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ABSTRACT
In this paper, we describe Multi-Itinerary Optimization (MIO) – a

novel Bing maps service that automates the process of building

itineraries for multiple agents while optimizing their routes to

save travel time or distance. MIO can be used by organizations

with a fleet of vehicles and drivers, mobile salesforce, or a team of

personnel in the field in order to maximize workforce efficiency.

MIO accounts for service time windows, duration, and priority, as

well as traffic conditions between locations, resulting in challenging

algorithmic problems at multiple levels (e.g., calculating travel-time

distance matrices at scale, scheduling services for multiple agents).

To support an end-to-end cloud service with turnaround times

of a few seconds, our algorithm design targets a sweet spot between

accuracy and performance. Towards that end, we build a scalable

solution based on the ALNS meta-heuristic. Our experiments show

that accounting for traffic significantly improves solution quality:

MIO not only avoids violating time-window constraints, but also

completes up to 17% more services compared to traffic-agnostic

mechanisms. Further, our solution generates itineraries with better

accuracy than both a cutting-edge heuristic (LKH3) and an Integer-

Programming based algorithm, with twice and orders-of-magnitude

faster running times, respectively.

CCS CONCEPTS
• Information systems → Geographic information systems;
Web services; • Theory of computation → Randomized local

search; Integer programming.
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ACM Reference Format:
Alexandru Cristian, LukeMarshall, Mihai Negrea, Flavius Stoichescu, Peiwei

Cao, and Ishai Menache. 2019. Multi-Itinerary Optimization as Cloud Service

(Industrial Paper). In 27th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (SIGSPATIAL ’19), November
5–8, 2019, Chicago, IL, USA. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3347146.3359375

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6909-1/19/11. . . $15.00

https://doi.org/10.1145/3347146.3359375

1 INTRODUCTION
In many businesses, route planning and service dispatch operations

are a time-consuming manual process. This manual process rarely

finds efficient solutions, especially solutions that can accommodate

traffic, location changes or an increasing number of stops along

a route. Additionally, scale is also a challenge: service dispatch

planning may involve multiple vehicles that need to be routed

between numerous locations over periods of multiple days.

The development of large scale internet mapping services, such

as Google and Bing Maps, creates an opportunity for solving route

planning problems automatically as a cloud service. Large amounts

of data regarding geo-locations, travel history, etc. are being stored

in enterprise clouds, and can in principle be exploited for deriving

customized itineraries for corporate agents. The goal of such au-

tomation is to increase operation efficiency, by determining these

itineraries faster (with less man-in-the-loop) and with better quality

compared to manually produced schedules. However, multiple

challenges stand in the way of making this vision a reality.

First, route planning requires efficiently calculating the travel-

time matrices between different locations. While the problem is

well understood for free-flow travel times (i.e., assuming no traffic)

[8, 20], producing the traffic-aware (e.g., as a function of time-of-

day) travel times on-demand and for any point in time requires

careful attention to system scalability. Second, the route planning

itself has to account for multiple features – time-windows, the

priority of each location, amount of time spent in each location (e.g.,

service duration or dwell time), and the predicted traffic between

locations. The single agent version with no traffic, time-windows,

dwell-times, etc. corresponds to the Traveling Salesman Problem

(TSP) which is already NP-hard. Numerous extensions to TSP have

been studied in Operations Research and related disciplines under

the Vehicle Routing Problem (VRP) [22, 23, 25, 29]. However, the

bulk of the work is not readily extensible to account for traffic

between locations, especially at a large scale. To address customer

requirements, our service must incorporate traffic, and output an

optimized schedule within seconds for instances with hundreds of

waypoints.

In this paper, we describe Multi-Itinerary Optimization (MIO), a

recently deployed Bing Maps service, available for public use [4].

The design of MIO tackles the above algorithmic challenges, as

well as underlying engineering requirements (e.g., efficient use of

cloud resources). In particular, our solution consists of a structured

pipeline of advanced algorithms. At the bottom layer, we com-

pute travel-time matrices by combining Contraction Hierarchies

https://doi.org/10.1145/3347146.3359375
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(CH) [20] with traffic predictions, resulting in an efficient time-

dependent shortest-path algorithm. We then use these matrices for

itinerary optimization. Our algorithm for itinerary optimization is

built on a popular meta-heuristic, Adaptive Large Neighborhood

Search (ALNS) [27], which searches for an optimal schedule by

judiciously choosing between multiple search operators (e.g., repair

and destroy). Our search operators have been carefully designed to

account for traffic and heterogeneous agents. The entire pipeline is

implemented as a cloud service, which is easily accessible through

a flexible REST architecture.

We perform extensive evaluations on several data sets to ex-

amine the quality of our end-to-end solution. In particular, we

first highlight the significance of accounting for traffic in route

planning. We find that if traffic is overlooked during planning (i.e.,

assuming free-flow travel times), up to 40% of the planned work

(e.g., services, or dwell time at waypoints) violates the time-window

system constraints. On the other hand, using conservative travel

times (i.e., taking the maximum travel time between locations)

results in schedules with up to 17% less satisfied work. Next, we

compare MIO to both a state-of-the-art heuristic, Lin-Kernighan-

Helsgaun (LKH [22]), as well as a mixed integer programming

(MIP) based approach. Our results indicate that MIO obtains higher

quality solutions in terms of the number of satisfied services, with

less processing time – MIO runs up to 2× faster than LKH and

orders of magnitude faster than the MIP approach.

