
Microsoft MakeCode
Embedded Programming for Education, in Blocks and TypeScript

Thomas Ball
Microsoft Research

Redmond, WA, United States
tball@microsoft.com

Abhijith Chatra
Microsoft

Redmond, WA, United States
abchatra@microsoft.com

Peli de Halleux
Microsoft Research

Redmond, WA, United States
jhalleux@microsoft.com

Steve Hodges
Microsoft Research

Cambridge, United Kingdom
sehodges@microsoft.com

Michał Moskal
Microsoft Research

Redmond, WA, United States
mimoskal@microsoft.com

Jacqueline Russell
Microsoft

Redmond, WA, United States
jacqueline.russell@microsoft.com

Abstract
Microsoft MakeCode (https://www.makecode.com) is a plat-
form and accompanying web app for simplifying the pro-
gramming of microcontroller-based devices in the classroom.
For each device, MakeCode provides a customized end-to-
end experience in the web browser consisting of code editors,
device simulator, debugger, compiler to machine code, and
linker to a pre-compiled C++ runtime, as well as a docu-
mentation and tutorial system. We present an overview of
MakeCode and detail the major design decisions behind the
platform.

CCSConcepts • Social andprofessional topics→Com-
puting education;K-12 education; •Computer systems
organization → Embedded software.

Keywords CS education,microcontrollers, TypeScript, Java-
Script, Blockly

ACM Reference Format:
Thomas Ball, Abhijith Chatra, Peli de Halleux, Steve Hodges, Michał
Moskal, and Jacqueline Russell. 2019. Microsoft MakeCode: Embed-
ded Programming for Education, in Blocks and TypeScript. In Pro-
ceedings of the 2019 ACM SIGPLAN SPLASH-E Symposium (SPLASH-
E ’19), October 25, 2019, Athens, Greece. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3358711.3361630

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SPLASH-E ’19, October 25, 2019, Athens, Greece
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6989-3/19/10. . . $15.00
https://doi.org/10.1145/3358711.3361630

(a) (b)

Figure 1. TwoCortex-M0microcontroller-based educational
devices: (a) the BBC micro:bit; (b) Adafruit’s Circuit Play-
ground Express

1 Introduction
Microsoft MakeCode (https://www.makecode.com) is a plat-
form and accompanying web app for simplifying the pro-
gramming of microcontroller-based devices in the class-
room. [5] For each device, MakeCode provides a customized
end-to-end experience in the web browser consisting of code
editors, device simulator, debugger, compiler to machine
code, and linker to a pre-compiled C++ runtime, as well as a
documentation and tutorial system.
The BBC micro:bit (see Figure 1(a)) is one example of a

physical computing device that MakeCode supports [1]. The
micro:bit has several user-programmable buttons, a 5x5 LED
display, various sensors, Bluetooth Low Energy (BLE) radio
technology, and an edge connector for expandability. The
micro:bit was introduced in the UK in 2015 to all year-7
students (age 10-11) in support of the government’s mandate
to provide CS education for all grades. Since the fall of 2016,
the micro:bit is a global effort spearheaded by the micro:bit
Education Foundation (https://microbit.org), with several
million units distributedworldwide to date. Figure 1(b) shows
another device supported by MakeCode: Adafruit’s Circuit
Playground Express (CPX).
Figure 2 shows the MakeCode web app for the micro:bit

(available at https://makecode.microbit.org), which consists
of five main sections: (A) menu bar with toggle between

7

https://www.makecode.com
https://doi.org/10.1145/3358711.3361630
https://doi.org/10.1145/3358711.3361630
https://www.makecode.com
https://microbit.org
https://makecode.microbit.org

SPLASH-E ’19, October 25, 2019, Athens, Greece Thomas Ball, Abhijith Chatra, Peli de Halleux, Steve Hodges, Michał Moskal, and Jacqueline Russell

