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Abstract

In this paper, we study the prediction of a real-
valued target, such as a risk score or recidivism
rate, while guaranteeing a quantitative notion of
fairness with respect to a protected attribute such
as gender or race. We call this class of problems
fair regression. We propose general schemes for
fair regression under two notions of fairness: (1)
statistical parity, which asks that the prediction be
statistically independent of the protected attribute,
and (2) bounded group loss, which asks that the
prediction error restricted to any protected group
remain below some pre-determined level. While
we only study these two notions of fairness, our
schemes are applicable to arbitrary Lipschitz-
continuous losses, and so they encompass least-
squares regression, logistic regression, quantile
regression, and many other tasks. Our schemes
only require access to standard risk minimization
algorithms (such as standard classification or
least-squares regression) while providing theoret-
ical guarantees on the optimality and fairness of
the obtained solutions. In addition to analyzing
theoretical properties of our schemes, we empiri-
cally demonstrate their ability to uncover fairness–
accuracy frontiers on several standard datasets.

1. Introduction

As machine learning touches increasingly critical aspects
of our life, including education, healthcare, criminal justice
and lending, there is a growing focus to ensure that the algo-
rithms treat various subpopulations fairly (see, e.g., Barocas
& Selbst, 2016; Podesta et al., 2014; Corbett-Davies & Goel,
2018; and references therein). These questions have been
particularly extensively researched in the context of clas-
sification, where several quantitative measures of fairness
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have been proposed (Berk et al., 2017; Chouldechova, 2017;
Hardt et al., 2016; Kleinberg et al., 2017), leading to a vari-
ety of algorithms that aim to satisfy them (see, e.g., Corbett-
Davies & Goel, 2018, for an overview of the literature).

These classifier-based formulations appear to fit the settings
where the decision space is discrete and small, such as ac-
cept/reject decisions in hiring, school admissions, or lending.
However, in practice, the decision makers work with tools
that estimate a continuous quantity, such as success on the
job, GPA in the first year of college, or risk of default on a
loan. Predictions of these quantities are treated as scores,
which are used by human decision makers, perhaps in the
context of a partly automated workflow, to reach final deci-
sions (see, e.g., Waters & Miikkulainen, 2014; US Federal
Reserve, 2007; Northpointe, 2010; Lowenkamp et al., 2012).
While, in principle, a fair classification tool could be used
to recommend the yes/no decision directly, such tools are
often resisted by practitioners, because they limit their au-
tonomy, whereas ranking or scoring tools do not have this
drawback (Veale et al., 2018). In such situations, it is de-
sirable to work with real-valued scores that satisfy some
notion of fairness. Yet, despite ample motivation and use
cases, the prior work on designing fair continuous predictors
is quite limited in its scope compared with the generality
of methods for fair classification (e.g., Hardt et al., 2016;
Agarwal et al., 2018).

This paper seeks to diminish this gap by developing efficient
algorithms for a substantially broader set of regression tasks
and model classes than done before, in many cases providing
the first method with theoretical performance guarantees.

We consider the problem of predicting a real-valued
target, where the prediction quality is measured by any
Lipschitz-continuous loss function. Each example contains
a protected attribute, such as race or gender, with respect
to which we seek to guarantee fairness. We study two
definitions of fairness from previous literature: statistical
parity (SP), which asks that the prediction be statistically in-
dependent of the protected attribute, and bounded group loss
(BGL), which asks that the prediction error restricted to any
protected group stay below some pre-determined level. We
define fair regression as the task of minimizing the expected
loss of our real-valued predictions, subject to either of these
fairness constraints. By choosing the appropriate loss, we
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obtain a wide range of standard prediction tasks including
least-squares, logistic, Poisson, and quantile regression
(with labels and predictions restricted to a bounded set to
obtain Lipschitz continuity). While we seek to solve the
regression tasks under fairness constraints, our schemes
only require access to standard risk minimization algorithms
such as standard classification or least-squares regression.

Several prior works also seek predictors that exhibit some
form of independence from the protected attribute similar to
statistical parity. Calders et al. (2013), Johnson et al. (2016)
and Komiyama et al. (2018) consider a more limited form
of independence, expressed via a small number of moment
constraints, such as lack of correlation, and design specific
algorithms for linear least squares. Berk et al. (2017) study
notions of individual and group fairness specialized to linear
regression. Pérez-Suay et al. (2017) seek zero correlation
in a reproducing kernel Hilbert space (RKHS), which can
capture statistical independence, but it only yields predictors
in the same RKHS and the loss is limited to least squares.
Kamishima et al. (2012) and Fukuchi et al. (2013) seek to fit
a probabilistic model that satisfies statistical independence,
but they do not present efficient algorithms or statistical
guarantees. In contrast, we consider full statistical indepen-
dence, arbitrary model classes and Lipschitz losses, and our
algorithms are efficient and come with statistical guarantees.

Our second fairness definition, bounded group loss, fits into
the general framework of Alabi et al. (2018), whose goal
is to minimize a general function of group-wise prediction
losses, but their algorithm is less efficient (albeit still poly-
nomial), and they do not provide statistical guarantees.

