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ABSTRACT
Speech quality, as perceived by humans, is an important perfor-
mance metric for telephony and voice services. It is typically mea-
sured through subjective listening tests, which can be tedious and
expensive. Algorithms such as PESQ and POLQA serve as a com-
putational proxy for subjective listening tests. Here we propose us-
ing a convolutional neural network to predict the perceived qual-
ity of speech with noise, reverberation, and distortions, both intru-
sively and non-intrusively, i.e., with and without a clean reference
signal. The network model is trained and evaluated on a corpus of
about ten thousand utterances labeled by human listeners to derive
a Mean Opinion Score (MOS) for each utterance. It is shown to
provide more accurate MOS estimates than existing speech quality
metrics, including PESQ and POLQA. The proposed method re-
duces the root mean squared error from 0.48 to 0.35 MOS points
and increases the Pearson correlation from 0.78 to 0.89 compared
to the state-of-the-art POLQA algorithm.

Index Terms— Speech quality, mean opinion score, PESQ,
POLQA

1. INTRODUCTION

In communication systems the speech signal is affected by the noise
and reverberation in the transmitting room. Most systems use some
form of speech enhancement algorithms, including noise reduction,
echo cancellation, and de-reverberation. While these algorithms
aim primarily at enhancing the speech signal, they may introduce
distortions. Compressing and transmitting the speech signal may
cause additional artifacts. The resulting combination of noise, re-
verberation, distortions and artifacts affects the perceived speech
quality. Numerical methods for evaluating speech quality, includ-
ing the mean squared error (MSE), signal-to-noise ratio (SNR) or
the signal-to-distortion ratio (SDR), provide a quantitative metric
for the reproduction error, but may not correlate well with human
perception of speech quality [1].

The Telecommunication Standardization Sector of the Interna-
tional Telecommunication Union (ITU-T) standardized the percep-
tual evaluation of speech quality in its Recommendation P.800, in-
troducing the mean opinion score (MOS) [2]. A MOS is obtained
by asking listeners to evaluate the quality of an audio signal on
a scale from one to five and subsequently averaging their scores.
This method is slow and expensive and the research community de-
signed several approaches for automating these tests and to serve
as computational proxies for MOS listening tests. In non-intrusive
approaches the signal processing algorithm uses only the contami-
nated signal for evaluation of sound quality, similarly to human lis-
teners. An example is 3SQM, ITU-T Recommendation P.563 [3].

Intrusive methods calculate a perceptually weighted distance be-
tween the clean reference and the contaminated signal to estimate
perceived sound quality. Intrusive methods are considered more ac-
curate as they provide a higher correlation with subjective evalua-
tions. Representative of this approach is the Perceptual Evaluation
of Speech Quality (PESQ), ITU-T Recommendation P.862 [4,5]. In
2005, an extension to ITU-T Recommendation P.862 was proposed
due to the advent of wideband telephone services [6, 7]. In 2011,
ITU-T Recommendation P.863 introduced the Perceptual Objective
Listening Quality Assessment (POLQA) as an update to PESQ to
address super-wideband speech services [7, 8].

One common problem of standardized objective algorithms is
that they may become obsolete with the emergence of new scenar-
ios, e.g., far field sound capture, new audio compression algorithms,
and new speech enhancement models and artifacts. The advances
of deep neural networks and their applications in signal process-
ing pave the way to derive objective quality evaluation models that
are both accurate and rapidly re-trainable. Prior art includes us-
ing a neural network to predict the effect of compression and trans-
mission artifacts on conversational quality [9], using tree-based re-
gression for non-intrusive estimation of speech quality and intel-
ligibility [10], and using a fully connected network to blindly es-
timate the speech transmission index [11]. Here we build on our
work on non-intrusive speech quality estimation [12] and propose
a convolutional neural network (CNN) to evaluate the perceptual
quality of noisy, reverberant speech samples both intrusively and
non-intrusively. Results indicate that for the tested scenarios, the
proposed method outperforms existing quality metrics, including
PESQ with wideband extension and POLQA.