Figure 2. MakeCode web app for the BBC micro:bit

Block and TypeScript editors; (B) a toolbox of API categories;
(C) a programming editor (Blockly); (D) a micro:bit simulator
that allows testing of the user program without a device; (E)
a download button that invokes the compiler to produce a
machine-code executable. The simple program shown in the
editor consists of three event handlers that display different
icons on the LED screen when buttons A or B are pressed and
clears the screen when the accelerometer on the micro:bit
detects shaking.
MakeCode is implemented in TypeScript (https://www.

typescriptlang.org) and provides a subset of TypeScript (re-
ferred to as Static TypeScript or STS, for short [2]) for end-
user programming, and an even smaller language subset
available via Blockly. Automated translation between Blockly
and STS allows the user to switch editing paradigms (though
not every STS construct, such as classes, is editable in Blockly).
STS is compiled into an intermediate representation (IR) sup-
ported by two backends: the first converts the IR into a
continuation-passing form of JavaScript that allows simula-
tion of non-preemptive multi-threading in a single-threaded
JavaScript runtime; the second compiles the IR to ARM as-
sembler and then to machine code. There are two ways to
install the compiled program onto the micro:bit: first, the
executable can be copied to the micro:bit when it is plugged
into the computer over USB (where it masquerades as a file
system); second, the executable can be flashed over the air
via Bluetooth.

Recently, we have added MakeCode Arcade for program-
ming retro-styled video games (https://arcade.makecode.
com). For the first time, instead of creating an editor for
existing hardware, we have published a hardware specifi-
cation and seen a number of companies building devices
compatible with Arcade (see Figure 3). Arcade allows users
to express themselves at a variety of levels, from customizing
sprites using the built-in pixel editor, all to way to building
custom AI for controlling opponents in a game. Arcade is
made possible by the high performance of the generated
machine code, resulting in smooth game play on such con-
strained devices.

Figure 3. Various devices compatible with MakeCode Ar-
cade.

The entire MakeCode platform is open source under MIT
license.1 More information about MakeCode can be found at
https://makecode.com/blog.

2 Design Choices
This section describes some of the major design choices
behind MakeCode.

2.1 Web App and UF2
Any requirement to install applications or device drivers on
school computers is a significant barrier to adoption as most
such computers are locked down. Furthermore, early trials in
UK schools with the BBCmicro:bit showed that relying on an
internet service for compilation led to unacceptable failures
due to spotty network connectivity. Finally, the diversity of
school computers, which now includes a substantial number
of Chromebooks means that the only software in common
across platforms is the modern web browser. For all these
reasons, we chose to implement the entire MakeCode experi-
ence as web app. Once the web app has loaded into browser,
it remains resident and operational (even if the browser is
closed and reopened, or network connectivity is lost).
This leaves the question of how to get the binary exe-

cutable file from the computer to the device. For this, we
designed a new file format called UF2 (https://github.com/
Microsoft/uf2) for flashing microcontrollers. UF2 leverages
the USB MSC (mass storage class) used by removable USB

1See https://github.com/microsoft/pxt

8

https://www.typescriptlang.org
https://www.typescriptlang.org
https://arcade.makecode.com
https://arcade.makecode.com
https://makecode.com/blog
https://github.com/Microsoft/uf2
https://github.com/Microsoft/uf2
https://github.com/microsoft/pxt

Microsoft MakeCode SPLASH-E ’19, October 25, 2019, Athens, Greece

(a)

(b)

(c)

Figure 4. (a) Device APIs (in this case, showString) are
defined in TypeScript and comment metadata defines the
mapping to Blockly; (b) example Static TypeScript user code
with value for optional second parameter to showString
(c) example Blockly user code (second parameter not avail-
able).

flash drives, which is supported by all modern operating sys-
tems.2 This lowest-common denominator approach has been
successful but requires the user to perform a copy operation
after each compilation; with the advent of WebUSB, Make-
Code can perform the copy operation automatically once the
user has permitted the browser to access USB. Unfortunately,
not all web browsers support WebUSB yet.

