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Autonomy in the OR

: Level 3: :
: Level 2: Partial 3 Level 4: Highly Level 5: Full
Level 1: Assistance . Conditionally
Automation automated autonomy
autonomous
Instrumented
: tools, still largel .
Basic “remote |. BElY Undesirable,
= in remote control ? ?
control” systems ; perhaps
paradigm, e.g.,
Intuitive Surgical

This is the status quo for “robot surgery” autonomy for assistance;
currentl skill prostheses

Many reasons why:
[NHS] Severe shortage of junior staff (hence missed targets)
[Global Health] Can a moderately skilled person do expert level work?
Improved outcomes in terms of accuracy and time; lower lifecycle costs




Project sAlfer surgery

Baxter recognises the plan.and assists




Avi et al. arXiv:1904.05538

A

Singh et al. R:SS 2019

The seduction of end-to-end
] H deep learning for robotics

Reward

® General purpose
e No domain specific knowledge
e Continually improves



How hard can it be?!
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Useful Paradigm in Robotics:
Learning from Demonstration
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Question for LfD:
What Actually Defines the Task?
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Motivation: What Did You Mean?!
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[https://www.youtube.com/watch?v=yyse-BB-u90]
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Turing Project: Safe Al for Surgical Assistance

Pls: S Ramamoorthy (Informatics @ UoE), P Brennan (NHS
Lothian, UoE Clinical Brain Sciences)

Specifications :

learnt from data +

T extracted from codes of practice
(Amenable to reasoning about safety)

(x,t) = p & f(zmt),...,za[t])) >0
(x,8) EeAY & (z,t)FeAlzt) =¥
(x,t) ¥ & ~((z,t) =)
(%, t) Uy ¥ & 3 €[t+a,t+ b such that (z,t') =¥ A
v’ € (¢, 1], (z,t") = ¢}
Guaranteed

control synthesis
at Levels 3-4

Programming
by discussion &
model induction




What rq)resentations
should we use? Do we

rea[[y need models?!




Model Colibration: A«W%WMMH«W
We Wasnt 1o Represent

[with T. Lopez-Guevara, K, Subr, CoRL 2017,
RSS-18 T NeurIPS workshops]|




Will it splash?




What if we change the liquid?




Will it splash?




Model Intuition:
Thicker liquid, no splashes




Use simulation as Internal Model
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Humans use INTUITION =~
to reason about the physical world
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How to get properties of sim objects?

o
ey NVIDIA
Position Based Dynamics
l "% EAST BUT APPROXIMATE . UNIFIED MODELS

assume shapes are known
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Use pouring to get estimates




Observation: Different interactions
give different information

s




Observation: Different interactions
give different information
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Estimates from stirring: good for
pouring?

PARAMETER POURING
ESTIMATION ™% Hf — POLICY




Estimates from stirring

AAAAAAAAA




Synchronized stirring: Real vs Sim

Real: Bad: Better:
Water Hypothesis  Hypothesis

real vs sim
discrepancy




Use discrepancy to guide Optimization
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Estimates from stirring: good for
pouring?
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good for
pouring?
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How good are the estimates?

one-shot pour

ap V
inferred fluid | \ /
parameters ‘

TRANSFER Z measured
POURING POLICY spillage (%)

L

sim spillage




Behaviour

B e & PSS ;

\Js’ . - ._...__'.' m—
- water: (low viscosity) glycerin: (mid @ gel: (high viscosity)

viscosity)




From Explanation To Suynthesis:

Networks

[with M. Burke, S.V. Penkov, R;SS 2019, CoRL 2019]




Compositional Control is Key to Robotics

e End-to-end learning is How do we:
effective, but controllers lack
flexibility and interpretability
(hence verifiability).

« Change the inspection order?

o Compositionality provides v~ . Add an object?
flexibility and allows for 7

interpreta b“ity /U.\ + Verify behavior properties?
C RS D)
o S

Burridge et al. 1999

« Ask what happens next?




Infer compositional controllers from an
oracle model

e 'Explain' end-to-end model
demonstration using a generative
model comprising switching
proportional control laws.

6 = Kki(0—6%)

e Inference under this model is
challenging so we use model
sensitivity priors biased towards
visual objects.