While related commercial offerings exist (e.g., for field service,

see Section 5 for an overview), companies typically do not disclose

the details of the algorithms, and/or use some algorithmic compo-

nents as a black box (e.g., the travel-time calculations). To the best of

our knowledge, this paper is the first to report the full algorithmic

details of an end-to-end cloud service that produces traffic-aware

itineraries for multiple agents. The rest of the paper is organized as

follows. Section 2 provides some necessary background; Section 3

outlines the details of our algorithms, as well of our cloud deploy-

ment. Section 4 describes our experiments and results. We survey

related work in Section 5 and conclude in Section 6.

2 BACKGROUND AND MOTIVATION
Internet mapping services. The recent innovations in internet map-

ping services has created many new business opportunities for

large cloud providers, such as Microsoft and Google. For example,

in the Business-to-Consumer space, location based services can

be used for more personalized user experience and better targeted

advertising, among other things. In the enterprise resource planning

context, tasks like fleet management and workforce scheduling / dis-

patching / routing (e.g., field technicians, pickup and delivery trucks,

etc.) can benefit from automated GIS services built on accurate and

up-to-date geospatial data. However, in the age of the internet,

users of mapping services have high expectations. For example, a

“large” scheduling task (say, hundreds to thousands of waypoints) is

expected to complete within a few minutes, and smaller tasks (tens

of waypoints) within seconds. From the cloud provider perspective,

these expectations translate to Service Level Objectives (SLOs) on

the end-to-end response time. Additionally, providers also wish to

generate high-quality solutions (for example, minimize travel time

or fuel consumption between a set of locations).
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Figure 1: Time-dependent travel times for a single route

Multi-Itinerary Optimization. Bing maps recently deployed an en-

terprise level planning service called Multi-Itinerary Optimization

(MIO) [4]. The term “itinerary” corresponds to a single agent (e.g.,

truck, or technician), and has carried over from an earlier consumer

version for vacation planning. MIO takes as input a set of waypoints,

each with a lat/long location, dwell time, time-window, and priority;

and a set of agents, each with start/end location (which may differ

across agents), and available time-window. Given this input, the

goal of MIO is to find a feasible assignment (i.e., respecting time-

window constraints) of a subset of waypoints to the given agents,

which maximizes some system objective. For example, a popular

objective is to maximize the number (or priority) of waypoints

visited while minimizing the total travel time.

Design Challenges. The implementation of MIO as a cloud service

has multiple levels of complexity. First and foremost, the service

must scale robustly to client demand. Our travel time calculations

involve taking a set of lat/long locations (anywhere in the world),

snapping them to the road network, and quickly calculating pair-

wise shortest travel distance while accounting for traffic. This has

required significant algorithmic and engineering effort to support

large volumes of users and waypoints. On top of that, incorporating

predictive traffic into route planning poses an additional level

of complexity to a problem that is already NP-hard. One may

wonder whether it is really necessary to account for traffic. Figure

1 demonstrates time-dependent travel times for a single origin-to-

destination route (Microsoft campus to Seattle downtown). Notice

that the travel time varies considerably throughout the day due

to traffic, particularly during peak times (8-9 AM and 3-6 PM).

With such significant variations in travel times, it is essential to

explicitly account for traffic. Our experiments in Section 4.3 provide

a quantitative analysis of this intuition and highlights potential

business ramifications when traffic is ignored.
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3 MIO DESIGN
In this section we provide the details of the core algorithms in MIO

and its system architecture. Section 3.1 describes how we efficiently

calculate travel-time matrices that account for traffic. These travel-

time matrices serve as input to our route planning optimization

(Section 3.2). In Section 3.3 we highlight some engineering choices

that make MIO a scalable cloud service with manageable operation

costs.

3.1 Travel-time calculations
Given a set of locations, a distance matrix is a two dimensional

matrix constructed by calculating the length of the shortest-path

between each pair of locations. This shortest-path can be considered

to be physical distance, travel time, cost, etc. By convention we

use the term distance matrix when the shortest-path minimizes

free-flow (i.e. without traffic) travel time. A traffic matrix adds

an extra dimension of time, where the shortest-path minimizes

time-dependent travel over a given time horizon.

For efficient calculation, our algorithm for generating a traffic

matrix uses an associated distance matrix as a baseline, and extends

the time-dependent travel times using pre-computed predictive

traffic. There are several implementations for fast distance matrix

calculations based on hub labels [8] or contraction hierarchies

[20]. Contraction hierarchies is an efficient approach (in data size,

pre-processing and query speed) for distance calculations in road

networks. It dramatically reduces the query time required to calcu-

late shortest-path distances by performing a pre-processing step.

The pre-processing step generates a multi-layered node hierarchy

(vertex levels) formed by a ‘contraction’ step, which removes nodes

and adds ‘shortcuts’ to preserve correctness. Our challenge was

to integrate this method of fast computation of travel times, while

taking account of traffic fluctuations.

3.1.1 Input and offline processing. Our system combines many

sources of traffic related input (e.g. GPS traces) in order to estimate

the travel times on every road at any moment in time. To give

accurate day-of-week traffic predictions (with a granularity of 15

minutes), we aggregate these travel times for each road, using six

months of historical data (giving more weight to recent travel).

After preprocessing our road graphwith ContractionHierarchies

(CH), we compute the travel time for every contraction offline, based

on the predictive traffic data and other graph properties like turn

restrictions or turn costs, see Figure 2. As a result of this offline

process we have two outputs:

(1) The CH graph (i.e., shortcut graph and vertex levels)

(2) The predictive traffic data for each edge in the CH graph

containing 672 values (7 days x 24 hours x 4 quarter hours)

At query time, the CH graph is loaded inmemory (∼3GB forWest-

ern North America; ∼85GB for the whole world) and the predictive

traffic data is read from SSD using memory mapped files (∼100GB

for Western North America; ∼5TB for the whole world). The query

to calculate the traffic matrix for a given time horizon uses a time-

dependent shortest-path algorithm based on bidirectional Dijkstra.

