the intentions varied across
participants and contexts. Some participants (P7, P13) went into clusters of a specific prediction or
label class to look for good items for creating anchors. Some participants (P1) looked for clusters
with discrepancies between different sources of truths (clusters, the classifier, and labels). Others
(P5, P9) used the clusters to reduce the search space or to evaluate items in bulk. Once anchors were
created, some others (P3, P15) navigated up and down the cluster hierarchy to see the anchor’s
effects at various levels.

Some participants developed a repeatable process for exploration. The process for P11 was to
find negatives around positive anchors, look at the clusters of mixed predictions near positive
anchors, create appropriate anchors and to repeat the steps. When the participants reached a sat-
uration point for exploration in the current view, P9 went back to the root cluster to start over,
and P3 removed anchors to reset the topology.

5.3.3 Understanding Classifier Performance. Throughout the process of exploration, some par-
ticipants were able to comment on the classifier’s performance. In general, participants could dis-
cover an error or a concept, explore similar items using anchors, find a whole group of errors
(P9 - “Most of the same webpage [in this cluster]. This whole cluster seems to be false negative.”),
or make general statements about the concept (P2 - “I guess we’re doing nice for sushi”). P9 said, “I
looked first at predicted positives. They all looked to be reasonable. There’s no pattern there. I concluded
there’s mostly likely not bad precision problem. Most likely recall problem. Looking at the negatives,
indeed, it seems to be a lot of missed use cases. I found two main categories of false negatives, mostly
the lists of recipes and the more instructional pages that has a lot of words in them.”

Although our visualization did not provide any debugging support, participants were able to
come up with some explanations for the classifier’s mistakes. For example, P14 commented that
“cooking blogs are easy to mis-predict” because they share a lot of words with non-cooking blogs.
P10 found an item with “poems and other mixed things” about cooking and called it a “grayish area.”
P4 found that webpages containing words with multiple meanings, such as “squash” (a food and a
sport), could be confused with cooking. Some understandings about how the classifier is learning
from tokens was also used. For example, P11 said, “I think there are few words. That’s why it’s not
able to classify it as recipe.”

5.4 Exploration Areas for the Subsequent Study

When we asked the participants what they liked about the interface, participants commented that
the interface supported exploration in an intuitive and fun way. P4 said, “visual inspection of outliers
is intuitive,” and P6 said that the interface is “very intuitive when the anchors are meaningful.”
P13 liked the “visualization and self-organization of item space.” P14 commented during the study,
“I play too happily with it!” The results from our first study were encouraging, but we were left
with many open research questions which we sought out to explore in a subsequent study.

5.4.1 Searching for the Appropriate Concept Representation. In this first study, we defined a se-
mantic concept using items and their similarity in the BoW space. The use of the BoW for defining
an anchor makes the interaction simple since the users rely on BoW to extract patterns; grouping
a few items automatically extracts the underlying concept represented by those items. However,
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this approach may not be expressive enough to correctly capture a user’s intent or concept. Partic-
ipants with more experience in ML quickly understood the implications of using cosine similarity
in BoW (i.e., that BoW uses tf-idf) as an anchor distance metric. Other participants struggled to ra-
tionalize the proximity of items to certain anchors. For example, P11 thought adding similar items
to an existing anchor made the anchor stronger when, in fact, the anchor was potentially covering
a broader concept through additional terms being captured by BoW. P16 wanted to merge con-
cepts by putting two anchors on top of each other, but instead, the action resulted in increasing
the weighting of the anchors. Since example-based anchors are limited to items that the user dis-
covers, P10 wanted “keyword search through the data to find tougher items from intuition and see
where they lie on the interface.” Understanding the users’ intent to merge or strengthen anchors
is critical in designing the next iteration of the visualization and interactions. In particular, care-
ful balancing between the simplicity of the interactions and the accuracy of the representation of
the current users’ mental model is a crucial design factor in this type of systems operating with
semantics.

We used the above feedback and observations to inform a follow-up iteration of AnchorViz,
where we explored the use of keyword or dictionary-based anchors. Among the many ways to
define dictionary-based anchors, we picked the one simply defined by the number of times a bag
of semantically related words appears in an item. For example, if the user defines a fruits anchor
with the words “apple, orange, banana,” an item that contains five occurrences of the fruits words
will be closer to the anchor than an item that contains one occurrence. Dictionary-based anchors
leverage human knowledge and can be useful in proactive search instead of passive discovery
(“keyword search through the data to find tougher items from intuition and see where they lie on the
interface. - P10).” This type of anchor is more transparent and intelligible to the users because the
keywords in the dictionaries are explicitly defined by the users, but it loses the high-dimensionality
that BoW provides especially when precise concept representation is not a priority. For instance,
when participants discovered foreign language items, rather than precisely defining the French
language, they wanted to roughly pull away items that contain French terms (“it was also really
useful for discovering items that were out of scope (e.g., foreign language)” - P13). In our second study,
we explored dictionary-based anchors and evaluated the tradeoffs between these two approaches.

5.4.2 Closing the iML Loop. So far, we have observed that AnchorViz helps to facilitate discov-
ery of classifier errors and features. P13 said the interface is “great for concept discovery and dy-
namic labeling.” This interface can also be used for managing discovered concepts and “creat[ing]
new concepts that can be shared across people (P12),” and for “hierarchically expressible classifica-
tion tasks (P16).” In contrast to previous approaches to find unknown unknowns, our visualization
also facilitates feature blindness discovery: P2 commented that this interface is useful for “finding
features I didn’t know about and finding instance that can represent some useful concepts.”