We design a separate algorithm for each of the two fairness
definitions. For BGL, our insight is that the problem of
loss minimization subject to a loss bound in each subpop-
ulation can be algorithmically reduced to a weighted loss
minimization problem for which standard approaches exist.
For SP, the main obstacle is that the number of constraints
is uncountable. Here, the main insight that allows us to
design and analyze the algorithm is that if we discretize the
real-valued prediction space, then the task of fair regression
can be reduced to cost-sensitive classification under certain
constraints. We build on the recent work of Agarwal et al.
(2018), and use the special structure of our discretization
scheme to develop several algorithms reducing to standard
classification or regression problems without fairness con-
straints. We provide theoretical results to bound the com-
putational cost, generalization error and fairness violation
of the returned predictor for both of our fairness measures
with arbitrary Lipschitz-continuous loss functions and with
arbitrary regression-function classes of bounded complexity,
again building on the analysis of Agarwal et al. (2018). Prior
works in the regression setting lack such guarantees.

Empirically, we evaluate our method on several standard

datasets, on the tasks of least-squares and logistic regression
under statistical parity, with linear and tree-ensemble
learners, and compare it with the unconstrained baselines as
well as the technique of Johnson et al. (2016). Our method
uncovers fairness–accuracy frontiers and provides the first
systematic scheme for enforcing fairness in a significantly
broader class of learning problems than prior work.

Usage guidelines. We envision the use of our algorithms in
uncovering fairness–accuracy frontiers in a variety of appli-
cations. Any substantial tradeoffs along the frontier need to
be analyzed. They might point to data issues requiring non-
algorithmic interventions, such as gathering of additional
(less biased) data or introduction of new features (Chen et al.,
2018). As with other algorithmic fairness tools, in order to
successfully use our algorithms in practice, it is essential to
consider the societal context of the application (Selbst et al.,
2018). In some contexts, the best fairness intervention
might be to avoid a technological intervention altogether.

2. Problem Formulation

We consider a general prediction setting where the training
examples consist of triples (X,A, Y ), where X 2 X is a
feature vector, A 2 A is a protected attribute and Y 2 Y ✓
[0, 1] is the label. Throughout, we focus on the protected at-
tribute taking a small number of discrete values, i.e., A is fi-
nite, but X is allowed to be continuous and high-dimensional.
We make no specific assumptions about whether the pro-
tected attribute is included in the feature vector X or not;
also the set of labels Y can be discrete (but embedded in
[0, 1]) or continuous. Given a set of predictors F containing
functions f : X ! [0, 1], our goal is to find f 2 F which
is accurate in predicting Y given X while satisfying some
fairness condition such as statistical parity or bounded group
loss (formally defined below). Note that the functions f do
not explicitly depend on A unless it is included in X .

The main departure from prior works on classification is
that Y as well as f(X) are allowed to be real-valued rather
than just categorical. The accuracy of a prediction f(X)
on a label Y is measured by the loss `(Y, f(X)). The loss
function ` : Y⇥ [0, 1]! [0, 1] is required to be 1-Lipschitz
under the `1 norm,1 that is:
|`(y, u)� `(y0, u0)|  |y � y

0|+|u� u
0| for all y, y0, u, u0.

Example 1 (Least-squares regression). The prediction of
GPA in the first year of college can be cast as a regression
problem where the label y is the normalized GPA so that
Y = [0, 1], and the error is measured by the square loss
`(y, f(x)) = (y � f(x))2/2. Since y, f(x) 2 [0, 1], the
loss is bounded and 1-Lipschitz.

1Our algorithms primarily use covers for y and u such that
`(y, u) can be approximated using corresponding elements from
the cover. We skip this generalization to keep presentation simple.
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Example 2 (Logistic regression). Consider a system for
screening job applicants based on the likelihood of an of-
fer upon interview. We train this system using past data of
interviewed candidates where X describes their features
and Y 2 {0, 1} the hiring decision. The scoring function
f can be chosen to maximize the likelihood for the logis-
tic model pf (Y = 1 | x) = 1/(1 + e

�f(x)). Since we
require that f(x) 2 [0, 1], in order to approximate the full
range of probabilities, we use a scaled and shifted version
pf (Y = 1 | x) = 1/

�
1 + e

�C(2f(x)�1)
�

with some C > 1,
giving probabilities in the range [1/(1+e

C), 1/(1+e
�C)].

The loss is a rescaled version of the negative log likeli-
hood to ensure the boundedness and 1-Lipschitz conditions:
`(y, f(x)) = log

�
1+e

�C(2y�1)(2f(x)�1)
�
/
�
2 log(1+e

C)
�
.

Here the label is binary, but the prediction is real-valued.

2.1. Fairness Definitions

We consider two quantitative definitions of fairness appear-
ing in prior work on fair classification and regression.