3.1.2 Time-dependent shortest-path. In general, the time-dependent

shortest path problem is at least NP-hard (in some cases the output

is not polynomially bounded), however under certain assumptions
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Figure 2: Offline pipeline for traffic matrix service

(FIFO networks), it can be solved efficiently with polynomial-time

algorithms [13, 18, 21]. We assume this FIFO property, which es-

sentially implies that later departures have later arrivals.

There are many variants of shortest path algorithms with time-

dependent travel times, typically differing on if/how waiting at

intermediate nodes is allowed. For example, minimizing the arrival

time at the destination prohibits waiting at any node; minimizing

travel duration allows waiting at the start (but not at intermediate

nodes); and, minimizing travel time allows waiting everywhere (i.e.

only the time spent travelling is counted). Other variants consider

limits or differing costs on waiting. Regardless of the variant, the

solution to these algorithms is a distance function, parameterized

by a starting ‘dispatch’ time. Our algorithm has been specifically

designed to produce a (three-dimensional) traffic matrix, that is, a

piecewise-constant time-dependent distance function (discretized

into 15 minute intervals) for each pair of locations. We assume that

no waiting is allowed, and thus, for each dispatch time, weminimize

the arrival time at the destination. We base our time-dependent

shortest-path algorithm on a bidirectional Dijkstra algorithm, in

order to quickly calculate all time-dependent distances from a single

origin to many destinations simultaneously.

3.1.3 Algorithm details. CH is applied over the road network and

the resulting shortcut graph and vertex levels are used. Predicted

travel times are stored in 15-minute intervals over 1 week (for a

total of 672 values). The CH graph is loaded into RAM, and traffic

predictions are accessed via memory mapped files on SSD.

A traffic matrix request of N waypoints over a time horizon

with T intervals, performs N individual one-to-N time-dependent

shortest-path queries (one for each origin, for a total of N × N ×T
travel times). The CH graph is used to expedite the bidirectional

(forward / backward) search, since it is sufficient to only explore

nodes that have a higher vertex level.
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In the forward search, starting from the origin, vertices (with

higher vertex levels) are explored based on a level based priority

queue, by following outgoing hops (edges). For each vertex encoun-

tered, the time-dependent travel time is calculated from the origin,

and the shortest travel times for each vertex (and requested time

intervals) are cached. To improve query speed, the forward search

is bounded by the number of hops from the origin (2× maximum

number of shortcut edges in a contraction) and distance travelled

(10× free-flow travel time from origin to farthest destination).

For each destination, a backward Dijkstra like search is per-

formed, again by only visiting nodes (via incoming edges) with

higher vertex levels in the CH graph, and using free-flow travel

time to determine the shortest path. Once a vertex is reached by

the backward search that has been seen during forward search, the

backward route from the found vertex to the destination, and the

travel times (with predicted traffic) are calculated. Each resulting

travel time at each interval is then compared with previously found

travel times (initially set to a very high value) – if any are smaller

than what has already been found, then the results array is updated.

After a fixed maximum number of rounds have been performed

without finding a smaller travel time for any interval, the backward

search is stopped. After all destinations have been processed, the

algorithm returns the N × T shortest travel times for the given

origin node and time horizon.

We note that using free-flow travel times to guide the back-

ward search may result in an approximation to the time-dependent

shortest-path, however this is unlikely to occur in practice due to

the continued search for better solutions after the first intersection

between the forward and backward graphs was found.

3.1.4 Algorithmic performance. We evaluated the traffic matrix

performance on a queryset of 1200 instances consisting of way-

points from Germany. These queries vary by the distance between

waypoints and the matrix request size, with 100 queries per variant.

Each query was run with a time horizon of both 96 and 672 intervals

(a single day and a full week, respectively), and the output is shown

in Table 1. The average response times were partitioned by distance,

number of intervals, and the size of the request matrix – where cold
indicates the response time when traffic data was read from SSD,

and warm indicates the response time when the traffic data was

already cached in memory.

Size Intervals Distance (km) Cold (s) Warm (s)
10x10 96 <15 0.1224 0.0656

10x10 96 <80 0.3620 0.0810

10x10 96 <250 1.0522 0.0887

10x10 96 <15 0.1224 0.0656

10x10 672 <15 0.3384 0.3085

1x10 672 <15 0.0786 0.0363

10x10 672 <15 0.3384 0.3085

1x100 672 <15 0.2163 0.1737

100x100 672 <15 17.8519 17.8524

Table 1: Traffic matrix cold/warm response times

Observe that distance has little impact on the warm response

time, however it significantly impacts the cold. This is due to less

vertices being shared between the routes, causing more SSD trips

to fetch the traffic data; as well as requiring a longer forward

exploration phase. On the other hand, the warm response time

seems to be most impacted by the number of intervals – requesting

672 intervals is clearly more expensive than 96 intervals for both

cold/warm, but the warm response time for the full week is almost

equivalent to the cold. Finally, changes in matrix size impacts

performance as expected – all experiments were run single threaded,

hence the linear relationship between the single source matrix (e.g.,

1x10) and the multiple source matrix (e.g., 10x10). This relationship

is most noticeable for the warm response time (e.g., 0.03 and 0.3

seconds respectively).

3.2 Itinerary Optimization
Equipped with travel-time matrices, our MIO service solves the

(NP-hard) technician routing and scheduling problem (TRSP). We

describe below our algorithm design, which pays close attention to

performance and scale.