An item is deemed as good for labeling and adding to the training set for many reasons: it
is a good representation for or against the target class, or it contains new information that the
classifier should learn about. Once new information is discovered, labeling alone is inefficient if the
classifier does not have the right representation to process the information; featuring is necessary
to change the representation of the learning model. Once the feature is added or modified, the
classifier needs to be retrained to evaluate whether the feature is beneficial to the generalization
of the target concept. Because of the above, we argue that a complete iML tool should support all
steps of selection and labeling of items, featuring, and training the model in an iterative loop.

In our second study, we integrate AnchorViz in an end-to-end iML tool to study the impact of
semantic visual exploration in the model building process. Specifically, we focus on the beginning
stages (i.e., cold start) of the model building process. Finding good items and features at the early
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stages of model development should not only improve the efficiency but also help the users obtain
a better understanding of the dataset and make appropriate next steps.

6 USER STUDY 2: FEATURE DISCOVERY AT COLD START

The two main areas for further exploration from the first user study were (a) alternative concept
representation and interactions and (b) closing the iML loop. We specifically target the cold start
stage of the model building experience to evaluate how AnchorViz can help users simultaneously
learn about a new dataset and build their target classifiers iteratively. We focus on dictionary-
based anchors to minimize the user burden we observed in interpreting the high-dimensional BoW
space. Supporting the full iterative iML loop, with humans explicitly providing the labels as well
as hand-crafting their features, necessarily introduces a lot of moderating variables such as indi-
vidual feature ability, familiarity of the target class, intrinsic and extrinsic motivators, and the like.
Nonetheless, we strive to minimize these individual differences by running a controlled, counter-
balanced, within-subject user study. Our goal for the second study is to contrast two considerably
different approaches to exploration: human-driven (AnchorViz) and machine-driven (uncertainty
sampling).

6.1 User Study

6.1.1 Study Design and User Task. We focused the second user study on the very beginning
phase of building a binary classifier. The user scenario for the study is that the participant had just
gotten access to a large unlabeled dataset and is trying to build a binary classifier for a specific
concept from scratch using an iML tool. We asked the participants to (1) find items and concepts
to teach through exploration, (2) add labels and features to train the classifier, and (3) build the
best binary classifier possible given the tool while learning about the dataset.

To observe the effect of using the visualization at this initial phase of building a binary classifier,
we conducted a controlled experimental study comparing the use of the visualization (Visualiza-
tion or human-initiated condition) with a conventional approach (Uncertainty or machine-initiated
condition). We used the within-subject approach to control for individual differences in featuring
abilities. We chose two different concepts for the classifiers and counter-balanced the concept as
well as the order of the treatments to minimize the ordering and learning effect. Therefore, each
participant was given two conditions with different concept for each condition.

6.2 Interface Design

For the second study, we integrated AnchorViz in an iML interface that uses dictionary-based
anchors for exploration and uncertainty subsampling to reduce its visual complexity. Figures 7 and
8 show the interfaces for the two conditions that support the full end-to-end interactive classifier
building experience designed specifically for text-based data.

6.2.1 Supporting the Full IML Workflow. We support all three key activities (Figure 1) within
the iML workflow, and we provided consistent UIs to normalize the available functionalities in
the interface. Exploration and sampling is supported in two ways: the users can select unlabeled
items in the Exploration panes (Figures 7(A) and 8(A)), or the users can select labeled items that
are incorrectly predicted by the model in the Errors pane (e.g., Figure 7(G)), which shows a list of
training errors as small previews. Selecting an item populates the labeling area (e.g., Figure 7(C));
the user sees an item in its full textual content and can label it using the “Yes” or “No” buttons
(Figure 7(D)). The button’s border indicates the current classifier’s prediction, and the button’s fill
color indicates if the user has labeled it. Words in the item that match keywords in the currently
active features will be highlighted. A scrollbar beside the item shows markers for these words so
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Fig. 7. The Uncertainty interface contains the Exploration pane on the left (A) which provides a drop-down

(B) for choosing the sampling method and labeling options (D). The content of each item is displayed (C)

with marks on the scrollbar (E) that indicate where the features occur. The right side of the interface contains

the Features pane (F), where one can toggle on or off a feature or create or modify features, and the Errors

pane (G), where one can inspect training errors.

Fig. 8. The Visualization interface contains the Exploration pane on the left that hosts the AnchorViz (A)

with a range slider to filter the items based on their prediction scores (C) and a zoom and pan control bar

(D). The Example pane (B) displays the content of the selected item. An anchor can be shown or hidden from

the visualization with the eye toggle button (E), and its weight can be updated using a slider (F).
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that the users can get a quick glimpse of the presence of features in the item (Figure 7(E)). In the
Features pane (e.g., Figure 7(F)), the users can create or modify dictionary features by providing a
name used to help them organize and manage different concepts (e.g., fruits) and a list of words that
are semantically related to each other (e.g., apple, orange, banana). Dictionary features were case-
insensitive, but we did not support stemming or lemmatization to avoid users having to understand
and potentially debug the stemming algorithm. Features could be turned on or off with a switch to
be included or excluded from model. Feature highlights update accordingly to reflect the currently
active features. To support the iterative classifier building loop, we trained the classifier on every
label or feature activity and returned new samples and predictions according to the latest trained
classifier. In addition, we control for the label quality by providing the ground truth labels when
the participants submit each label and asking them to correct their label if it is incorrect.

6.2.2 Condition-Specific Interfaces. The main difference between the two conditions was the
means of choosing the item to label in the exploration pane.

The Uncertainty condition presents users with an exploration pane (Figure 7(A)), where
they get items by selecting “Uncertainty” or “Search” from the exploration drop-down selector
(Figure 8(B)). The uncertainty sampling presents one item of which the current classifier is most
uncertain (i.e., the prediction score is closest to its decision boundary). Since the Visualization
condition allowed text-based search (indirectly through dictionary-based anchors), we provided
similar keyword search functionality in the Uncertainty condition.