2. DATA GENERATION AND SUBJECTIVE RATING

The data generation and labeling procedure is outlined in [12]. We
use a corpus of 2010 clean speech samples with an equal distri-
bution of male, female, and child voices and a sampling rate of
16 kHz. Each sample is approximately 20 seconds long and consists
of three utterances. The samples are normalized to −23 dB FS, be-
fore applying a random Gaussian gain with a standard deviation of
8 dB to simulate different talker levels. To simulate reverberation,
each clean sample is convolved with a single-microphone room im-
pulse response (RIR) drawn randomly from a library of 120 RIRs
with reverberation times between 300 and 500 ms and source-to-
microphone distances between 0.5 and 3 meters. Some anechoic
and close-talk samples were included in the data corpus as well.
Ambient recordings of office, home and other environments serve
as additive noise for the reverberant speech samples. A randomly
selected noise recording is normalized to −43 dB FS before apply-
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Figure 1: Regression tree of questionnaire responses as predictors
of perceived quality judgments. Each leaf node indicates the MOS
calculated as the average of all judgments in that node.

ing a random Gaussian gain with a standard deviation of 15 dB. The
resulting signal-to-noise ratio (SNR) is limited to [0, 50] dB.

The data corpus totals approximately 10 000 noisy, reverberant
samples. Half of these are post-processed with a proprietary noise
suppressor and automatic gain control, to account for the effects a
speech processing pipeline may have on the perceived quality. All
samples were rated subjectively by human judges on a discrete scale
from 1 (lowest perceived quality) to 5 (highest perceived quality)
according to ITU-T Recommendation P.800 [2]. The ratings of ten
judges were averaged to derive the mean-opinion score (MOS) for
each sample. A crowd-sourcing platform was used to recruit a total
of 654 judges providing on average about 150 ratings each. The
judges went through a training phase to familiarize themselves with
the types of artifacts present in the data. To eliminate potentially
unreliable judges, which may be a bigger concern in crowd-sourced
experiments than in laboratory settings [13], a qualification step was
used [12]. The judges listened to the samples either via loudspeak-
ers or diotically via headphones.

While the crowd-sourced online labeling process might mimic
a more practical listening scenario than a controlled lab experiment,
it introduces unknowns, including the level of audio expertise of the
judges and the playback setup they use. To better understand what
variables might affect the individual judgments, the judges were
asked to answer the following multiple choice questions along with
their subjective ratings:

• Which device are you using?

• Headphones
• Speakers

• Which impairments did you hear?

• I heard reverb in the call
• Speech was not natural or sounded distorted
• I heard noise in the call
• No impairments
• Volume was low
• I could not hear any sound

Judgments that were marked with “I could not hear any sound”
were removed from further processing. We performed a regression
tree analysis [14] to predict the average perceptual ratings using the
multiple choice answers as covariates. Fig. 1 illustrates the result-
ing regression tree. As can be seen, the analysis did not find the
type of playback device to be a determinant affecting the subjective
ratings. As expected, samples marked with ”No impairments” re-
ceived very high average ratings. Samples marked with ”Volume
was low”, on the other hand, were rated especially poorly, indicat-
ing that the loudness of the speech was an important predictor for
perceived quality. Note that while judges were free to choose their
preferred playback level at the start of the experiment, they were
instructed to keep the level constant for all ratings. “Not natural”
sounding samples were rated poorly as well, perhaps indicating that
judges used this choice as a “catch-all” for various types of dis-
tortions or artifacts. Interestingly, the average rating for samples
marked as having impairments but without further markings of spe-
cific types of impairments is 3.5, which corresponds to the average
MOS of the entire data set. This might suggest that judges were
on average satisfied with the speech quality of the samples, while
also indicating that many contained certain “impairments” that they
could not identify or that were not available among the choices pro-
vided.

3. MOS ESTIMATION USING A NEURAL NETWORK

We use a convolutional neural network to estimate the mean-
opinion score (MOS) of speech samples with noise, reverberation
and distortions.

3.1. Features

The audio signals are processed in frames of 512 samples with a
hop size of 160 samples. For each frame exceeding a voice activ-
ity threshold, we extract pitch, voice activity, frame energy, and 26
Mel-frequency coefficients, as well as their deltas, for a total of 58
features per frame. Combining the features of the 12 preceding and
succeeding frames for both the clean reference signal and the noisy,
reverberant test signal yields a feature matrix of size 2 × 25 × 58
per frame.