2.2 Static TypeScript and Blockly
The choice of TypeScript was motivated by our experience
with using static types to provide better intellisense and code
hints in the TouchDevelop project [3]. All MakeCode device
APIs are strongly typed, which means that users can for
the most part code without types (essentially in JavaScript;
the editor is even labelled JavaScript for better recognition
among students and teachers). TypeScript’s type inference
engine determines the type of variables. As shown in Fig-
ure 4(a), MakeCode uses metadata in the comments associ-
ated with a device API (showString in this case) to make
that API available via Blockly (see Figure 4(c)): the types
of the API are used to automatically determine the kind of
block that will be generated. The return type for function
showString is void, which means that a Blockly “state-
ment” block is used rather than an “expression” block.
Going further, Static TypeScript (STS) eliminates most

of the “bad parts” of JavaScript; following StrongScript [6],
STS uses nominal typing for statically declared classes and

2 UF2 is used on CPX and Arcade boards. BBC micro:bit uses ARM DAPLink
software which also acts as MSC device, but uses a file format not optimized
for this purpose and requires a separate interface chip.

Figure 5. Sample Arcade games in Blocks and Static Type-
Script.

supports efficient compilation of classes using classic tech-
niques for v-tables. Thus, STS can be used to teach classic
object-oriented programming.

2.3 APIs
The design of APIs is a critical part of the MakeCode experi-
ence. APIs are segmented into categories (using TypeScript
namespaces), which are reflected into the toolbox categories
shown in the IDE (see Figure 2(B)). APIs are layered as fol-
lows: high-level event handlers allow a program to respond
to a device event (such as shaking, which is enabled by the
accelerometer sensor); polling APIs allow access to sensor
values (the X, Y, Z accelerometer values); while low-level
APIs such as I2C provide direct access to hardware compo-
nents.
Furthermore, via the API metadata, the block associated

with an API can have fewer parameters than available in
TypeScript, further simplifying the API. For example, Fig-
ure 4 shows that the API showString has two parameters,
where the second one is optional. The attribute block de-
fined by the first comment line defines that only the first
parameter (text) will appear in the block. The optional
parameter is giving a default value in a later comment.

9

SPLASH-E ’19, October 25, 2019, Athens, Greece Thomas Ball, Abhijith Chatra, Peli de Halleux, Steve Hodges, Michał Moskal, and Jacqueline Russell

2.4 Concurrency Model
The showString function for the micro:bit (shown in Fig-
ure 4) scrolls a message across the micro:bit screen, which
can take many seconds, depending on the length of the string.
During this time, the user may want to react to another event
(say a button press) and perform an action.

MakeCode supports this scenario through implicit non-
preemptive multi-threading. A function call can pause for a
given time, or wait for a specific event, which causes other
threads to execute. As in Scratch, only specific functions
(namely pause and wait-for-event) can yield to other threads,
making it simpler to reason about integrity of data and to
avoid races.
When executing in the browser this is achieved with a

custom compiler backend, which generates continuation-
passing-style JavaScript from the TypeScript source code.
Functions are transformed into big switch statements inside
of a while loop that facilitates control flow. Local variables
are placed in explicitly allocated objects representing stack
frames. This allows for suspension of execution of any func-
tion at calls to pause and wait-for-event. When the current
thread is suspended, other user threads are allowed to run.

When compiled in debugmode, potential suspension points
are additionally inserted before each statement to allow for
step-through and pausing on breakpoints. At all suspension
points, as well as on back-jumps the runtime may pause to
allow the browser to process events (in particular, user press-
ing "stop the simulator" button). Neither of these pauses,
however, allows other user threads to run.
All of these are similar to generic mechanisms imple-

mented in Stopify [4].
The C++ runtime has explicit support for events and

threads (called fibers), so the native compiler backend does
not do anything special in this area.