In the Visualization condition, we use subsampling to visualize top 100 items that the current
classifier is most uncertain of on the topology defined by the dictionary-based anchors. Dictionary-
based anchors and dictionary features are closely related. When a dictionary-based anchor is cre-
ated, it can be used as a feature; when a dictionary feature is created, it can be used as an anchor.
Each dictionary feature has a toggle eye button (Figure 8(E)) for the feature to be active as an
anchor in the visualization’s ring in addition to the switch to include or exclude the feature in
training the model. In other words, the concepts in the Features panel can be used as anchors, or
model features, or both.

This second implementation of AnchorViz is informed by feedback from our first study as well
as pilot runs. Instead of hierarchical clustering, we chose dataset subsampling because our imple-
mentation of clusters was “more confusing than helpful” (pilot participant) at cold start. Perhaps
low performance and unreliable predictions of the early-stage classifier reduce the value of hi-
erarchical clustering at cold start stage. Evaluating the usefulness of such different strategies for
reducing visual clutter remain the subject of future research. We also simplified the types of glyphs,
used only two colors to encode both labels and predictions, and used shape to distinguish labeled
from unlabeled items. This choice removes the double-encoding from the first implementation
and aligns better with the labeling experience. We added the capability to filter the data points
based on a range of prediction scores (Figure 8(C)) as well as to change the weight of the anchors
(Figure 8(F)) as these functionalities were requested by several participants in the earlier study.
Filtering items on prediction scores helps explore items for which the model is confident about a
prediction. Changing the weight of an anchor makes an anchor pull related items harder, bringing
them even closer to it. This feature is useful to resolve occlusions in dense groups of items.

6.2.3 Dataset, Classifier, and Setup. For the second user study, we changed the data type from
webpages to a plain text dataset because we observed that the participants were leveraging the
structure of the webpage (e.g., embedded images, document structure) which was not available to
the learning algorithm to label items even though the tutorial emphasized the classifier’s capabil-
ity to only process the text. This choice helps participants focus on what the learning algorithm
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processes and to see if our qualitative observations from the first study can be confirmed using a
different dataset.

We used 20 Newsgroups [33], a popular public text dataset consisting of UseNet messages from
1993 belonging to 20 different discussion categories. Of the 20 categories, we chose cars and gun
politics concept modeling as the two study tasks because we determined that these discussion
topics remain familiar to the participants. We used motorcycles as a target concept for the tutorial
task. The sampling data consisted of 11314 messages (594 about cars, 546 about gun politics) and
a test data consisted of 7532 messages (396 about cars, 364 about gun politics).

To demonstrate the cold-start experience using the iML tool, we followed a strategy based on
anecdotal experiences from expert users of similar iML tools to build an initial classifier. The strat-
egy involved searching the unlabeled dataset for five random positive items that contained the
category keyword (e.g., cars, guns) and five random negative items that did not contain the cate-
gory keyword. In addition to these ten labels, the strategy recommends adding a default feature to
kick off the training. To satisfy this requirement, we included a default a text length feature which
is often useful in text classification tasks. We then trained the cars and guns classifiers, and the
resulting classifiers had training accuracy of 50% and 60%, respectively, with the decision threshold
of 0.5, making them random or slightly better than random classifiers.

6.2.4 Participants. Recruitment for the second user study was like the first study. We recruited
17 participants from a large software company. We used three participants for the pilot study,
and we used data from the remaining 14 participants (3 female) for the analysis. To eliminate
the need to teach basic ML concepts during the study, we screened the participants to have basic
knowledge about binary classifiers. Three participants have taken some courses in ML (S1-3), three
occasionally build ML models in practice (S4-6), five frequently build ML models (S7-11), and three
have a doctoral degree in ML-related fields (S12-14). Our participants’ professional roles in the
company are that of applied data scientist (6), researcher (2), and software engineer (6). None of
the participants from the second study were participants of the first study.

6.2.5 Procedure. We conducted this study through video conferencing sessions which we
recorded for further analysis. During the sessions, participants shared their screens and thought
aloud while performing their tasks. In each session, we introduced the participants to the iML loop
and gave a brief tutorial on how to use various components of the iML tool to iteratively build a
motorcycles classifier. This onboarding took between 10–15 minutes. The participants then pro-
ceeded to building the classifiers for the two conditions. For each condition, we gave a short tuto-
rial for the condition specific exploration pane and explained the topic category; then participants
spent 20 minutes building the classifier and completed a short post-task survey about the task they
just did. Lastly, they completed their session by filling out a survey comparing the two interfaces
(5 minutes). Each session lasted between 70–90 minutes. We compensated each participant with a
$30 gift card.

6.3 Quantitative Data Analysis

Our study presented participants with two interfaces designed to help them build a binary classi-
fier. While we normalized most of their functionalities, these interfaces are, by design, not func-
tionally equivalent. The Uncertainty interface (machine-driven approach) provided an affordance
for passive exploration while the Visualization interface (human-driven approach) provided an
affordance for active exploration. Since the two interfaces are not isomorphically equivalent and
our sample size is small (n = 14), we did not test for the significance of the treatments. Instead, we
explored various ways to quantitatively evaluate the output of the iML sessions, which we present
here.
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Table 1. Summary Statistics for the Training Set that the Participants Collected

during Their 20-minute Sessions

Topic Interface Feature Count Label Count Label Rate Test Accuracy AUCPR

Cars Uncertainty 8.00 (4.58) 36.29 (12.02) 0.88 (0.12) 0.79 (0.09) 0.86 (0.09)
Visualization 9.29 (2.29) 25.29 (9.89) 0.80 (0.11) 0.79 (0.07) 0.90 (0.05)

Guns Uncertainty 6.86 (3.02) 48.29 (31.73) 0.90 (0.09) 0.68 (0.03) 0.77 (0.08)
Visualization 7.14 (2.61) 27.00 (5.10) 0.79 (0.10) 0.69 (0.08) 0.82 (0.07)

Each value represents the average across participants, and the standard deviation is shown in parentheses. Label rate

represents the fraction of viewed items for which the participants submitted labels. AUCPR is the area under the precision-

recall curve.