3.2.1 Simplified MIP Formulation. The complete formal definition

of our problem (i.e., with traffic, generalized objectives, multiple

days, etc.) is difficult to express in a simple compact MIP representa-

tion. For the sake of exposition, we present a simplified model that

highlights the important aspects of our optimization problem. Note

that the complete model is best expressed as a MIP using advanced

decomposition techniques (i.e., branch-and-price [9]).

The challenge of the TRSP is to schedule a set of agents to visit

a set of waypoints, where each waypoint is visited at most once.

When visiting a waypoint the agent must dwell at its location (e.g.,

perform a service) within the time-window associated with the

waypoint. In particular, the service must start within the time-

window. Agents may arrive earlier, but they must wait until the

start of the time-window before they can begin their service. Our

objective is to visit asmanywaypoints as possible, whileminimizing

the total travel time of the agents.

Sets

W Waypoints

K Agents

N Combined Agent start/end locations and waypoints

Parameters

δkn ∈ R+ dwell time at location n ∈ N for agent k ∈ K
τ(n,n′) ∈ R+ free-flow travel time between n,n′ ∈ N
sn , en ∈ R+ start/end time window for n ∈ N

ok ,dk ∈ N origin/destination for agent k ∈ K

Decision variables

xkn,n′ ∈ {0, 1} 1 if n is visited before n′ ∈ N by agent k ∈ K

yw ∈ {0, 1} 1 if waypointw ∈W is ever visited

tkn ∈ R+ arrival time at n ∈ N by agent k ∈ K
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Model

max

{ ∑
w ∈W

yw , −
∑
n∈N

∑
n′∈N

τ(n,n′)
∑
k ∈K

xkn,n′

}
(1)

s.t.

yw =
∑
k ∈K

∑
n′∈N

xkn′,w ∀w ∈W (2)

∑
n′∈N

xkn,n′ −
∑
n′∈N

xkn′,n =


1 n = ok

−1 n = dk

0 o/w

∀k ∈ K , n ∈ N (3)

sn ≤ tkn ≤ en ∀k ∈ K , n ∈ N (4)

tkn′ +M
(
1 − xkn,n′

)
≥ tkn + δ

k
n + τ(n,n′) ∀k ∈ K , n,n′ ∈ N (5)∑

n∈N

∑
n′∈N

(
δkn + τ(n,n′)

)
xkn,n′ ≤ ek − sk ∀k ∈ K (6)

xkn,n′ ∈ {0, 1} ∀k ∈ K , n,n′ ∈ N
yw ∈ {0, 1} ∀w ∈W
tkn ≥ 0 ∀k ∈ K , n ∈ N

The multiple objective (1) hierarchically maximizes the total

number of waypoints visited while minimizing the total travel time.

This can be easily extended to maximize total priority of visited

waypoints, by providing a suitable weight for the yw . Constraints

(2) capture if a waypoint is visited, and enforce that it is visited only

once. The flow constraints (3) ensure that each agent leaves their

starting location, visiting zero or more waypoints, and reaches their

end location. The next set of constraints deals with time: (4) ensures

that an agent arrives within the requested time window of the

waypoint – note that they can arrive early, butmust wait until sn . (5)
correctly accounts for the dwell and travel time between waypoints,

and (6) enforces that the agent can visit all scheduled waypoints

within their available time window. The remaining constraints

define the variable domains.

3.2.2 MIO algorithmic approach. Adaptive Large Neighborhood
Search (ALNS) is a popular meta-heuristic used for many vehicle

routing and optimization problems in general. ALNS uses a simu-

lated annealing framework, with a local search at each iteration that

adapts its behavior based on previous iterations. This local search is

controlled by randomly choosing a pair of destroy/repair operations

(from a predefined set). Then, starting with a feasible solution, the

destroy “local search” modifies the solution, such that the solution

may become infeasible. The repair operation then alters the solution

with a guarantee of feasibility. If the new solution is better than

the previous, then the probability of choosing these destroy/repair

operations will increase. This is the adaptive learning component of

ALNS. Our implementation follows a similar approach as outlined

by [27], and in addition, we support parallel processing andmultiple

objectives (via an automatic weighting scheme). See Algorithm 1

for a high-level overview of the approach. Our algorithm terminates

when either the current solution has not changed within the last

1500 iterations (i.e., all new solutions were rejected), or a fixed

timeout, given by # agents × # waypoints × 600 milliseconds, has

been reached.

The most important component for efficient computation is the

design of the destroy and repair operators. These guide the local

search and attempt to exploit the structure of the combinatorial

optimization problem. A careful balance must be considered – a

Algorithm 1 High-level ALNS algorithmic framework

1: procedure alns_solve(x ,T ,α ,π )
2: Xbest ← x
3:

4: while not terminated do
5: repair, destroy← choose_pair(π )
6: x ′ ← repair(destroy(x))
7:

8: if obj(x ′) > obj(Xbest ) then
9: result← NewIncumbent
10: Xbest ← x ′

11: x ← x ′

12: else if obj(x ′) > obj(x ) then
13: result← DominatesCurrent
14: x ← x ′

15: else if simulated_annealing(x ,x ′,T ) then
16: result← Accepted
17: x ← x ′

18: else
19: result← Rejected
20: end if
21:

22: π ← update_weights(π , result, repair, destroy)
23: T ← αT
24: end while
25:

26: return Xbest
27: end procedure

trade-off between fast iterations and intelligent decisions. Below

we list our set of operators, with a brief description of their intent.

Destroy Methods random: removes a random number of way-

points from the current schedule; best: removes the most ‘expen-

sive’ (e.g., in terms of travel distance) waypoints; swap: performs a

2-opt swap heuristic on the current schedule, ignoring time-window

constraints.