2.5 Documentation
The MakeCode documentation system uses markdown to
make it easy to create documents.3 It is: sustainable: all
Blockly images are rendered on the fly (from their Static
TypeScript textual equivalent) to avoid having to maintain
hundreds of screenshots (see Figure 6); localizable: the docu-
mentation is synchronized with the Crowdin platform and lo-
calized on the fly by the MakeCode cloud backend; reusable:
documentation pages can be shared across different Make-
Code editors and specialized per device; integrated: step-by-
step tutorials or sidebar-hosted documents allow surfacing
information within the editor without having to switch to a
different browser tab.

2.6 Sharing
MakeCode users can share their programs in a variety of
ways. First, the binary executable that MakeCode creates
3https://makecode.com/writing-docs

Figure 6. A sample documentation page as rendered, and
its source.

contains the source text of the user program. If the executable
is dragged into the MakeCode web app, the app will extract
the source text into the editor. Second, MakeCode can store
the user’s encrypted program in the cloud and generate a
URL (that contains the decryption key) to share with other
users.

10

https://makecode.com/writing-docs

Microsoft MakeCode SPLASH-E ’19, October 25, 2019, Athens, Greece

Figure 7. MakeCode editor for LEGO Mindstorms EV3
(https://makecode.mindstorms.com).

2.7 Extensibility
MakeCode supports the concept of an extension, a collection
of STS files that also can list other extensions as dependen-
cies. Third parties use extensions to extend the MakeCode
editors, mainly to support hardware peripherals.4 Due to the
efficiency of the STS compiled code and the availability of
low-level STS APIs for accessing hardware via digital/ana-
log pins (GPIO, PWM and servos) and serial protocols (I2C
and SPI), most extensions for hardware peripherals can be
implemented solely in STS, without recourse to the use of
C++ or assembly.

3 Other MakeCode Editors
In addition to the editors for the micro:bit, CPX and Arcade
devices, MakeCode has a number of other editors. We call
out two here for their distinctive features.

First, there is an editor for LEGOMindstorms EV3, a robot
construction system that features a programmable “brick”
to which can be attached a variety of motors and sensors.
A novel aspect of the MakeCode editor for EV3 is that the
simulator is automatically configured based on the program
the user has written. As shown in Figure 7, the program
instructs the EV3 brick to run/stop a large motor (attached to
the brick’s port A). MakeCode automatically configures the
simulator to show a large motor attached to port A. That is,
MakeCode ensures that the wiring of motors/sensors to the
brick is in sync with the program that the user has written.

Second, there is an editor for Minecraft, a game that allows
players to build with blocks in a 3D procedurally generated
world.5 This is our first editor not associated with a physical
device. In this case, the user’s program communicates to
Minecraft via a web socket and sends commands that can
query and update the state of the Minecraft virtual world.
The editor andMinecraft run in separate windows. Minecraft

4For example for micro:bit, see https://makecode.microbit.org/extensions
5https://makecode.minecraft.org

Education Edition incorporates the code editor inside the
Minecraft application itself.

4 Experience with MakeCode
Since its release in 2016, Microsoft MakeCode has been used
by educators around the world as an introductory platform
for physical computing. MakeCode is most often used at
the middle school level, where learners often have already
been exposed to block-based programming via tools like
Scratch, but have little to no experience with text-based
programming.
MakeCode serves as a bridge to take a student from the

familiar drag-and-drop coding paradigm into the less familiar
territory of typing code. With the ability to transition back
into blocks, as well as code snippets, intellisense, and error-
detection, MakeCode gives these new learners ’water wings’
as they venture into the deep end. More research is required
to evaluate if such a multi-mode editor approach is useful. [7]

Below are a few quotes from teachers and parents:

• “You guys have nailed the block to text transition,
which is probably one of the most fundamental diffi-
culties in teaching kids to code” – P. G. (Code Club
Teacher)