There are several challenges in evaluating iML systems when both labeling and featuring are
driven solely by humans. It is difficult to design a controlled experiment that can tease apart vari-
ability in humans from the design of the system as every human interaction has a compounding
influence on the next interaction and eventually the outcome. Furthermore, both the human and
the underlying ML model evolve over time. Typical challenges in human-in-the-loop ML, such as
label noise, concept evolution, concept drift, feature engineering, motivation and attention, can be
studied independently, but generalizing the findings to a realistic human-driven iML scenario that
combines all those factors is complex beyond the scope of this article.

Potential metrics to evaluate the output of the session include the ones we used in the first study,
but this would be inappropriate for several reasons. The first study only looked at a frozen state
of a classifier (i.e., no training after each interaction). Error type analysis is not useful because the
learning algorithm can easily overfit to the small set of labels and features. Anchor effectiveness
in pulling error items cannot apply when the classifier is at near-random performance.

Despite the above challenges, we present and discuss several methods for evaluating the quality
of the training data that the participants generated during their 20-minute, cold-start, interactive
classifier building sessions. Our iML sessions allowed for evolving the label and feature set in
concert. In other words, the participants added a feature when they discovered concepts from the
items, and they searched for items to label when they recalled a concept relevant to the task or
identified a related or ambiguous concept from an item. Since the labels and features were created
in concert, we evaluate the performances of the classifiers built from the participants’ sessions; we
also include independent analysis of labels and features as they are typically evaluated in other
literature.

6.3.1 Training Set and Session Classifier Performance. On average, participants labeled 34.2
items (σ = 19.2) and created 7.8 features (σ = 3.2) with test accuracy of 73.8% (σ = 8.6%). While the
post-task survey revealed that there is no difference in means of the participants’ perception on the
familiarity of the topic (cars = 4.2, guns = 4.1; see Table 2 for exact prompt), we saw a significant
effect from the topic on the test accuracy (V = 95; p = 0.005 from paired Wilcoxon signed rank
test). Therefore, we present separate results for each topic from this point on. Table 1 shows the
summary statistics for the training set and the test performance of the classifiers that they built
during their 20-minute sessions.

While the participants created a roughly equal number of features in each interface on average,
we observed that the participants using the Uncertainty interface labeled 43.5% and 78.8%,
cars and guns respectively, more items than using the Visualization interface; we expected this
as the uncertainty sampling presented items for the users to label while AnchorViz required
manipulation of anchors and concept topology before choosing an item to label. Despite such
differences in the label count, the overall test accuracy of the resulting classifiers is quite similar
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Fig. 9. Average classifier performance over 20-minute sessions for each interface. Average label count is

overlaid to provide context for the size of the training set. For each classifier topic, we trained three different

classifiers and measured their accuracy, recall, and precision on a held-out test set at every minute elapsed

in the participants’ sessions. (A) Session Classifier is trained using participants’ labels and features, (B) Ses-

sion Labels is trained using participants’ labels and BoW features, and (C) Session Features is trained using

participants’ features and the full train set. For the cars topic, the classifiers built using the Visualization in-

terface on average arrived at higher test accuracy earlier than the Uncertainty interface. For the guns topic,

the Visualization interface outperformed Uncertainty interface for both accuracy and recall.

(see Figure 9(A)). Furthermore, out of all the items that the participants viewed, participants using
the Uncertainty interface labeled 9.7% and 14.4%, cars and guns respectively, more items than
using the Visualization interface.

Figure 9(A) shows the average test accuracy, recall, and precision of the participants’ classi-
fiers over time. For the cars classifier, we see that the Visualization interface arrives at higher test
accuracy, recall, and precision earlier that the Uncertainty interface.

6.3.2 Label and Feature Coverage. We observed that the participants viewed and labeled fewer
items using the Visualization than when using the Uncertainty interface. These observations sug-
gest to us that the Visualization interface helps users to more efficiently extract useful information
to build the classifier and to prevent unnecessary labeling.

For our analysis, we defined label coverage as a measure of the amount of information that
the items provide to help generalize the target concept. We do this instead of looking at label
quality, which is often used to represent the noise in the labels (i.e., incorrectly labeled items). As
a proxy for measuring label coverage, we use a method of evaluating the exploration strategies
commonly used in ML, which is to fix the feature set and look at the test performance of the
resulting classifier across the number of labels added to the training set. To conduct this analysis,
we took the participants’ labels over time and trained a BoW classifier. The results are shown in
Figure 9(B) along with the average label count. We see that the classifiers built with the Uncertainty
interface perform only slightly better (4.4% and 3.6%, cars and guns, respectively) while the number
of labels is significantly larger.

Similarly to evaluating the label coverage, we define feature coverage as the quality of the fea-
ture representations to extract appropriate signals to generalize the target concept. We looked at
the feature coverage through the test performance of the classifiers built using participants’ fea-
tures and all the available training set. We trained each classifier using a balanced set of training
items (1,188 for cars and 1,092 for guns). The performances of the resulting classifiers are shown in
Figure 9(C). For the cars topic, we observe that the classifiers built with the participants’ features
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using the Visualization interface arrives at a higher test accuracy and recall faster than the Uncer-
tainty interface. This observation agrees with what we presented earlier for the session classifiers
(Figure 9(A)). For the guns topic, the classifiers built with the Visualization interface outperforms
the Uncertainty interface by 6.7% in average test accuracy and 18.0% in average test recall while
maintaining similar precision.