3.2. Neural network architecture

The spectro-temporal nature of the input features is well-suited for a
convolutional neural network (CNN). The proposed architecture is
shown in Fig. 2. It consists of four convolutional layers with batch
normalization and a kernel size of 2×2, followed by two fully con-
nected layers with a dropout rate of 0.5 and 128 hidden units. The
first two CNN layers are followed by max-pooling layers. Their re-
spective kernel sizes and strides are 1 × 3 and (1, 2) for the first
layer, and 3× 3 and (2, 2) for the second layer. Rectified linear unit
(ReLU) activation is used throughout the network. The network pa-
rameters were obtained experimentally via a non-exhaustive search.
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Figure 2: CNN network architecture.
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Figure 3: Confusion matrix for (a) PESQ and (b) PESQ after 3rd-
order polynomial re-mapping.
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Figure 4: Confusion matrix for (a) POLQA and (b) POLQA after
3rd-order polynomial re-mapping.

4. EXPERIMENTAL EVALUATION

We evaluated the proposed MOS estimator using the data corpus
described in Section 2. The feature extraction (see Section 3.1) re-
sulted in a total of 5 420 457 feature frames. The data were split by
utterances into 70% for training, 15% for validation, and 15% for
testing. The network was implemented using the Microsoft Cog-
nitive Toolkit (CNTK) [15]. We formulated the estimation as a re-
gression problem, using a squared error loss function with stochas-
tic optimization [16] and a learning rate of 0.0004. The mean and
variance of the input features was normalized using estimates de-
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Figure 5: Confusion matrix for the proposed method: (a) non-
intrusive CNN, (b) intrusive CNN.

rived from the training set. The network was trained on minibatches
of 5000 samples over a total of 500 epochs on a cluster of four
GPUs. We explored various strategies for deriving utterance-level
estimates from the frame-level output of the network, including tak-
ing the mean and median of the frame-level estimates, as well as us-
ing a long short-term memory (LSTM) output layer. The best results
were achieved by training a classifier to aggregate the frame-level
estimates [17].

To compare the performance of intrusive and non-intrusive
speech quality estimation, the CNN was trained intrusively on all
available data and non-intrusively by discarding the features of the
reference signal, i.e., using feature matrices of size 1× 25× 58 as
input to the network (see Section 3.1). Note that the human judges
were not presented with a reference signal, i.e., they judged the
speech quality non-intrusively. As evaluation parameters we chose
the root-mean-squared error (RMSE) and Pearson’s correlation co-
efficient, ρ [18].

Several objective metrics were calculated for all utterances in
the data corpus as a baseline. Fig. 3a illustrates the performance
of PESQ with wideband extension as a MOS estimator. For our
test utterances, PESQ produces much lower scores than human
judges, which points to a mismatch between the assumptions un-
derlying PESQ and the type of distortions present in our data.
Fig. 4a presents the results for POLQA, which exhibits similar be-
haviour to PESQ, likewise underestimating the MOS. ITU-T Rec-
ommendation P.862 suggests applying a 3rd-order polynomial to
map from PESQ scores to subjective ratings in the case of mis-
matches [4, 5, 18]. Fig. 3b and Fig. 4b show the confusion matri-
ces between PESQ and POLQA scores and MOS after applying a
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Table 1: Utterance-level results for predicting PESQ.

Model RMSE ρ

Non-intrusive, CNN + ELM 0.1656 0.9727
Intrusive, CNN + ELM 0.1378 0.9809
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Figure 6: MOS estimation error distribution for P.563 [3],
SRMR [19], POLQA [8], PESQ [4], and the proposed CNN+ELM
model. Figure adapted from [20].

3rd-order polynomial mapping derived from the test data. For both
metrics this mapping seems to improve performance substantially.

The CNN estimates MOS and PESQ jointly by minimizing the
sum of their squared errors. PESQ was estimated to ensure that
the proposed CNN has sufficient capacity to reproduce a determin-
istic model like PESQ. Table 1 summarizes the results for predict-
ing PESQ. Interestingly, even the non-intrusive model achieved a
relatively low RMSE of 0.1656, and a correlation coefficient of
ρ = 0.9727, despite the fact that PESQ is an intrusive metric.
The intrusive CNN model performed better still, with an RMSE of
0.1378 and ρ = 0.9809.