Infer controllers from visuomotor demonstration
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Infer controllers from visuomotor demonstration

Coenrelier 0

Contrabler |
Comrclier 2
Controlier )
Comtreiler 4

Cluster extracted controllers




Infer controllers from visuomotor demonstration

Coenrelier 0

0 Contreter 1
Controller 2
Contralier 3
Comtreiler 4

Extract symbolic controller sequence

Cluster extracted controllers




Infer controllers from visuomotor demonstration o
c_list = [2,1.4.0,3)
for jJ 1n range(6):

Lo0p Pakndrome
count = 0 w w
for kK in rangellen(c_list)s2~1)
Sanple

4 |

excecute(c_listfcount])
] ‘ ‘ if (k >= len(c_list)~1):
count = count |

IFH
MMH 1“ !' ‘ T | REEAR mucennty Extract program from symbolic
i | sequence by searching for
common structures.

cexecute(3)

excecute(2)
excecute(l)
execute(4)
exccute())
execute(3)

Coenrelier 0
o Contralier )
Comrclier 2

Contraller )
Extract symbolic controller sequence

Comtriler 4

Cluster extracted controllers




Infer controllers from visuomotor demonstration P
c_list = [2,1.4.0.3)
for jJ 1n range(6):

LOo0D Paldrome
count - () w
for kK in rangellen(c_list)s2~1) .
Sanple

excecute(c_list|count}])

if (k >= len(c_list)~1):
count = count |
| SOUAL e ComnLES Extract program from symbolic
—— ‘ ki sequence by searching for

cexecute(3)

common structures.

excecute(2)
excecute(l)
execute(4)
exccute ()
execute(3)

Coenrelier 0
}  Contreller |
Comrclier 2

Controlier 3
Extract symbolic controller sequence

1
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’ g ‘

“ME TE AR Train visual grounding
v,
networks for controller
Cluster extracted controllers = e : : i
flexibility.
Crop around goals and augment.




From explanation to synthesis

Above tower 1 Lower gripper Close gripper  Lift gripper Above tower 2 Lower gripper Open and raise
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Infer controllers from visuomotor demonstration S
c_list = [2,1.4.0,3)
for jJ 1n range(6):

LO0p Paldrome
count = 0 w w
for k in rangellen(c_list)s2~1)
Sanple

execute(c_list|{count])

if (k >= len(c_list)~1):
| count = count~|
1 ‘i else:
" ‘ ‘ | count = count+] Extract program from symbolic
Il |

sequence by searching for
common structures.

cxecute(3)

excecute(2)
execute(l)
execute(4)
exccute())
execute(3)

Coenrelier 0
) Contretler )
Comrclier 2

Controller )
Extract symbolic controller sequence

g
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“MlE T AE JAE 9, Train visual grounding
’ networks for controller
Cluster extracted controllers - T e - i
flexibility.
Crop around goals and augment.




From explanation to synthesis

Above tower 1 Lower gripper Close gripper  Lift gripper Above tower 2 Lower gripper Open and raise




From explanation to synthesis

e Explained deep learning controllers using proportional
control law sequences.

e Infer controller sequence using sensitivity analysis.

e Use inferred controllers to synthesise program.

e Ground controllers visually using perception networks.

e Program is flexible, generalisable and interpretable.

Above tower | Lower gripper Close gripper  Lift gripper Above tower 2 Lower gripper Open and raise
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From explanation
to synthesis

Above tower 1 Lower gripper Close gripper  Lift gripper Above tower 2 Lower gripper Open and raise




Did we lose anything in the explanation?

e Maybe...
We added an inductive bias about the
e Gained flexibility, but underlying program we expect to see.
might have lost
something in the e Goals correspond to visual
clustering process content in scene
e Motions followed are proportional
e What if the model had control laws

been repelled by objects
in the scene?




Predict controller gains/ goals states directly

® Loss is difference between measured joint
velocities and controller velocities.

e How can we deal with switching controllers?

e Mixture density networks are good for
modelling multi-modal densities.

32 (5.9) RoLU Stride 2

s ply) = LR (), 50)




Mixture density networks are not
good mixture models.

e MDNs are not performing clustering.

N e Components are not intrinsically meaningful.
IIII '7' e No structure constraining network

- predictions.
: l.... e Arbitrary mapping from image to mixtures.

Mixture density networks Need structure for interpretability.
Bishop (1994)




Switching density networks

e Explicit discrete latent

switching structure

e Maximum likelihood
under single Gaussian

oann

ommdeniy @  Predict parameters of PID
control laws

§ Linear

§ Linear

125 (3,3) ReLU Stride 2
256 (33) ReLU Stride 2

64 (3.3) Rel.U Suride 2

L
up ~ K, (24, 4¢) [x¢ — (2, i,)l - 1\',('2,.1',)fo;\.,_1 —(ze, 2 )|+
1=1

X Xk—-1

A,

+.\P(0 Z(Zf. 1;) .