Repair Methods nn: inserts waypoints using the nearest neighbor
heuristic; best: attempts to insert waypoints in the best position (i.e.,

checks the benefit of each insertion); early: prefers to insert random

waypoints near the beginning of an agents schedule; late: prefers

to insert randomwaypoints near the end of an agents schedule; end:

appends waypoints to the end of the agents schedule (if possible).

3.3 Cloud deployment and engineering
The design of MIO as a cloud service must take into consideration

resource costs. We need to store large amounts of data in memory

(for hub labels and the contraction hierarchies graph along with

supporting structures ∼200GB) and on SSD (traffic data ∼5TB),

so the cost of the underlying virtual machines (VMs) might be

high. A simple implementation would consist of a single VM role

that hosts the entire service, where the number of the VMs can

be scaled based on request volume. However, we would like to

exploit the special structure of our service for a more resource effi-

cient architecture. From an operational perspective, we have three
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different components that support the entirety of the algorithms

described earlier in this section: distance matrix, traffic matrix and

route optimization. As we elaborate below, these components have

fundamentally different resource requirements.

(1) Distance Matrix which needs a lot of memory to host the

hub labels;

(2) Traffic Matrix which needs little memory to host the contrac-

tion hierarchies graph. On the other hand, the component is

CPU intensive and requires a lot of SSD storage.

(3) Route Optimization which does not need to hold any persis-

tent data in memory; the computation itself is CPU intensive.

Accordingly, the MIO system includes three different VM roles,

one for each of the above components (See Figure 3 for a high-level

architecture overview). The roles communicate via binary HTTP

protocol. Each component can be separately scaled down/up based

on current load conditions. Specifically, the distance matrix role is

hosted on memory optimized VMs [3]; because our design achieves

high throughput, we rarely need to scale down/up this component.

For the traffic matrix, storage needs to be provisioned for the

maximum load conditions. Nonetheless, we use compute optimized

VMs [3] for the computation; these VMs can be scaled down/up

quickly to reduce operating costs. Similarly, the route optimization

role is hosted on compute optimized VMs that are scaled down/up

as necessary. Obviously, the alternative implementation with a

single VM role would not be able to achieve this level of flexibility

and efficiency - any scale up is likely to result in resource wastage

in at least one resource dimension.

To enable the above described flexibility, each of the three roles

is composed of:

(1) A dynamic scale-set of VMs that scales based on a custom

performance counter; the counter is tuned to the needs of

the specific role.

(2) An Azure load balancer which spreads the requests to the

VM scale-set.

(3) An Azure traffic manager which handles the distribution

of requests to the closest datacenter, as well as failover

management in case of outage.

We conclude this section by briefly describing the interface of

MIO. MIO can be used by applications with different requirements.

For example, there are applications that need to display the output

schedule quickly. On the other hand, there are applications that

require solving large route optimization problems. For such applica-

tions, latency is less of a concern, however their owners would like

to run the service in the background while displaying perhaps

a progress bar for the optimization. To address these different

needs, we have designed the service with both synchronous and

asynchronous interfaces (e.g., for the former and latter application

classes, respectively). The synchronous interface receives an opti-

mization request and responds with the optimized itinerary. The

asynchronous interface returns a callback id, and schedules the

job to be executed in the background. An Azure queue is used to

orchestrate the execution of the background job on the service side,

and the response is in turn saved in Azure storage. When the client

uses the callback id to poll for the completion of the job, MIO checks

if the optimization result exists in Azure storage, and if so, sends

the output back to the application.

Figure 3: System Architecture

4 EXPERIMENTAL RESULTS
This section details our experimental results, starting with our

setup in Section 4.1. Our first set of experiments (Section 4.2)

compares MIO to baseline algorithms and instances without traffic;

its main purpose is to examine the accuracy of MIO on instances

with known optimal solutions. We then turn to examine instances

with traffic. In Section 4.3 we highlight the cost of ignoring traffic

predictions in the optimization, and finally, Section 4.4 evaluates

rigorous comparisons to other baselines which demonstrate the

superiority of MIO in both solution quality and running time.

4.1 Experiment setup
Throughout this section, we compareMIO to two other optimization

approaches:

(1) linear programming (LP) based solutions, and

(2) heuristics based on Lin-Kernighan.

Specifically, we have two LP based approaches: with, and without

traffic support. The MIP model without traffic (Section 3.2.1) can be

evaluated directly, whereas our approach supporting traffic is much

more complex. We attempt to solve a LP using column generation

techniques [9], where each column incorporates time-dependent

travel. As this is prohibitively time consuming, we have a time limit

of 10 minutes, after which we use the (partial) LP solution in a MIP

heuristic to obtain a feasible solution.

The Lin-Kernighan heuristic has been specifically designed to

quickly find high-quality solutions to symmetric TSPs. For our

experiments, we use LKH3, a state-of-the-art extension to Lin-

Kernighan. It iteratively improves a feasible solution by swapping

pairs of sub-tours to make a new tour, using an adaptive k-opt
approach, that is, at each iteration it chooses an appropriate k
number of edges to try and swap. An approximation to MIO can

be expressed as a symmetric TSP by using several well-known

transformations [22].

All experiments ran on a four-core Xenon 3.50Ghz 64GB RAM.