6.4 Qualitative Analysis of Participant Exploration Strategies

As with the first study, we qualitatively coded the usage behavior through recordings of our partic-
ipants’ conversation and usage of the tools. We focus our analysis on feature or concept discovery
just as our first study focused on feature blindness discovery. From this analysis, we extracted three
main user activities and present how each interface supported these activities during the study:
(1) discovering new concepts, (2) labeling concepts, and (3) debugging and refining concepts. These
concept activities, while they seem heavily focused on featuring, have strong relationships to ex-
ploration and labeling. This is because exploration, labeling, and featuring are tightly coupled
together in an iML loop.

6.4.1 Discovering New Concepts. For our analysis, a new concept is any new dictionary fea-
ture that the participant creates. Most participants discovered new concepts from items they in-
spected. Only one participant (S12) recalled a concept from memory (“DMV” for cars classifier)
without requiring an item as a potential source of ideation. There were two ways to discovering
new concepts. Either the item contained brand new information undiscovered before, or the famil-
iar concept within an item helped participants recall new concepts (e.g., S7 recognized “founding
fathers” and recalled “second amendment” for the guns classifier).

In the Uncertainty interface, the participants were able to go through many uncertain items
to discover errors or new concepts. This, however, required inspecting each item carefully to de-
termine relevance or quickly scanning and missing important concepts. Searching for keywords
required a starting point which some participants perceived to be challenging (“I don’t know what
I’d wanna search for.” - S7). The Visualization interface had a similar challenge regarding search, but
the participants readily leveraged the existing anchors to filter out items that are already known
and inspect items unaffected by anchors at the center. However, occlusion of data points at the
center meant that the participants were not able to go through many items. Some participants
(S3, S8, S12) created anchors from the center items, regardless of its relevance to the target con-
cept, to pull some of these items out for inspection. We also observed that, when participants
discovered foreign language items, neither interface provided an affordance for dealing with these
items at all. This was a tradeoff between the example-based and dictionary-based anchors which
we had predicted in the first study.

6.4.2 Labeling Concepts. For our analysis, concept labeling occurs when a user’s mental as-
sociation of the concept to the positive or negative class for the target concept takes place (e.g.,
“types of cars” is a positive concept to a cars classifier). Concept labeling is like feature labeling
except that these labeled concepts are not necessarily used as features for the classifier until the
user chooses to do so. Neither interface allowed explicit labeling of concepts other than through
naming, but the Visualization interface allowed interactions with these labeled concepts.

Concept labeling is pivotal to AnchorViz, and all participants leveraged concept labeling in the
Visualization interface to explore the data. The most common use of the anchors was to look for
predictions that are inconsistent with the user’s expectation based on the concept represented by
the anchor (Figure 10(A)). In other words, the participants looked for predicted negative items
along positively correlated anchors (e.g., “types of cars” anchor for a cars classifier) or predicted
positive items along negatively correlated anchors (e.g., “motorcycles” anchor for a cars classifier).
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Fig. 10. Three different participants’ strategies. Left = Concept labeling allowed S14 to find potential pre-

diction errors along positive concept anchors. Middle = S9 explored the grey area between a potentially

confusing negative anchor and a positive anchor. Right = S3 put all negative anchors on the left and all

positive anchors on the right to achieve separation of predictions.

In certain cases, the concepts were explicitly labeled by their associated class. S5, S12, and S13
named their concepts explicitly as “negative,” and S11 named his concept as “false positive.” While
most anchors were positively or negatively correlated to the target class, some participants labeled
potentially ambiguous or confusing concepts as “grey areas”; S12 created an anchor explicitly
named “grey areas.”

Another powerful use case for concept labeling in AnchorViz is the manipulation of a concept
topology. In most cases, participants put positively associated anchors on one side and negatively
associated anchors on the other (Figure 10(C)). In other cases, they grouped anchors based on their
semantic relationship to each other. This flexibility in customizing a concept topology allows for
defining unique concept spaces. For example, S9 called the space between two anchors as “grey
area” (Figure 10(B)), while other participants explored the spaces between anchors to find inter-
esting items. On the other hand, the Uncertainty interface did not allow for any organization of
the concepts to exploit such a visual concept layout.

6.4.3 Debugging and Refining Concepts. For our analysis, we defined concept debugging as an
activity where users inspect the relationship between the items and a concept, or the relationship
among two or more concepts regardless of its level of specificity (e.g., “AK-47” is specific while
“gun politics” is broad). In the Uncertainty interface, the uncertainty sampling did not provide any
means to debug concepts, but the keyword search functionality did.

Concept debugging in the Uncertainty interface was example-driven: participants searched for
items containing a keyword to confirm whether the items were predicted correctly by the current
classifier. This style of debugging made participants inspect each item and look at existing feature
highlights to understand the feature influence on the item. Ten participants (71.4%) used search
functionality during exploration.

On the other hand, AnchorViz provided an at-a-glance, distribution-driven approach to concept
debugging. Seeing the distribution of predictions along the specific anchor allowed participants to
determine if the concept or feature had a precision problem (by looking at predicted positive items
along a negative concept anchor) or a recall problem (by looking at predicted negative items along
a positive concept anchor). Participants would then decide if the concept needed to be debugged
or refined (“A lot of examples with ‘self protection’ terms are negative. That’s kind of interesting.” -
S8) or to move onto another concept to debug (“Things are seemingly well separated.” - S11).