• “The concept of allowing our youth to discover their
creativity and passion is crucial to our future as a coun-
try and I don’t say that lightly. These tools, Make-
Code and MakeCode Arcade, in my opinion, can open
doors to creativity for our kids.” – G. S. (Middle School
Teacher)

• “Quick thank you note - My kids woke up at the crack
of dawn this morning, and the first thing they wanted
to do was pull out the micro:bit and get to work. My
kids have had a lot of exposure to block-based pro-
gramming, MaKey MaKey, microprocessors galore...
Yet, this is the most motivated I have seen them with
these micro:bits!” – M. H., Mother (Maker Faire at-
tendee)

For more examples of how educators are using MakeCode in
the classroom, see the videos at https://www.microsoft.com/
en-us/makecode/about.

Acknowledgements
We would like to thank current and former members of the
MakeCode product team: Sam El-Husseini, Caitlin Hennessy,
Guillaume Jenkins, Shannon Kao, Richard Knoll, and Daryl
Zuniga. We also express our gratitude to James Devine and
Joe Finney at Lancaster University, the authors of CODAL
used as a layer of our C++ runtime.

References
[1] Jonny Austin, Howard Baker, Thomas Ball, James Devine, Joe Finney,

Peli de Halleux, Steve Hodges, Michał Moskal, and Gareth Stockdale.

11

https://makecode.mindstorms.com
https://makecode.microbit.org/extensions
https://makecode.minecraft.org
https://www.microsoft.com/en-us/makecode/about
https://www.microsoft.com/en-us/makecode/about

SPLASH-E ’19, October 25, 2019, Athens, Greece Thomas Ball, Abhijith Chatra, Peli de Halleux, Steve Hodges, Michał Moskal, and Jacqueline Russell

2020. The BBC micro:bit – from the UK to the World. Commun. ACM
(to appear) (2020).

[2] Thomas Ball, Peli de Halleux, and Michał Moskal. 2019. Static Type-
Script: Static Compilation of Dynamic Languages for Embedded Sys-
tems. In Proceedings of the 16th ACM SIGPLAN International Conference
on Managed Programming Languages and Runtimes (MPLR ’19).

[3] Thomas Ball, Jonathan Protzenko, Judith Bishop, Michał Moskal,
Jonathan de Halleux, Michael Braun, Steve Hodges, and Clare Riley.
2016. Microsoft Touch Develop and the BBC Micro:Bit. In Proceedings
of the 38th International Conference on Software Engineering Companion
(ICSE ’16). 637–640.

[4] Samuel Baxter, Rachit Nigam, Joe Gibbs Politz, Shriram Krishnamurthi,
and Arjun Guha. 2018. Putting in all the stops: execution control for

JavaScript. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’19). 30–45.

[5] James Devine, Joe Finney, Peli de Halleux, Michał Moskal, Thomas Ball,
and Steve Hodges. 2018. MakeCode and CODAL: intuitive and efficient
embedded systems programming for education. In Proceedings of the
19th ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES ’18). 19–30.

[6] G. Richards, F. Z. Nardelli, and J. Vitek. 2015. Concrete Types for Type-
Script. In 29th European Conference on Object-Oriented Programming,
ECOOP 2015. 76–100. https://doi.org/10.4230/LIPIcs.ECOOP.2015.76

[7] David Weintrop and Uri Wilensky. 2017. Comparing Block-Based and
Text-Based Programming in High School Computer Science Classrooms.
TOCE 18, 1 (2017), 1–25.

12

https://doi.org/10.4230/LIPIcs.ECOOP.2015.76

	Abstract
	1 Introduction
	2 Design Choices
	2.1 Web App and UF2
	2.2 Static TypeScript and Blockly
	2.3 APIs
	2.4 Concurrency Model
	2.5 Documentation
	2.6 Sharing
	2.7 Extensibility

	3 Other MakeCode Editors
	4 Experience with MakeCode
	References