The first definition, called statistical (or demographic) par-
ity, says that the prediction should be independent of the
protected attribute. In classification, it corresponds to the
practice of affirmative action (see, e.g., Holzer & Neumark,
2006, and references therein) and it is also invoked to ad-
dress disparate impact under the US Equal Employment Op-
portunity Commission’s “four-fifths rule,” which requires
that the “selection rate for any race, sex, or ethnic group
[must be at least] four-fifths (4/5) (or eighty percent) of the
rate for the group with the highest rate.”2

Definition 1 (Statistical parity—SP). A predictor f satis-
fies statistical parity under a distribution over (X,A, Y )
if f(X) is independent of the protected attribute A. Since
f(X) 2 [0, 1], this is equivalent to P[f(X) � z |A = a] =
P[f(X) � z] for all a 2 A and z 2 [0, 1].3

The characterization through the properties of the CDF of
f(X) is particularly useful when f(X) can take any real
values in [0, 1], because it allows us to design efficient algo-
rithms. It also makes it obvious that if f satisfies SP, then
any classifier induced by thresholding f will also satisfy SP.

Our second fairness definition, called bounded group
loss, formalizes the requirement that the predictor’s loss
remain below some acceptable level for each protected
group. In settings such as speech or face recognition, this
corresponds to the requirement that all groups receive good

2See the Uniform Guidelines on Employment Selection Proce-
dures, 29 C.F.R. §1607.4(D) (2015).

3A standard definition of statistical independence requires that
P[f(X) 2 S | A = a] = P[f(X) 2 S] for all measurable
sets S. Since f(X) is a real-valued random variable under Borel
�-algebra, it is fully characterized by its cumulative distribution
function, and so it suffices to consider sets S = [0, z] for z 2 [0, 1]
(see, e.g., Theorem 10.49 of Aliprantis & Border, 2006).

service (cf. Buolamwini & Gebru, 2018). In other settings,
such as lending and hiring, it aims to prevent situations
when the predictor has a high error on some of the groups
(cf. Section 3.3 of Corbett-Davies & Goel, 2018).

Definition 2 (Bounded group loss—BGL). A predictor f
satisfies bounded group loss at level ⇣ under a distribution
over (X,A, Y ) if E[`(Y, f(X)) |A = a]  ⇣ for all a 2 A.

Hence, fair regression with BGL minimizes the overall loss,
while controlling the worst loss on any protected group.
By Lagrangian duality, this is equivalent to minimizing the
worst loss on any group while maintaining good overall loss
(referred to as max-min fairness). Unlike overall accuracy
equality in classification (Dieterich et al., 2016), which
requires the losses on all groups to be equal, BGL does not
force an artificial decrease in performance on every group
just to match the hardest-to-predict group. BGL can be used
as a diagnostic for the potential shortcomings of a chosen
featurization or dataset. If it is not possible to achieve a
loss below ⇣ on some group, then to achieve fairness we
need to collect more data for that group, or develop more
informative features for individuals in that group.

2.2. Fair Regression

We begin by defining the problem of fair regression as the
minimization of the expected loss E[`(Y, f(X))] over f 2
F, while guaranteeing SP or BGL. However, to achieve
better fairness–accuracy tradeoffs we then generalize this to
the case of randomized predictors.

Statistical parity. Similar to prior works on fair classifica-
tion (Agarwal et al., 2018), it is frequently desirable to have
a tunable knob for navigating the fairness-accuracy tradeoff,
such as ⇣ in the definition of bounded group loss. To allow
such a tradeoff in SP, we consider slack parameters "a for
each attribute and define the fair regression task under SP as

min
f2F

E [`(Y, f(X))] such that 8a 2 A, z 2 [0, 1]:
���P[f(X) � z |A = a]� P[f(X) � z]

���  "a. (1)

The slack "a bounds the allowed departure of the CDF of
f(X) conditional on A = a from the CDF of f(X). The
difference between CDFs is measured in the `1 norm cor-
responding to the Kolmogorov-Smirnov statistic (Lehmann
& Romano, 2006). Choosing different "a allows us to vary
the strength of constraint across different protected groups.

Bounded group loss. In this case, the constrained optimiza-
tion formulation follows directly from the definition. For
the sake of flexibility, we allow specifying a different bound
⇣a for each attribute value, leading to the formulation

min
f2F

E
⇥
`(Y, f(X))

⇤

such that 8a 2 A: E
⇥
`(Y, f(X))

��A = a
⇤
 ⇣a. (2)
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Randomized predictors. Similar to fair classification, in
order to achieve better fairness–accuracy tradeoffs, we con-
sider randomized predictors which first pick f according to
some distribution Q and then predict according to f . We
first introduce additional notation for the objective and con-
straints appearing in (1) and (2):

loss(f) := E[`(Y, f(X))],

�a,z(f) := P[f(X) � z |A = a]� P[f(X) � z].

�
BGL
a (f) := E

⇥
`(Y, f(X))

��A = a
⇤
.

For a randomized predictor represented by a distribu-
tion Q, we have loss(Q) =

P
f Q(f)loss(f), �a,z(Q) =P

f Q(f)�a,z(f), and �
BGL
a (Q) =

P
f Q(f)�BGL

a (f).