Ka(z, 1)




Switching density networks

SDN MDN
1.0 1.0
@ SDNs learn both sub-control laws &
S X %
and the switching structure
governing their use.
e 0 200 400 600 800 -

® Discrete transition dynamics can
be used directly for program
simplification.




Hybrid System Identification

& y
° ) v
) | 2
& £ & ‘
§ o § €
3 3 3
c [ c
& & g -

4
Penduium angle Penduium angle Pendulum angle
(a) Hybrid controller (b) Sub-controller regions (c) SDN response

Move to case Open case
Pendulum balancing using three proportional control

laws

Suitcase opening using two
PID control laws

27/09/19




Interpretability gains using SDNs

Hierarchy allows for
interpretability

Gains for tasks with clear
discrete latent structure
(inspection)

Minor losses for tasks without
(pendulum)

Predicting controller goal
states more effective than
predicting actions

Inspection

Controller | RMSE

SDN 0.8 degrees

CNN 1.47 degrees

MDN 3.95 degrees

Pendulum

Controller Reward
Hybrid controller -0.812 £ 0.514
SDN PID Fully connected -0.857 £ 0.621
Fully connected -0.850 £ 0.538




[with S.V. Penkov, ICLR.2019]




Policy Gradients

 E— (50, Aoy S1, A1ye e, S'I', a'[‘)

Trace from rollout:
(T, 77), 1 = 7(Sg, At)

_> —
State Reward Action - 2
s, | |~ " RL objective:
S r / \
J(6) = E;pr:0)[Ro(7)] = J p(z; )Ry (7)d
Environment e
o
. >, Re(7) = Zty"tr(st, at)
Y=

1 n T-1 : : , :
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Perceptor Gradients

Any functional program
(incl. calls to a memory)

Policy structure:

Perceptor Program
s |7 | . mg(at|st) = p(at|o)Pe(or|se)
P ¢ M I
[ i i
olo) | p(atlat) - 5p(at)(at)
State Reward Ac:on

S. r / \

Environment i %
Gradient of log-likelihood of trace sampler 7(%) :
g J

ol

| T
Vologp(tV; 0) =
:

_1 . .
Y Vglogye (o |s®)
=0

So, we can continue to use REINFORCE as before, with this gradient.




Policy factorisation preserves
generality of policy gradients

For any decomposition of a policy g into a program p and
preceptor Yy such that
Tg(a¢|Se) = 5p(at)(at)¢9(0t|5t)

the gradient of the Iog—likelihoog_?f a trace sample 7 obtained by

following Tgis Vylogn(z®@;60) = 3 Vglogye(a’|s®)
t=0

=, i), (i)
Vg log P(Tmif’) — Z Vi log m»(a: "|s,‘ "3
=0
) -
= Y Volog [5, 0, (a”) gu(oi" (")
=0 S
e {3
B Z {v“ 1()g(54’la""'1(a;”) T v" lOg #"(’(U}I"ls;”)J

t=(

T-1 e (i
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Training Perceptors

A loss function for a feedforward preceptor can be defined as:

1 n . .
£(6,9) = 3 (Ly(x®,6) + Lp(®, $))

(i) e, OIRO (i) (i)
Ly, 0) = 201081/)9(% 5.7 W (R (T ) — DpAS: 7))

. =1 , .
Ly(®D,¢) = T (R(t®) — by(s.”))?
t=0




Example: Cart-pole Control; LQR structure

B S B2 |
o=[xxaau]

rerceptor :
W e -»[}—» | —
_ﬂ=ﬁ!f: I i %\ %
g g

Baseline | b(s)
Sl

b t

u = —Ko where K minimizes | = foooa(t)TQa(t) + u(t)TRu(t)dt




Learning performance:
Perceptor vs Policy Gradients

550 Perceptor Gradients Policy Gradients
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What is going on here?

_—

Latent Space

Programmatic
l Regularisation
P
Raw Data Perceptor P rogram | /
A Symbols - _"-«'-'
| o, ——
o | I ]
Ak | ,

plo)




What is going on here?