Although some of the heuristics can exploit multiple cores, we

restrict all algorithms to a single thread for a fair comparison.
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4.2 Experiments without traffic
Our experiments begin with a single agent and a simple setup of

waypoints with time-windows; the travel time between any two

locations is symmetric (i.e., the travel time from A to B is the same

as from B to A) and fixed. Our goal is to compare MIO’s solution

quality to the optimum, and its running time to LKH3. Towards

that end, we use the following publicly available datasets for TSP

with time-windows:

• Dumas [15] : 135 instances (20-200 waypoints)

• da Silva & Urrutia [12] : 125 instances (200-400 waypoints)

We compare MIO to both LKH3 and our MIP without traffic

(Section 3.2.1), which is solved using Gurobi 5.7.2. Table 2 shows the

comparison of running times and quality on the Dumas instances.

LKH3, which is optimized for symmetric TSP, found the optimal

solution in all instances. MIP, due to its 30 minute time limit, did

not find optimal schedules for 2 instances. MIO was always able to

schedule all waypoints, however not necessarily optimally (with

respect to travel time). Accordingly, we show the average increase

in travel time compared to optimum under MIO %-COST.

#WP LKH3(s) MIP(s) MIO(s) MIO %-COST
n20 0.02 0.28 0.84 0.0 ± 0.0 %

n40 0.02 179.20 3.48 0.8 ± 1.2 %

n60 0.07 330.80 8.66 1.8 ± 1.8 %

n80 0.08 571.69 15.05 2.0 ± 1.6 %

n100 0.11 479.97 18.92 1.9 ± 1.8 %

n150 0.40 712.48 30.42 3.4 ± 1.8 %

n200 2.06 975.96 40.43 3.5 ± 2.3 %

Table 2: Comparison of MIO, LKH and MIP on the Dumas
instances. MIO %-COST is the average relative distance of
MIO from the optimum, and its standard deviation.

In Table 3 we break down the running-time results based on

the size of the time-window (ranging from 20 to 100 minutes).

The results show that the running time for LHK3 and MIO are

not significantly affected by the time-window size. However, it

is important to observe that MIP is severely affected – this is a

well-known drawback of the direct MIP formulation.

TW LKH3(s) MIP(s) MIO(s)
w20 0.03 0.41 5.16

w40 0.06 7.47 8.41

w60 0.08 25.87 8.27

w80 0.10 620.55 10.43

w100 0.07 1,104.19 11.02

Table 3: Average running times for the Dumas dataset as a
function of the time-window size.

We next evaluate experiments on the da Silva and Urrutia dataset.

A summary of the results is given in Table 4. Again, LKH3 found

all optimal solutions. Note that we excluded results for MIP as the

bulk of the instances hit the time-limit without finding the optimal

solution, and the results did not meaningfully contribute to our

discussion.

#WP LKH3(s) MIO(s) MIO %-COST
n200 31.18 134.98 6.8 ± 5.7%

n250 61.41 185.65 7.7 ± 6.4%

n300 116.02 200.10 8.1 ± 6.4%

n350 183.90 200.18 8.9 ± 7.2%

n400 268.09 200.23 8.4 ± 6.6%

Table 4: Results for the da Silva and Urrutia dataset. We use
the same notations as in Table 2.

Overall, the results in Tables 2–4 indicate that the direct MIP

formulation becomes impractical (in terms of performance) as the

problem size grows – both LKH3 and MIO are orders of magnitude

faster, with optimal (or near optimal) results. MIO’s accuracy falls

behind only by up to 9% on average compared to LKH3 (which

produced the optimal solution). MIO is typically slower than the

state-of-the-art LKH3, but catches up in large problem instances;

overall, MIO’s running times are satisfactory for our requirements.

As we show later in Section 4.4, MIO beats LKH3 in more complex

settings with traffic, which is what we really care about.

4.3 The significance of traffic
The Dumas and da Silva & Urrutia datasets are useful for testing

TSP algorithms under the assumption of symmetric and static

travel times. However, in order to examine the performance of

different algorithms under traffic conditions, we have created our

own dataset. We describe below its main characteristics.

The physical locations of waypoints are selected randomly from

a set of cities in Washington, USA. Traffic data is obtained from

our own service (see Section 3.1), and can be used for testing other

algorithms as well. Waypoints have an average time-window ofTw
and average dwell-time of Td (both in minutes), where Tw and Td
are configurable parameters; in the bulk of the experiments, we use

Tw = 560 and Td = 5. We created a total of 70 instances with the

above characteristics, with the number of waypoints ranging from

20 to 140. We henceforth refer to this dataset as Traffic-1.
Before comparing the performance of the different algorithms

in traffic conditions, we first wish to examine the significance

of accounting for traffic. To that end, we run MIO with traffic

predictions, and compare the results to settings where we replace

the traffic predictions with static travel times. In particular, we

perform separate comparisons with two variants of traffic-agnostic

settings: (i) Free-Flow (FF) – using the traffic-free travel times

(which lower bound the real travel-times); (ii) Maximum travel time

(MaxT) – using the maximum travel-times during the day (which

upper bound the real travel times). For simplicity, we perform the

experiments for one agent with a shift length of 14 hours.

Running MIO with FF conditions might actually schedule a way-

point that violates its time-window “in practice”, that is, the agent

would arrive late when considering the predicted traffic. When such

a violation occurs, we consider that underlying waypoint “dropped"

(i.e., unfulfilled).

Table 5 summarizes the results for Traffic-1. Since most of the

connections between cities in Washington state pass through rural
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areas or highways, the variability in travel times is not large (up to

6% between average and maximum travel time). Still, the percent of

drops is non-negligible (up to 8.7 percent depending on the number

of waypoints).