Thus, for SP we seek to solve
min

Q2�(F)
loss(Q) s.t.

���a,z(Q)
��  "a 8a 2 A, z 2 [0, 1], (3)

where �(F) is the set of all probability distributions over F.
For bounded group loss, we similarly seek to solve
min

Q2�(F)
loss(Q) s.t. �BGL

a (Q)  ⇣a 8a 2 A. (4)

3. Supervised Learning Oracles

In this paper, we show how to transform the fair regres-
sion problem into three standard learning problems: cost-
sensitive classification, weighted least-squares regression,
or weighted risk minimization under ` (without fairness
constraints). All of these learning problems allow different
costs per example, which helps incorporate fairness. The
specific algorithms to solve these tasks are termed super-
vised learning oracles. These oracles are typically available
for representations where regression or classification with-
out fairness constraints can be solved, and we show some
typical examples in our empirical evaluation.

(1) Risk minimization under `. This is the most natural
oracle as it implements loss minimization without fairness
constraints. Given a dataset {(Wi, Xi, Yi)}ni=1 where Wi

are non-negative weights, the oracle returns f 2 F that min-
imizes the weighted empirical risk:

Pn
i=1 Wi`(Yi, f(Xi)).

(2) Square loss minimization. Even when the accuracy is
measured by `, we typically have access to a weighted least-
squares learner for the same class F. This oracle takes the
data {(Wi, Xi, Yi)}ni=1 and returns f 2 F that minimizes
the weighted squared loss:

Pn
i=1 Wi

�
Yi � f(Xi)

�2.

(3) Cost-sensitive classification (CS). Our third type of
oracle optimizes over classifiers h : X0 ! {0, 1} from some
class H. As input, we are given a dataset {(X 0

i, Ci)}ni=1,
where X

0
i is a feature vector and Ci indicates the difference

between the cost (i.e., the loss) of predicting 1 versus 0;
positive Ci means that 0 is favored, negative Ci means
that 1 is favored. The goal is to find a classifier h 2 H,
which minimizes the empirical cost relative to the cost of

predicting all zeros:
Pn

i=1 Cih(X 0
i).

CS reduces to weighted binary classification on the data
{(Wi, X

0
i, Yi)}ni=1 with Yi = 1{Ci  0} and Wi = |Ci|,

where we minimize
Pn

i=1 Wi1{h(X 0
i) 6= Yi}. Weighted

classification oracles exist for many classifier families H.

In this paper we consider classifiers obtained by threshold-
ing regressors f 2 F. We define X0 = X⇥R where the new
feature specifies a threshold. Our classifiers act on x

0 =
(x, z) and predict hf (x, z) = 1{f(x) � z}. This structure
of classifiers naturally arises from the SP constraints. We
assume access to a CS oracle for H = {hf : f 2 F}.
While cost-sensitive learners for this representation might
not be available off the shelf, learners based on optimization,
such as (stochastic) gradient-based learners, can usually be
adapted to this structure. In particular, it is easy to adapt
learners for logistic regression, SVMs or neural nets.

4. Fair Regression under Statistical Parity

We next show how to solve the fair regression problem (3)
using a CS oracle. We begin by recasting the problem (3)
as a constrained (and cost-sensitive) classification problem,
which we then solve via the reduction approach of Agarwal
et al. (2018), by repeatedly invoking the CS oracle.

We proceed in two steps. First we discretize our prediction
space and show that a loss function in the discretized space
approximates our original loss well, owing to its Lipschitz
continuity. We then show how the fair regression problem
in this discretized space can be turned into a constrained
classification problem, which we solve via reduction.

4.1. Discretization

We discretize both arguments of the loss function `. Let
N denote the size of the discretization grid for the second
argument, let ↵ = 1/N denote its granularity, and let Z =
{j↵ : j = 1, . . . , N} denote the grid itself. Let Ỹ be the
↵
2 -cover of Y, i.e., Ỹ ✓ Y such that: (1) for any y 2 Y

there exists ỹ 2 Ỹ such that |y � ỹ|  ↵
2 , and (2) for any

ỹ, ỹ
0 2 Ỹ, we have |ỹ � ỹ

0| > ↵
2 . Proceeding left-to-right

within Y, it is always possible to construct Ỹ such that |Ỹ| 
2N . We define the discretized loss as a piece-wise constant
approximation of `:

`↵(y, u) := `
�
¯
y, buc↵+ ↵

2

�
(5)

where
¯
y is the smallest ỹ 2 Ỹ such that |y � ỹ|  ↵

2 , and
buc↵ rounds down u to the nearest integer multiple of ↵.
We use the convention `(y, u) = `(y, 1) for u � 1. Owing
to the Lipschitz continuity of `, it follows that��`(y, u)� `↵(y, u)

��  ↵. (6)
Thus, for suitably small ↵, or equivalently large N , `↵
provides a close approximation to the original loss function.
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Let loss↵(f) := E[`↵(Y, f(X))] denote the expected dis-
cretized loss. When optimizing this loss, it suffices to con-
sider rounded-down variants of predictors. Specifically, for
f 2 F, let

¯
f(x) = bf(x)c↵ denote its rounded-down ver-

sion. Then, by the definition of `↵, loss↵(f) = loss↵(
¯
f).