Related works: .
Watter et al, NIPS 2015, Embed to control D|Sen+angled
Fraccaro et al., NIPS 2017, Kalman VAE Idenflﬂable
Karl et al., ICLR 2017, Deep Var. Bayes filter
Bezenac et al., ICLR 2018 fluid dynamics pred.
Higgins et al., ICLR 2018 SCAN (vis. concepts)

Kaplan et al., arXiv:1704.05539, NL for ALE \
Latent Space

Programmatic
Regularisation
Raw Data Perceptor  Program \ /
\ \ , ‘Al | Symbols - 5
/ N
plo,)

i




go-to-pose in Minecraft

python-astar package

= T
o=[Xxya]
Perceptor - y ‘ y T

Y i A R

Baseline | b(s.) K w-dV,A > J
s T b '
t

"

v b " ”
Loss function augmented with reconstruction term: £, (z®,0) = 1ngv(5t(‘)|at('-))
t=0




Learning performance for go-to-pose

Perceptor Gradients Policy Gradients
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Inspecting the Latent Space

X-position | ~__y-position orientation

0 90 180 270




Stacked Perceptors:
get wood in Minecraft

“ﬂ* a‘=[xyuxwyw]T




Learning performance for ‘get wood’

Perceptor Gradients Policy Gradients
10+ A | ‘
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©
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Generating states from symbols

Symbolic Trajectory Generated States Along Trajectory
< |p>
|
| |
|
Y (>
t=1 t=2 t=3




Generating states with
relational structure

Symbols Sample Symbols Sample
_ ‘ V ‘
Symbols Sample Symbols Sample
[] =




Learsing and Using lnterpretable Latest Spaces

[with . Hristov, A. Lascarides, et al. CoRL 2018, CoRL 2019]




{red ball} .
{blue ball}

{blue cube).
{red cube) -




(b)

{red ball} .
{blue ball}

{blue cube}.
{red cube} -

Encoder

Decoder

¢ m)

{red ball}
{blue ball}
{blue cube}

{red cube}




(b)

{red ball} .
{blue ball}

{blue cube}.
{red cube} -

\Ko unknown red

D

e

{red ball}
{blue ball}
{blue cube}

{red cube}

(c)

color




(b)

{red ball} .
{blue ball}

{blue cube}.
{red cube} .

-

{red ball}

{blue ball}

{blue cube}

{red cube}

. n“.
~
- u".-..

(c)

cube

shape

color

A AN

ball unkn

:

ue unxnown red

{red cube} {unknown ball} {unknown ball} {unknown unknown}




Model Architecture

[3 x 100 x 100] [K xW. x H] 2 x2Z] [K x W, x H] [3 x 100 x 100]

-

& : = )
je e e - 4 o : e e e

Image oo e Image
g - Reconstruct

y | " U
|V : square a
- : Z. = color
' unknown ' 0
blue 0 red } = Z, = shape
. : | — o ¥ size
H o : ;

n ; big

.

-~

: N G ,, = 2 p— Ll L W ..
i L(x,y,0,¢) =[8Dxk L((Id)(z'x)|II)O(Z))}‘;\“quﬂgi&}(logl)e(xlz))/ﬁ‘ Y H(zw],yi)

e Kullback-Leibler divergence term
» Reconstruction term

e Classification term




Baselines and Data

e Full Model (Ours)
e Vanilla B-VAE (y =0)
e Conv Classifier Network (CCN, a = 0)

e Synthetic colored d-Sprites
e Real-world tabletop dataset

Squares
Tt ' |

Labelled (observed)

Ellipses
Snum

Memum
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Evaluation Criteria

Factors of variation should be:

e Axes-aligned
e Linearly Separable

in the latent space.




Evaluation Criteria

Factors of variation should be:

e Axes-aligned
e Linearly Separable

in the latent space.




Linear Separability Evaluation - F1 Scores

F1 Scores Experiment 3 (Real-world tabletop data)

1 Scores Experiment 2 (d-Sprites synthetic data) l ‘ ‘ I I | I
&
\\

\\

._\,. <_‘\
~ \\{

B Ours
CCN




Disentangled Relational Representations for LfD

e Can we have useful shared task
representations?

e Useful = interpretable + usable
in models for planning

e Our framework allows human
demonstrators to teach how to
ground high-level spatial
concepts in their sensory input

Claim: If we explicitly optimize for disentanglement, the learned
latent space is also useful in tasks downstream.