The MOS estimation results for the test data using the pro-
posed CNN are shown in Fig. 5. Both the non-intrusive (Fig. 5a)
and intrusive (Fig. 5b) approaches show better correlation with the
ground truth than the MOS estimation based on PESQ (cf. Fig. 3)
and POLQA (cf. Fig. 4), indicating that the proposed approach of-
fers a better estimate of perceived speech quality for the conditions
contained in the test corpus.

Fig. 6 illustrates error ranges for various existing objective qual-
ity metrics as well as the proposed CNN estimators. For the pro-
posed approach, close to 100% of estimates fall within an absolute
error of approximately 1. PESQ and POLQA obtain acceptable re-
sults after re-mapping the raw scores to the ground truth MOS val-
ues.

Table 2 summarizes the MOS estimation results in terms of
the RMSE and the Pearson correlation coefficient, ρ. For com-
parison, the results for an individual human judge are estimated
by comparing the judgments of each judge to the MOS calculated
excluding that respective judge. As can be seen, the individual
judgments are relatively noisy when compared to the MOS, with
an RMSE of about 1 MOS and a correlation factor just above
0.5. In terms of RMSE, individual judges performed worse than
a dummy judge that simply outputs 3.53, i.e., the mean MOS of
the test set. Existing objective metrics perform relatively poorly

Table 2: Utterance-level results for predicting MOS.

Model RMSE ρ

Individual human judge 1.0304 0.5344
Dummy judge (MOS = 3.53) 0.7734 0
P.563 [3] 1.9069 0.3658
P.563, 3rd-order mapping 0.7165 0.3765
SRMR [19] 1.6273 0.6237
SRMR, 3rd-order mapping 0.6011 0.6292
POLQA [8] 1.6306 0.7247
POLQA, 3rd-order mapping 0.4986 0.7644
PESQ [4] 1.3118 0.7441
PESQ, 3rd-order mapping 0.4816 0.7824
Non-intrusive, MLP + ELM [12] 0.3878 0.8668
Non-intrusive, CNN + ELM [proposed] 0.3742 0.8792
Intrusive, CNN + ELM [proposed] 0.3546 0.8904

∗

+

∗p < 0.0001, +p >= 0.05

on our data set in terms of RMSE, except for PESQ and POLQA
scores after 3rd-order polynomial re-mapping [4, 8]. It should be
noted that PESQ is not intended to evaluate distortions due to noise
reduction algorithms [4]. The proposed CNN achieves the high-
est performance in terms of both RMSE and the correlation with
the ground-truth MOS, slightly outperforming the previously pro-
posed MLP-based architecture [12]. A statistical significance test
for comparing correlation coefficients, as outlined in ITU-T Recom-
mendation P.1401 [18], indicates that the correlation coefficients of
PESQ after 3rd-order mapping, ρ = 0.7824, and the non-intrusive
MOS estimation proposed here, ρ = 0.8792 are statistically sig-
nificantly different (N = 1499, p < 0.0001). Intrusive estima-
tion seems to outperform the non-intrusive approach, albeit only
marginally, perhaps due to the fact that the human judges oper-
ated non-intrusively. A statistical significance test [18] does not
indicate a statistically significant difference between the correla-
tion coefficients of the proposed intrusive and non-intrusive meth-
ods (N = 1499, p = 0.1580).

We hypothesize that further performance gains could be
achieved by using more training data to train a more powerful model
and additional human judges to stabilize the ground truth MOS es-
timates.

5. CONCLUSION

We propose a convolutional neural network (CNN) for estimating
the perceptual quality of speech in noise and reverberation emulat-
ing practical telephony and voice scenarios. A comparison with
existing objective metrics illustrates their potential shortcomings
when tested on our data set. The proposed CNN is shown to es-
timate the mean opinion score (MOS) successfully both intrusively
and non-intrusively. For our data set, the proposed model achieves
a root-mean-squared estimation error of less than 0.4, and a Pear-
son correlation coefficient of 0.89, thus outperforming PESQ and
POLQA, both of which operate intrusively. A comparison with al-
ternative metrics, including PEMO-Q [21] and HASQI [22], as well
as an analysis of the proposed model’s ability to generalize to un-
seen types of speech distortion is left for future work.
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