Thirteen participants (92.9%) moved anchors around to see the predictions of items that followed
(“Oh my gosh, this is not what I was expecting. What’s going on here?” - S13). Seven participants (50%)
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Table 2. Participants’ Survey Responses for Each Interface on Their Agreement to the

Statement (5 = Strongly Agree)

Statement uncertainty visual
I am familiar with the topic that I was building a classifier for. 4.2 4.1
It was easy for me to find good examples to label. 4.1 3.9
It was easy for me to identify good features to add. 4.1 3.7
It was easy for me to fix errors. 3.6 3.9
It was easy for me to understand how my classifier was doing. 3.6 3.9
I find this interface useful for building a classifier. 4.0 4.2
Overall, I am satisfied with the interface. 3.8 4.0

changed the weight of the anchor, and six participants (42.9%) turned off unnecessary anchors to
strengthen the focus on a specific concept.

In addition, AnchorViz allowed the participants to understand how a concept correlates or con-
fuses with another. Some participants (S8, S9, S12, S14) inspected items between two anchors to
discover and refine the grey area, and S12 leveraged the prior knowledge of the probability of
co-occurrence of two concepts to debug a concept (“Certain locations have more gun violence than
others. I’m using it to find edge cases, not necessarily as a feature”).

6.5 Participant Feedback and Preference

Table 2 outlines the participants’ evaluation of the two interfaces from the post-task survey where
there were no significant differences between the two interfaces. In the post-task survey, the par-
ticipants were asked to enumerate at most three things they most liked and three things they most
disliked about each interface, and in the post-study survey, the participants commented on their
preference for the interface. We grouped these open-ended responses into (1) general feedback
about the iML tool, (2) feedback specific to Visualization interface, and (3) feedback specific to
Uncertainty interface. We then produced an affinity diagram for each of these groups.

The three most liked general functionalities of the tool were interactive featuring, feature high-
lights, and examining the items along with the predictions. Specifically around interactive fea-
turing, the participants liked that features could be hand-crafted and easily updated with instant
retraining of the classifiers. The near real-time update of the feature highlights and the classi-
fier predictions provide the necessary feedback to validate their actions. There were several re-
quests for advanced functionalities on featuring, such as feature metrics (e.g., feature importance,
frequency, weight), stemming and stop word removal, splitting of dictionaries, and feature sug-
gestions. Some participants wanted summary statistics to determine if the classifier is “ready to
go” (S12), and others were concerned that the tool would not scale to meet the needs of big data
problems that require thousands of classifiers.

Most participants thought the Uncertainty interface was simple and intuitive, and some liked
the “uncertainty prompting” (S4) for labeling efficiency and for exploring ambiguous range (S2).
On the other hand, one participant commented that uncertain items were not useful and “felt
like random examples” (S12). Search was the most liked functionality because it allowed them to
search for specific terms in the domain. However, participants expressed the need for supporting
advanced feature debugging activities which was available in the Visualization interface. For ex-
ample, S8, who started with the Uncertainty interface, requested additional feature information (“If
I add a new feature, how many things does that feature alone misclassify or . . . how many pos[itive]
and neg[ative] examples does it show up in?”). After he was presented with the Visualization in-
terface, he “liked that the feature distribution is somewhat visible with the anchors.” This was also
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confirmed by S10 who exclaimed, as soon as he saw the Visualization interface after the Uncer-
tainty interface, that “this is what I meant before, this is effectively visualizing feature importance!”
S7 also commented that the Uncertainty interface was “more opaque how a feature differentiates
the data points” after having exposure to the Visualization interface earlier.

Most participants felt that the Visualization interface helped give more insight into how the
classifier was doing, helped debug errors, and helped understand the impact of their features by
visualizing their interaction with the data. Some participants liked the interactivity and control
over the visualization and the visual representation of the classifier and its predictions while oth-
ers pointed out several shortcomings of the visualization design such as visual clutter and occlu-
sions. One suggestion was to present only items affected by the anchors to avoid cluttering at the
center of the visualization. The spatial layout of the concepts using the magnet metaphor helped
participants prioritize confusing items and separate and group data. The push/pull metaphor was
intuitive but required some getting used to. Some participants also had a hard time figuring out
where to begin or getting unstuck. For example, S11 commented that he “need[ed] more help to
get out of a local optimum where everything seems to be working right,” and wished for a way to
“shake up model behavior . . . with rapid bursts of labeling via [the] uncertainty interface.” Similarly,
S9 wanted a way to select a whole region from the visualization and “open a batch of items in [the]
uncertainty view.”

In the end, 8 out of 14 participants (57.1%) preferred the Visualization interface, four partici-
pants (28.6%) could not prefer one or the other, two participants (14.3%) preferred the Uncertainty
interface, and none chose neither. Since the two interfaces provided different affordances, it is no
surprise that S2 and S14 wanted the combination of the two interfaces. In addition, the qualitative
feedback from the likes and dislikes reaffirm the complementary nature of the two interfaces; the
Uncertainty interface allows for quick labeling while the Visualization interface allows for feature
debugging.

7 DISCUSSION AND FUTURE WORK

Our two user studies provide an initial exploration into the efficacy of visual semantic exploration
and concept discovery in iML, and we discuss several future research directions based on our
findings.

7.1 Evaluation of IML Systems

The most common way of evaluating ML systems, interactive or not, is through looking at the
summary statistics of the resulting model classifier (e.g., accuracy, F1 score, AUC, etc.). However, in
iML systems, these metrics obscure the human interactions and insights, which have traditionally
been notions difficult to quantify. In evaluating AnchorViz and the classifiers that our participants
built, we faced the challenge of telling the story of our participants’ use of the tool through statistics
and discuss these challenges here.

7.1.1 Evaluating User Artifacts and Intermediary Steps. In our studies, we carefully controlled
for the label noise or concept evolution (i.e., “the labeler’s process of defining and refining a concept
in their minds [30]”) of the target class by focusing on the selected items rather than the labels
that the participants provided. Given a fixed definition of the target class, what are appropriate
ways to evaluate the tangible artifacts (e.g., features, labels) and intangible artifacts (e.g., insights,
mental models, steps) that the user creates during the iML process?