Overall Setup - Explain and Repeat for
Spatially-grounded Plans

(a) Capture partially-labelled (b) Test-time demonstrations for a task
training pairs with extracted invariant plan
[green. . off red. .]
[yellow. . of f red. .] (blue. . off red...]
[yellow.. off green..] [green.. off red...]
[green. . () 4 4
T blue...]
[blue.. on red...]
° ° ° [green.. (o) 4 4 red...]
[green. . Off
blue...)
:::: [blue. . on red...)
[green.. on red. .] [green.. unknown red...])
[yellow.. unknown red..] [green. . on blue...]
[yellow. . on green. .] =

L) L

Project a set of new demonstrations | pjan:

in the learned representation space | [1] put blue on red
and using the grounded symbols infer | [2] Put gzeen on blue
an invariant (wrt all demos) plan

Learn representations in which object
and relational symbols (above) can be
grounded

J J
27/09/19




Neural Models - Partially Inspired by MONet
(Burgess et al.)

/ Conv Encoder \ Fully-connected
Spatial Broadcast Decoder variational classifier

().«_;».l_l.'l.l\iz{/l.w" L(x,y,0,0,¢,¢) = BKL(C||Z) + aR + v(Qobj + Dret)

2 |O] (1)

Q:Q(,,,j-‘rQ,.(.,_ZZH W0, +Zu qy(cjlz1,22)wT y;)




Testing on Repetitive Motions (Synthetic)

repetitive left-right repetitive out-in repetitive off-on
Model left-right  front-behind below-above far-close off-on out-in
No R, No Q,p; 0.50 0.64 0.54 0.56 0.49 0.66
No R, With Q; 0.53 0.68 0.68 0.63 0.65 0.62
With R, No Q,; 0.70 0.73 0.69 0.68 0.64 0.78
With R, With Q,; 0.80 0.88 0.91 0.86 0.76  0.56

Plan segmentation Acc - what moves when - for repetitive demos

27/09/18




Testing on Chained Motions (Synthetic)

C-shape Jump over off-on-off

27/09/18



Results - Chained Motions

1.2 7 1.2 \ 1.2
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1 2 3 o S 6 7 8 1 ¥ 4 3 B > 6 7 8 1 2 3 3 S5 6 7 8
# Demonstrations Used # Demonstrations Used # Demonstrations Used
(a) (b) (c)

(top): edit distance statistics as a function of how many demonstrations the agent has seen. (bottom) plan length statistics for the inferred plans
as a function of how many demonstrations the agent has seen for all three chained behaviours—(a) C-shape, (b) off-on-off and (c) jump over;
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Training/Testing Data
(Robot Tabletop Manipulation)

Place a cube *on* a Make 2 cups *face™ Put a cube *in* a
cylinder each other bowi

Single-step plans

20/10 (train/test) demonstrations per task

Table-top dataset gathered while teleoperating a PR2 robot
Pretrained Mask R-CNN for segmenting the objects
Kinect2 as RGBD sensor
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Turing Project: Safe Al for Surgical Assistance

Pls: S Ramamoorthy (Informatics @ UoE), P Brennan (NHS
Lothian, UoE Clinical Brain Sciences)

Specifications :
learnt from data +

" extracted from codes of practice
(Amenable to safety verification)

& f(zmlt),...,za[t]) >0
(x,t) F @AY & (o,t)FeAlzt)=¢
& =((z,) F )
(%, t) Uy ¥ & 3 €[t+a,t+ b such that (z,t') =¥ A
vt" € [t, '], (z,t") = ¢}

Guaranteed
control synthesis s
at Levels 3-4

Programming
by discussion &
model induction




Surfing on an uncertain edge:
Precision cutting of soft tissue using
torque-based medium classification

Arturas Straizys, Michael Burke
and Subramanian Ramamoorthy

Robust Autonomy and Decisions Group
University of Edinburgh
http://rad.inf.ed.ac.uk




We learn probabilistic classification of sensor readings
associated with knife’s operation in either peel or pulp region

and construct a control scheme in which the movement is
corrected according to the probability of the knife being
inserted into either of the two mediums.
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Concluding Remarks

Most robotic systems are hybrid control systems

— Modelling them should involve careful combination of
compositional reasoning that drives sensorimotor control

Programmatic representations, carefully combined with flexible
probabilistic predicates, are useful in this way

We propose novel tools for learning from sensorimotor experience
using such representations

Such representations also enable connections to other tools for:
— Analysis of causality
— Guided sampling and analysis of coverage
— Verification of behavioural properties