#WP FF(#) Avg #drops Avg drop % Max drop %
21 20.8 0.2 1.0% 5.0%

41 38.8 1.4 3.7% 7.9%

61 48.3 2.9 6.0% 8.3%

81 57.1 2.8 4.9% 8.5%

101 61.9 2.8 4.6% 6.5%

121 67.0 2.7 4.0% 6.0%

141 67.7 4.8 7.0% 8.7%

Table 5: Drop statistics for Traffic-1 under the FF setting,
where travel-times have relatively low variability. FF(#)
represents the average number of waypoints that are
planned to be fulfilled by the agent (some would have to be
dropped due to time-window violations).

To further understand the effect of using optimistic travel times,

we repeated the above experiments (FF setting) on a dataset (80

instances) with waypoints corresponding to an urban area around

Seattle. Naturally, the travel time variability here is higher (up to

30% between average and max). We also decreased the average

time window to five hours (Tw = 300). We refer to this dataset as

Traffic-2. The results are summarized in Table 6. We observe up to

38% of dropped waypoints, which would be unacceptable in many

logistics contexts.

#WP FF(#) Avg #drops Avg drop % Max drop %
21 17.6 2.0 11.7% 28.6%

41 28.1 5.3 18.9% 25.0%

61 33.4 7.9 24.2% 38.5%

81 39.5 8.3 21.2% 31.4%

Table 6: Drop statistics for Traffic-2 with the FF setting;
where travel-times have high variability. FF(#) represents
the average number of waypoints that are supposed to be
reached by the agent.

To conclude this subsection, we examine the consequences of

using the maximum travel times instead of traffic predictions (MaxT

setting). Here, the scheduled waypoints will never violate their

time-window because we use conservative estimates for travel time.

However, the issue now is that a schedule that accounts for the

true travel times can visit more waypoints; in service contexts, that

corresponds to performing more work. The results on the Traffic-2
dataset are shown in Table 7. We observe that using conservative

travel times instead of predicted traffic results in up to 17% less

visited waypoints.

#WP MIO(#) MaxT(#) Avg Gain Max Gain
21 19.0 18.6 1.9% 10.5%

41 31.0 28.7 8.1% 11.5%

61 37.2 34.4 8.4% 13.3%

81 43.3 39.3 10.5% 16.7%

Table 7: Fulfillment statistics for the MaxT setting; in these
experiments travel-times have high variability. MIO(#) and
MaxT(#) represents the average number of waypoints that
are fulfilled when running with traffic prediction and in the
MaxT setting, respectively.

In summary, we have showed here that being agnostic to traf-

fic may result in substantial business consequences – either not

satisfying scheduled work (FF) or doing less work than possible

(MaxT).

4.4 Experiments with traffic
Our last set of experiments compares the different algorithms

under traffic conditions. Before presenting our results, we briefly

describe some adjustments we had to make for the MIP and LKH3

approaches, to accommodate traffic. For the MIP, the direct formula-

tion (described in Section 3.2.1) does not scale with traffic. Thus, we

have used instead the linear relaxation approach described in Sec-

tion 4.1; and use a time-limit of ten minutes. LKH3 does not support

time-dependent travel time. Consequently, to avoid time-window

violations, we had to use the maximum travel times between any

two locations. Furthermore, since LKH3 does not support dwell

times, we incorporated the dwell time at each destination into the

travel time away from the waypoint.

In our experiments, we use the Traffic-1 dataset (Section 4.3).

The results for a single agent are summarized in Table 8. The MIP

running-time has been omitted, since for every instance, it reached

its time-limit of 600 seconds. We observe that MIO is the best

algorithm in terms of both running time and quality of the solution

(number of waypoints).

#WP LKH3(#) MIO(#) MIP(#) LKH3(s) MIO(s)
21 21.0 21.0 21.0 1.87 2.28

41 39.9 39.9 39.4 30.27 7.93

61 41.4 49.9 47.5 43.62 21.31

81 53.6 58.2 53.9 68.62 43.21

101 57.5 61.9 55.8 86.97 59.40

121 42.8 67.0 58.4 93.30 71.40

141 43.8 69.7 59.7 108.78 83.40

Table 8: Comparisons of quality and performance on
instances with traffic (single agent). We use the notation
Alg(s) for the average running time of Alg (in sec), andAlg(#)
for the average number of visited waypoints.

We conclude our experiments by evaluating multiple agents. As

we have already established the superiority of MIO with traffic, we

will focus on its performance as a function of the number of agents

and waypoints. Our setup for multi-agent experiments is as follows.

The agents are “symmetric”, that is, they start and end their shift at
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the same single location (e.g., a depot or hub), and have the same

shift length. We use the Traffic-1 dataset for waypoints, which are

shared between the agents. That is, to satisfy a waypoint, only one

of the agents must visit and remain for the corresponding dwell

time.

As a first proxy to the quality of solution, we expect that more

waypoints would be fulfilled as the number of agents increases. This

is indeed verified in Table 9. Note that increasing the number of

agents does not necessarily lead to fulfilling all the waypoints. This

is because there are some waypoints which are not reachable by

the shift time constraint. In other words, depending on the instance

size, we reach a saturation point where additional agents are not

useful with respect to waypoint satisfaction (e.g., eight agents for

141 waypoints).

AGT #21 #41 #61 #81 #101 #121 #141
1 0.0 1.1 19.6 27.4 43.5 78.2 97.2

2 0.0 0.0 1.1 7.8 18.9 31.7 49.2

4 0.0 0.0 0.2 0.1 0.7 5.8 14.0

6 0.0 0.0 0.2 0.1 0.1 0.9 1.8

8 0.0 0.0 0.2 0.1 0.1 0.7 0.6

10 0.0 0.0 0.2 0.1 0.1 0.7 0.6

12 0.0 0.0 0.2 0.1 0.1 0.7 0.6

Table 9: Multi-agent experiments on the Traffic-1 dataset.
For each number of agents (AGT) and waypoint combina-
tion, we show the average number of unfulfilled waypoints.