The advantage of rounded-down predictors is that to guar-
antee that they satisfy SP, it suffices to consider the fairness
constraints �a,z(

¯
f)  "a across z taken from the discretiza-

tion grid Z. This is because for any z 2 [0, 1],
�a,z(

¯
f) = P[

¯
f(X) � z |A = a]� P[

¯
f(X) � z]

= P[
¯
f(X) � z̄ |A = a]� P[

¯
f(X) � z̄], (7)

where z̄ = dze↵ is the value of z rounded up to the nearest
integer multiple of ↵. This allows us to replace the uncount-
able set of constraints indexed by z 2 [0, 1] with the finite
set indexed by z 2 Z. Thus, denoting

¯
F = {

¯
f : f 2 F}, we

have argued that the solution of (3), can be approximated by
min

Q2�(
¯
F)

loss↵(Q) s.t.
���a,z(Q)

��  "a 8a 2 A, z 2 Z. (8)

Theorem 1. Let Q? be any feasible point of (3) and Q
?

be the solution of (8). Then loss(Q?)  loss(Q?) + ↵ and
|�a,z(Q?)|  "a for all a 2 A, z 2 [0, 1].

4.2. Reduction to Constrained Classification

We next show that (8) can be rewritten as a constrained
classification problem for the family of classifiers H =
{hf : f 2 F} defined in Section 3.

To turn regression loss ` into a cost-sensitive loss, we intro-
duce the function

c(y, z) := N

⇣
`
�
y, z + ↵

2

�
� `

�
y, z � ↵

2

�⌘
, (9)

which takes values in [�1, 1], because ` is 1-Lipschitz and
↵ = 1/N . We also extend the �a,z notation to hf :

�a,z(hf ) = E[hf (X, z)|A = a]� E[hf (X, z)].

Now given a distribution D over (X,A, Y ), we define a
distribution D

0 over (X 0
, A, C) that additionally samples

Z 2 Z uniformly at random and sets X
0 = (X,Z) and

C = c(
¯
Y, Z). Defining cost(hf ) := ED0 [Chf (X 0)], we

have the following useful lemma.
Lemma 1. Given any distribution D over (X,A, Y ) and
any f 2 F, the cost and constraints satisfy cost(hf ) =
loss↵(

¯
f)+c0, where c0 is independent of f , and �a,z(hf ) =

�a,z(
¯
f) for all a 2 A, z 2 Z.

By linearity of expectation, the lemma implies analogous
equalities also for distributions over f . Thus, in problem (8),
we can replace the optimization over Q 2 �(

¯
F) with

Q 2 �(H). Notice that while we started from discretized
regressors in problem (8), Lemma 1 allows us to work
with the full classifier family {hf : f 2 F}, which is
important as we typically only have computational oracles
for non-discretized classes H and F. We next show how
to solve an empirical version of this classification problem.

4.3. Algorithm and Generalization Bounds

Let bE denote the empirical distribution over the data
(Xi, Ai, Yi) and let EZ denote a uniform distribution among
the values in Z. Then define the empirical versions of the
cost and constraints:

dcost(hf ) = bE
h
EZ

⇥
c(
¯
Y, Z)hf (X,Z)

⇤i
(10)

b�a,z(hf ) = bE
⇥
hf (X, z)

��A = a
⇤
� bE

⇥
hf (X, z)

⇤
.

We are interested in the following empirical optimization
problem, which is, according to Lemma 1, an empirical
approximation of the original problem (8):
min

Q2�(H)
dcost(Q) s.t.

��b�a,z(Q)
��  b"a 8a 2 A, z 2 Z. (11)

The slacks b"a are slightly larger than "a to compensate for
finite-sample errors in measuring constraint violations (more
on that below). This problem is a special case of that studied
by Agarwal et al. (2018) with a key difference. Since the dis-
tribution of Z is known, we can take expectation according
to Z rather than a sample, which leads to substantially better
estimates of constraint violations. Thus, our objective uses
a product of an empirical distribution over (X,A, Y ) with
the uniform distribution over Z rather than an i.i.d. sample
as assumed by Agarwal et al.. However, their algorithm and
generalization bounds still apply (as we show in our proofs).

The algorithm begins by forming the Lagrangian with the
primal variable Q 2 �(H) and the dual variable � with
components �

+
a,z,�

�
a,z 2 R+, corresponding to the con-

straints b�a,z(Q)  b"a and b�a,z(Q) � �b"a:

L(Q,�) = dcost(Q) +
X

a,z

h
�
+
a,z

�
b�a,z(Q)� b"a

�

+ �
�
a,z

�
�b�a,z(Q)� b"a

�i
.

It solves the saddle-point problem minQ max� L(Q,�)
over Q 2 �(H) and � � 0, k�k1  B, by treating it as a
two-player zero-sum game (see Algorithm 1 for details).