Our goal was to evaluate the extent to which AnchorViz helped users explore and extract diverse
and useful information for the target classifier, and we defined and measured label coverage. An-
other way of looking at the label coverage could involve fully deconstructing the unlabeled dataset
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into its conceptual constituents (through automatic, manual, or hybrid clustering techniques) and
measuring how much of the structure the selected items cover. Both cases above ignore what por-
tion of the item the user processed to determine its label, so using the entirety of the item is an
approximation for what the user discovered.

We can consider features as the explicit encoding and externalization of this discovered infor-
mation, and we measured the effectiveness of the interface in helping users encode the discovered
information into anchors and features through feature coverage. But what about the steps taken
to discover these features? In AnchorViz, anchors are used as intermediary tools to discover new
items and features or to define these features once refined and debugged. We captured the ef-
fectiveness of the anchors through AEP and AER metrics. However, these metrics depend on the
current classifier’s performance, and therefore, do not characterize the anchors independently. For
example, an anchor could be entirely cohesive or intelligible to the users but could be ineffective in
highlighting the prediction errors because the classifier already has the appropriate representation
for that concept. But a cohesive or intelligible anchor can be reused as a contrast to another anchor
(i.e., by defining a space of grey areas) or reused in building a different classifier altogether. An-
chors or concepts represent knowledge extracted from the dataset and is beneficial to the overall
model building experience regardless of its direct impact on the model’s performance.

Similar considerations between cohesiveness, intelligibility, and effectiveness exist for features.
Feature importance or correlation may depend on the current classifier’s performance while fea-
ture cohesiveness or intelligibility may not. A feature could precisely capture the users’ concept
but have no effect in improving the classifier performance. A feature of a hundred thousand di-
mensions (e.g., BoW) could produce a highly accurate classifier but no human could grok what
the feature represents. Feature labeling or concept labeling is another intermediate step that the
participants took for exploration of the data and refinement of the classifier. Naively, looking at
the correlation between the concept and the labels or the predictions would uncover effective uses
of the concept as anchors or features. However, we have also observed that a concept does not
need to be correlated with the target concept class for exploration (e.g., grey areas).

We explored the definitions of label and feature coverage and observed intermediary steps and
artifacts (e.g., concept labeling, anchors) that common ML metrics do not capture. In trying to
evaluate the benefits of AnchorViz, we have uncovered the need for generalizable metrics for
evaluating iML systems supporting semantic models, and we encourage a more comprehensive
look at defining such metrics.

7.1.2 Productivity and Engagement. Our second, within-subject study was designed to contrast
two distinct approaches for finding good items to label: a machine-driven approach (uncertainty
sampling) and a human-driven approach (AnchorViz). Most participants preferred the Visualiza-
tion interface over the Uncertainty interface, and our qualitative analysis of the participants’ com-
ments revealed interesting trade-offs and opportunities for the design of iML systems.

Participants liked the Uncertainty interface because they felt that the interface was simple and
intuitive for novice users, and the mechanics of labeling the items presented to them felt more
“efficient because of lack of choice - S7.” We observed that some participants preferred to take the
backseat and let the perceived intelligence drive the exploration. Some felt more productive be-
cause they were able to label a lot more items faster. S1 mentioned that, “[I] felt like more work is
being done because it’s showing me intelligent items one example after another.” S7 lamented about
her lack of productivity with the Visualization interface (“I only ended up labeling about like . . . 10
more examples!”) even though she built the best performing cars classifier (test accuracy of 88.5%)
with just 23 labeled items (10 given + 13 submitted) and 10 features with only 20 minutes of us-
age. This observation brings forth a popular misconception in ML that more labels are better; this
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may be true for systems with high capacity (i.e., complexity of relationships or parameters that
the algorithm can model). In an interactive setting where features are added incrementally, our
result indicates that a higher number of labels does not necessarily lead to better classifier per-
formance. Indeed, choosing features carefully and a few labels to exploit them may be the most
efficient approach.

Participants liked the Visualization interface because they felt that they were given “more choice
over which examples to label (S10).” Some participants thought that the Visualization interface was
more fun (“This is actually really fun” - S7) and engaging (“It’s very engaging because the sample
set changes with every iteration.” - S11). While the sense of control and interactivity provided a fun
and engaging experience, it also added a learning curve to the users in terms of understanding
how to use the visualization as well as knowing what to do next.

The appropriate balancing of productivity, control, and engagement are important motivating
factors in building a ML model, especially when all activities within an iML loop (selecting, label-
ing, featuring, debugging) require human attention and interaction. Our post-task or study survey
did not explicitly measure the participants’ perception of productivity or engagement, and it is
unclear how such subjective metrics can be measured accurately. We see this as an opportunity
for further research in improving the overall iML experience.

7.2 Sensemaking

In the human-in-the-loop ML systems, we often assume that humans are oracles that possess the
knowledge, the knowledge transfer is unidirectional from humans to the ML algorithm, and the
ML system needs to efficiently learn from the knowledge provided by the humans. However, our
scenarios of a food blogger trying to discover unknown unknowns or a student trying to build a
gun conversation classifier from scratch require an iML tool that closes the loop. In other words,
the human in the iML loop not only provides the available knowledge but also iteratively gains
an understanding of the dataset and the classifier. The human learning is then transformed into
a set of actions and artifacts (i.e., labels and features) that changes the state of both the human
and the machine. This iterative process of information gathering, hypothesis forming and testing,
refining and re-evaluating the mental representation, and presenting the findings is best known
as a sensemaking loop [52].