As part of our quality study, it is interesting to observe what

happens with other metrics of interest when we reach a saturation

point in terms of waypoint fulfillment. In Table 10, we zoom in

on the larger instances and report the total travel-time, which is

an important measure for system cost. Observe that the average

decreases with the number of agents, demonstrating that MIO can

find more efficient routes even when no additional waypoints can

be visited.

AGT #121(min) #141(min)
8 1723.1 2035.0

10 1696.5 1983.2

12 1692.5 1925.3

Table 10: Total travel-time averages (in minutes) as a
function of the number of agents (AGT) and instance size.

We conclude this section by examining the running times for

the above experiments. One may expect the running time would

be impacted as the number of agents increase. However, the results

in Table 11 indicate that the dominant factor is the problem size

(number of waypoints). In fact, theworst running times are obtained

for the largest instances (141 items) with a single agent. This can be

explained by recalling that this combination is worst with respect

to fulfilled waypoints (See Table 9) which result in challenging

conditions for the optimization. The fact that running time is

not affected by a larger number of agents is yet another positive

indication for the applicability and scalbility of MIO.

AGT #21 #41 #61 #81 #101 #121 #141
1 1.8 7.9 21.3 43.2 59.4 71.4 183.4

2 1.8 7.8 17.2 32.5 49.8 69.4 83.4

4 1.8 5.0 10.3 19.2 32.1 50.4 73.2

6 2.1 4.8 8.4 14.3 23.5 36.8 55.0

8 2.3 5.1 8.2 13.2 19.7 29.1 42.1

10 2.7 5.6 8.8 13.1 18.9 27.0 36.2

12 3.2 6.4 9.8 13.6 18.9 25.2 33.3

Table 11: Running time averages (in seconds) for multiple
agents for different instance sizes.

5 RELATEDWORK
Scope. Most literature relating to NP-hard vehicle routing problems

(VRP) makes the assumption that the travel time between locations

is given as input [24, 28, 30]. Often these problems have a fixed set

of locations (i.e., the distance matrix can be cached), but in general,

the effort to optimize the VRP is so significantly difficult that the

shortest-path travel time calculations are ignored. We in contrast

pay close attention not only to the route optimization, but also

to the efficient calculation of travel times. Our system provides a

complete end-to-end service that supports waypoints anywhere

across the globe, and aims to give a high-quality solution within a

very short time frame. Inside our service we have implemented the

necessary distance calculations between locations. Importantly, we

incorporate traffic, which is by itself algorithmically non-trivial.

Related commercial products. As an enterprise cloud service, MIO

can be compared to other commercial offerings, such as Microsoft

Dynamics 365 for Field Service (Resource Scheduling Optimization)

[2], Routific Routing Engine [6], Google Maps Directions [5], and

TomTom Routing [7]. Such commercial offerings typically do not

make public the details of the algorithms, and/or use some algo-

rithmic components as black box (e.g., the travel-time calculations).

To the best of our knowledge, this paper is the first to report the

full algorithmic details of an end-to-end cloud service that supports

traffic-aware itineraries for multiple agents.

Time-dependent shortest-path. For an overview of query accelera-

tion techniques for time-dependent shortest path algorithms we

refer to [14]. An approach similar to our traffic matrix algorithm,

[19] also uses contraction hierarchies with a modified Dijkstra

to calculate time-dependent shortest travel for a single origin to

multiple destinations.

The technician routing and scheduling problem (TRSP). Asmentioned

in Section 3.2, MIO solves the TRSP, which is often considered an

extension to the vehicle routing problem – the key difference being

the dwell time at each location, which can be different for each

agent (i.e., based on skill/experience). Initially TRSP[16] was based

on a real problem in a telecommunications company, assigning

tasks to teams of technicians and matching skill requirements /

levels. This paper was popularized as part of a 2007 challenge set by

the French Operation Research Society [1]. Although this inspired
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many papers, none considered the routing aspect to the problem,

including [11] which used an ALNS based approach.

ALNS was introduced in [27] where it was described as a general

purpose approach for solving vehicle routing problems (i.e., with

time windows, capacity, multi-depot, etc). It has since been used in

many papers, including several directly solving the TRSP [23, 26].

In the literature, the TRSP has been extended even further by

considering uncertainty in service and travel times [17, 25, 29],

and experience-based learning [10]. In practice, [31] describes how

they successfully combined GIS with TRSP (distance matrix created

using ESRI products) and solving a tabu based heuristic.

6 CONCLUSION
In this paper, we describe Multi-Itinerary Optimization (MIO) – a

Bing Maps service that has been recently released worldwide. MIO

gets as input a list of agents with start/end times and locations,

and desired waypoints with time-windows and dwell time. In turn,

MIO outputs a schedule for each agent. MIO builds on a hierarchy

of algorithms, including shortest-path mechanisms for travel-time

calculation and a carefully designed heuristic for route optimization.

Importantly, our algorithms account for traffic predictions, which
are significant especially for logistics scenarios in urban areas.

Our experiments show that MIO achieves a sweet point between

accuracy and performance – it produces near-optimal schedules

with running time significantly better than both a state-of-the-

art heuristic (LKH) and a rigorous Integer-Programming based

approach.

We see MIO as an attractive tool that can be used to automate

relevant logistics operations of numerous businesses and organiza-

tions. We are planning to extend the scope of MIO; future directions

include incorporating capacity constraints for vehicles, supporting

pickup and delivery scenarios, and more generally, settings where

there is a dependency between tasks.
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