We bound the suboptimality and fairness of the returned
solution largely following their analysis. Let Rn(H) de-
note the Rademacher complexity of H (see Eq. 17 in Ap-
pendix C). To state the bounds, recall an assumption from
their paper on the setting of the empirical slacks b"a:

Assumption 1. There exist C,C 0
> 0 and �  1/2 such

that Rn(H)  Cn
�� and b"a = "a + C

0
n
��
a , where na is

the number of samples with A = a.

Under this assumption, we obtain the following guarantees.4

Theorem 2. Let Assumption 1 hold for C
0 � 2C + 2 +p

2 ln(4|A|N/�), where � > 0. Let Q? be any feasible
distribution for the fair regression problem (3). Then Algo-
rithm 1 with ⌫ / n

�� , B / n
� , and N / n

� terminates in
O
�
n
4� ln(n� |A|)

�
iterations and returns bQ, which, when

4The notation eO(·) suppresses polynomial dependence on lnn,
ln |A|, and ln(1/�).
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Algorithm 1 Fair regression with statistical parity
Input: training examples {(Xi, Yi, Ai)}ni=1,

slacks b"a 2 [0, 1], bound B, threshold ⌫

Define best-response functions:
BESTh(�) := argminhf2H

L(hf ,�)
BEST�(Q) := argmax��0, k�k1B L(Q,�)

1: Set learning rate ⌘ = ⌫/(8B)
2: Set ✓+

1 = ✓�
1 = 0 2 R|A|N

3: for t = 1, 2, . . . do

// Compute �t from ✓t and find the best response ht

4: for all a, z and � 2 {+,�} do

5: �
�
t,a,z  B

exp{✓�
t,a,z}

1+
P

a,z

⇥
exp{✓+

t,a,z}+exp{✓�
t,a,z}

⇤

6: end for

7: ht  BESTh(�t)

// Calculate the current approximate saddle point
8: bQt  1

t

Pt
t0=1 ht0 ,

b�t  1
t

Pt
t0=1 �t0

// Check the suboptimality of ( bQt,
b�t)

9: ⌫  L
� bQt, BEST�( bQt)

�
� L( bQt,

b�t)

10: ⌫  L( bQt,
b�t) � L

�
BESTh(b�t), b�t

�

11: if max{⌫, ⌫}  ⌫ then return bQt

// Apply the exponentiated-gradient update
12: Set ✓�

t+1 = ✓�
t + �⌘b�(ht)� ⌘b", for � 2 {+,�}

13: end for

viewed as a distribution over
¯
F, satisfies with probability at

least 1-�,
loss( bQ)  loss(Q?) + eO(n��)

����a,z( bQ)
���  "a + eO(n��

a ) for all a 2 A, z 2 [0, 1].

Note that the bounds grow with the Rademacher complexity
of H, rather than the complexity of the regressor class F.
Since

��EZ [hf (X,Z)] � f(X)
��  ↵, it can be shown that

Rn(H) � Rn(F)� ↵, meaning that the classifiers induce
a more complex class. The bound on loss( bQ) in Theorem 2
can be stated in terms of the tighter Rn(F), but the con-
straints still deviate by Rn(H), which we believe is unavoid-
able. However, if F has a bounded pseudo-dimension, which
always equals the VC dimension of H (Anthony & Bartlett,
2009), then the pseudo-dimension can be used to bound
Rn(H) (see Theorem 6 of Bartlett & Mendelson, 2002).

4.4. Efficient Implementation of Algorithm 1

It is not too difficult to show that each iteration of Algo-
rithm 1 can be implemented in time O(n log n+ |A|N) plus
the complexity of two calls to BESTh, on which we focus
here, while deferring the remaining details to Appendix F.

Reduction to cost-sensitive classification. We first show
how to implement BESTh using the CS oracle. Letting
�a,j = �

+
a,j � �

�
a,j , and dropping terms independent

of h, the minimization over h only needs to be over
dcost(h) +

P
a,z �a,zb�a,z(h). The first term is already de-

fined as CS error with respect to bE and EZ (see Eq. 10). Let
pa := bP[A = a]. Then we show in Appendix F that the
minimization over L(h,�) is equivalent to minimizing
dcost(h) +

X

a,z

�a,zb�a,z(h) (12)

= bE

EZ

✓
c(
¯
Y, Z) +

N�A,Z

pA
�
X

a

N�a,Z

| {z }
c�(

¯
Y,A,Z)

◆
h(X,Z)

��
.

This corresponds to a CS problem with nN instances
{(X 0

i,z, Ci,z)}in, z2Z defined as
X

0
i,z = (Xi, z), Ci,z = c�(¯

Yi, Ai, z).

The sum
P

a N�a,Z in the definition of c� can be precalcu-
lated once for each value of Z in the overall time O(N |A|).
After that the construction of the dataset takes time O(nN).

Based on Assumption 1 and Theorem 2, we expect N / n
� ,

so this reduction to cost-sensitive classification takes time
⌦(n1+�) and creates a dataset of size ⌦(n1+�). This is
substantially larger than the original problem of size n, given
the typical value � ⇡ 1/2. We next describe two alternatives
that run faster and only create datasets of size n.