Based on our observations from the two user studies on the interactions and user behaviors,
we believe that AnchorViz supports sensemaking in iML. Our users are able to search the dataset
for an interesting item (i.e., one that contradicts their expectation), formulate a hypothesis about
the specific item (e.g., there should be a lot of recipe index pages) or the concept discovered in
that item (e.g., the word “accident” can be a confusing feature), collect evidence for and against
the item or concept through the use of anchors, and act on the conclusion they derive from the
evidence (i.e., add or modify a label or feature). Table 3 illustrates how AnchorViz facilitates the
sensemaking loop using Pirolli and Card’s model [48]. Making sense of a large dataset using ML
and visual analytics is a growing research area [10, 16], and we propose that a special focus and
future research is necessary for scenarios specific to iML where human-driven concept exploration
takes place.

7.3 Better Exploration Strategies

During our first study, we observed that participants who interacted with more contrasted items
had better performance gains on the test set, that contrasted items have a higher chance of being
unknown unknown errors, and finally that some participants were able to discover rare concepts
(e.g., edible flowers, cocktail recipes). During our second study, we observed that some participants
were selecting seemingly random items on the visualization, and some participants were only
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Table 3. Application of Pirolli and Card’s Sensemaking Loop on AnchorViz with

Ten Processes and Six Representations

Bottom-up Processes

Search & filter Search using example-based or dictionary-based anchors; Sort based on the
distance from the anchors and filter based on contradictions or agreements
between predictions and labels (of the items and the concepts)

Read & extract Read the items and label them; Inspect the items to identify whether such
item belongs to the target concept; Extract concepts relevant (or unrelated)
to the target concept or the current hypothesis

Schematize Create a new example-based anchor from the item that could help represent
the concept; Create a new dictionary-based anchor from keywords that define
a concept; Add items or keywords to existing anchors; Organize the anchors
by providing appropriate names, forming relations between the anchors and
the target class, and moving them to the appropriate location

Build case Inspect the items around and along the anchors of interest to validate the
anchors’ effect on the data

Tell story Submit the labeled items or features to the trainer

Top-down Processes

Reevaluate Trained model provides new prediction scores; Features used by the model is
highlighted

Search for support Determine if the retrained model removes the visual inconsistencies

Search for evidence Inspect the items inside the anchors or around the anchors to determine if
the retrained model correctly learned the new concept

Search for relations Identify other related concepts within the inspected items

Search for information Create a new example-based or dictionary-based anchors based on the newly
discovered concept; Navigate up and down the cluster stack to find other
interesting patterns given new anchors; Organize and move the new anchors
to find other visual inconsistencies

Representations

External data source Unlabeled and labeled dataset; Existing features and anchors

Shoebox Selected set of items that represent a newly discovered concept

Evidence file Labeled items; Keywords that represent a concept

Schema Newly created anchors or modified anchors and their spatial layout

Hypotheses “Current classifier is blind to a (newly discovered) concept.”; “Current classi-
fier is already knowledgeable of a concept.”

Presentation Labeled items; Features representing the new concepts

looking for items that did not match the expected prediction along the anchor dimension. Many
participants expressed the need for best practices or tips on how to use the visualization because
of the tool’s learning curve. From our observation of how participants use the visualization, we
extracted several effective strategies. They are:

• Focus on one specific concept at a time and limit the use of anchors to only those that matter.
• Give meaningful names to anchors.
• Focus on the contrasts both in position along the anchor dimensions and colors.
• Place anchors at semantically meaningful positions such as contrasted anchors at 90 degrees

or at opposite sides.
• Encode all discovered concepts (positive, negative, ambiguous, or unrelated) as anchors to

rule them out from potential new concepts to discover.
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• Take advantage of advanced anchor operations such as changing the weights of an anchor,
combining anchors, or contrasting anchors.

We believe that controlled studies on the utility and effectiveness of these strategies are impor-
tant and should be the subject of future work.

8 CONCLUSION

We have introduced AnchorViz, a novel interactive visualization that facilitates semantic data
exploration and concept discovery for iML. The need to discover potential blind spots and select
good examples for building an ML model motivated this visualization, and we evaluated it through
two user studies that demonstrate one of the few efforts in looking at the fully human-driven
iML loop. In our first study, we observed that semantic visual exploration using AnchorViz helped
users discover feature blindness errors, which are sources of ideation for improving the underlying
classifier. In the second study, we observed that integrating AnchorViz in an end-to-end iML loop
helped users build a classifier that achieves equivalent or better performance than a similar system
relying on uncertainty sampling, while using fewer labels and producing higher quality features
at the early stages of the model building process.

In both cases, AnchorViz provided a visual language that enabled users to interact with labeled
and unlabeled data to both learn and teach new concepts. The extracted knowledge which takes
the form of new concepts or new features was neither explicitly in the data (which is unlabeled)
nor in the humans (e.g., surprise discovery of insect and flower recipes). The power of the vi-
sualization remarkably brought these new concepts to the foreground. Uncertainty sampling, by
sampling around 0.5 scores, is optimized to maximize the information of each label when no prior
information is available from the human. We expected it to be difficult to beat the uncertainty
sampling given that, even though the human has additional information (other than just label), we
do not know a priori how to extract it. However, interacting with AnchorViz was comparable to
and even outperformed uncertainty sampling in some cases.

We currently support defining an anchor through the information in existing items in the
dataset, or by dictionaries of semantically related keywords. Existing items typically contain mul-
tiple concepts and are not organized for the users to systematic isolate useful sub-concepts. Dictio-
naries have the opposite limitation and do not model higher level concepts. Both these sources of
information support different level of granularity or cohesiveness in concepts. Future work should
investigate expanding the anchor language (e.g., allowing existing semantic models to become an-
chors) to allow for the systematic and progressive exploration of the unknown space.
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