Reduction to least-squares regression. The main over-
head in the CS reduction above comes from the summation
over z 2 Z, implicit in the expectation over Z in Eq. (12).
In order to eliminate this overhead, suppose we have access
to a function g� such that

g�(Ỹ, A, f(X)) =
1

N

X

z2Z

c�(Ỹ, A, z)hf (X, z)

for any Ỹ 2 Ỹ, A 2 A, X 2 X and f 2 F. In Appendix F.2,
we show how to precalculate g�(·, ·, ·) in time O(|A||Ỹ|N).
Then minimizing Eq. (12) over h is equivalent to finding
minf2F

Pn
i=1 g�(¯

Yi, Ai, f(Xi)). We heuristically solve
this problem by calling a least-squares oracle on a dataset
of size n. To this end, we replace g� by the square loss with
respect to specific targets Ui (different from Yi). As targets,
we choose the minima of g� for each fixed

¯
Yi and Ai, that

is, Ui 2 argminu2[0,1] g�(¯
Yi, Ai, u). We seek to solve

min
f2F

nX

i=1

(Ui � f(Xi))
2
.

To obtain the values Ui we first calculate c�(ỹ, a, z) across
all ỹ, a, and z in the overall time O(|A||Ỹ|N). Then, using
the definition of g�, the minimizer of g�(ỹ, a, u) over u
can be found in time O(N) for each pair of ỹ and a, so all
the minimizers can be precalculated in time O(|A||Ỹ|N).
Thus, preparing the dataset for the least-squares reduction
takes time O(|A||Ỹ|N) and the resulting regression dataset
is of size n. Since |Ỹ| = O(N), and N / n

� . The run-
ning time of the reduction is O(n log n+ |A|n2�), which is
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substantially faster than ⌦(n1+�) for typical � ⇡ 1/2.

Reduction to risk minimization under `. A similar heuris-
tic as in the least-squares reduction can be used to reduce
BESTh to risk minimization under any loss `(y, u) that is
convex in u. The complexity of this reduction is identical
to that of the least-squares reduction, but the resulting risk
minimization problem might be better aligned with the orig-
inal problem, yielding a potentially superior oracle as we
will see in the experiments. (See Appendix F.3 for details.)

5. Fair Regression with Bounded Group Loss

We now turn attention to our second notion of fairness. We
show how to reduce fair regression with bounded group loss
to loss minimization under ` without the fairness constraints.

The approach still follows the scheme of Agarwal et al.
(2018), but thanks to the matched loss function between the
objective and the constraints, fair regression can be reduced
directly to regression, without the need for discretization.
We first replace the problem (4) by its empirical version

min
Q2�(F)

dloss(Q) s.t. b�BGL
a (Q)  b⇣a 8a 2 A. (13)

We then form the Lagrangian with the primal variable Q

and the dual variable � with components �a 2 R+ corre-
sponding to the constraints b�BGL

a (Q)  b⇣a:

L
BGL(Q,�) = dloss(Q) +

X

a

�a

⇣
b�BGL
a (Q)� b⇣a

⌘
.

We give a detailed pseudocode for our approach in Algo-
rithm 2 in Appendix D, and describe the main differences
from Algorithm 1 here. As before, the algorithm alternates
between exponentiated gradient updates on � and best re-
sponses for Q to compute an approximate saddle point:

min
Q2�

max
��0, k�k1B

L
BGL(Q,�). (14)

The saddle point always exists. However, unlike the fair
regression problem under SP, the fair regression problem
under BGL, i.e., Eq. (13), might be infeasible. Therefore,
Algorithm 2 explicitly checks whether the distribution bQ
that it finds satisfies constraints of Eq. (13).

The other main difference between Algorithms 1 and 2 is
in the computation of the best response f to any given �,
which requires solving the problem

min
f2F

h
dloss(f) +

X

a

�ab�BGL
a (f)

i
.

Denoting by na the number of samples with Ai = a, this
minimization can be written as

min
f2F


1

n

nX

i=1

`(Yi, f(Xi)) +
X

a

�a

na

X

i: Ai=a

`(Yi, f(Xi))

�
,

which can be solved using one call to the weighted risk-
minimization oracle.

We finish this section with the optimality and fairness guar-
antees for bQ returned by Algorithm 2. We assume that b⇣a
are set according to the Rademacher complexity of F:

Assumption 2. There exist C,C 0
> 0 and !  1/2 such

that Rn(F)  Cn
�! and b⇣a = ⇣a + C

0
n
�!
a , where na is

the number of samples where A = a.

Theorem 3. Let Assumption 2 hold for C
0 � 4C + 2 +p

2 ln(4|A|/�), where � > 0. Then Algorithm 2 with ⌫ /
n
�! and B / n

! terminates in O(n4! ln |A|) iterations
and returns bQ such that, with probability at least 1-�, one
of the following holds:

1. bQ 6= null and, for any Q
? feasible in problem (4),

loss( bQ)  loss(Q?) + eO(n�!)
�

BGL
a ( bQ)  ⇣a + eO(n�!

a ) for all a 2 A.

2. bQ = null and problem (4) is infeasible.

6. Experiments

We evaluate our method on the tasks of least-squares regres-
sion and logistic regression under statistical parity. We use
the following three datasets:

Adult: The adult income dataset (Lichman, 2013) has 48,842
examples. The task is to predict the probability that an
individual makes more than $50k per year via logistic loss
minimization, with gender as the protected attribute.

Law school: Law School Admissions Council’s National
Longitudinal Bar Passage Study (Wightman, 1998) has
20,649 examples. The task is to predict a student’s GPA
(normalized to [0, 1]) via square loss minimization, with
race as the protected attribute (white versus non-white).

Communities & crime: The dataset contains socio-economic,
law enforcement, and crime data about communities in the
US (Redmond & Baveja, 2002) with 1,994 examples. The
task is to predict the number of violent crimes per 100,000
population (normalized to [0, 1]) via square loss minimiza-
tion, with race as the protected attribute (whether the major-
ity population of the community is white).

For the two larger datasets (adult and law school), we also
created smaller (subsampled) versions by picking random
2,000 points. Thus we ended up with a total of five datasets,
and split each into 50% for training and 50% for testing.

We ran Algorithm 1 on each training set over a range of
constraint slack values "̂, with a fixed discretization grid of
size 40: Z = {1/40, 2/40, . . . , 1}. Among the solutions for
different "̂, we selected the ones on the Pareto front based
on their training losses and SP disparity maxa,z{�̂a,z}. We
then evaluated the selected predictors on the test set, and
show the resulting Pareto front in Figure 1.

We ran our algorithm with the three types of reductions
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Figure 1. Relative test loss versus the worst constraint violation with respect to SP. Relative losses are computed by subtracting the
smallest baseline loss from the actual loss. For our algorithm and fair classification we plot the convex envelope of the predictors obtained
on training data at various accuracy–fairness tradeoffs. We show 95% confidence bands for the relative loss of our method and fair
classification, and also show 95% confidence intervals for constraint violation (the same for all methods). Our method dominates or
matches the baselines up to statistical uncertainty on all datasets except adult, where fair classification is slightly better.

from Section 4.4: reductions to cost-sensitive (CS) oracles,
least-squares (LS) oracles, and logistic-loss minimization
(LR) oracles. Our CS oracle sought the linear model min-
imizing weighted hinge-loss (as a surrogate for weighted
classification error). Because of unfavorable scaling of the
cost-sensitive problem sizes (see Section 4.4), we only ran
the CS oracle on the three small datasets. We considered
two variants of LS and LR oracles: linear learners from
scikit-learn (Pedregosa et al., 2011), and tree ensembles
from XGBoost (Chen & Guestrin, 2016). Tree ensembles
heavily overfitted smaller datasets, so we only show their
performance on two larger datasets. We only used LR ora-
cles when the target loss was logistic, whereas we used LS
oracles across all datasets.

In addition to our algorithm, we also evaluated regression
without any fairness constraints, and two baselines from the
fair classification and fair regression literature.

On the three datasets where the task was least-squares re-
gression, we evaluated the full substantive equality of op-
portunity (SEO) estimate of Johnson et al. (2016). It can be
obtained in a closed form by solving for the linear model
that minimizes least-squares error while having zero corre-
lation with the protected attribute. In contrast, our method
seeks to limit not just correlation, but statistical dependence.

On the two datasets where the task was logistic regression,
we ran the fair classification (FC) reduction of Agarwal
et al. (2018) with the same LR oracles as in our algorithm.
For this choice of oracles, the classifiers returned by FC

are implemented by logistic models and return real-valued
scores, which we evaluated. We ran FC across a range
of trade-offs between classification accuracy and statistical
parity (in the classification sense) and show the resulting
Pareto front. Note that FC only enforces statistical parity
(SP) when the scores are thresholded at zero, whereas our
method enforces SP across all thresholds.

In Figure 1, we see that all of our reductions are able to
significantly reduce disparity, without strongly impacting
the overall loss. On communities & crime, there is a more
substantial accuracy–fairness tradeoff, which can be used as
a starting point to diagnose the data quality for the two
racial subgroups. Our methods dominate SEO in least-
squares tasks, but are slightly worse than FC in logistic
regression. The difference is statistically significant only on
adult, where it points to the limitations of our LS and LR
reduction heuristics. However, for the most part, LR and LS
reductions achieve tradeoffs on par with the CS reduction,
and are substantially faster to run (see Appendix G). The re-
sults on adult and adult subsampled suggest that reducing to
a matching loss is preferable over reducing to another loss.

In summary, we have shown that our scheme efficiently
handles a range of losses and regressor classes and, where
possible, diminishes disparity while maintaining the overall
accuracy. The emergence of FC as a strong baseline for
logistic regression suggests that our regression-based re-
duction heuristics can be further improved, which we leave
open for future research.
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