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ABSTRACT
Automatic synthesis of web data extraction programs has
been explored in a variety of settings, but in practice there
remain various robustness and usability challenges. In this
work we present a novel program synthesis approach which
combines the benefits of deductive and enumerative syn-
thesis strategies, yielding a semi-supervised technique with
which concise programs expressible in standard languages
can be synthesized from very few examples. We demonstrate
improvement over existing techniques in terms of overall
accuracy, number of examples required, and program com-
plexity. Our method has been deployed in the Microsoft
Power BI product and released to millions of users.

CCS CONCEPTS
• Information systems→Webmining;Markup languages;
• Software and its engineering → Automatic program-
ming.
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1 INTRODUCTION
Since the early days of the web, the idea of automated syn-
thesis of web data extraction programs from examples (or
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wrapper induction) has been explored in various forms to
enable users to extract the semi-structured information avail-
able on the web into a structured format [21]. In the current
age of big data, the emerging persona particularly interested
in this area is that of data scientists, business intelligence
analysts and other knowledge workers who regularly need
to explore and extract information from various websites
and incorporate such actions into their analysis workflows.
Although many specialized automated web extraction

tools and services have become available in recent years (e.g.
WIEN [21], STALKER [26], Lixto [4], Mozenda [18], import.io
[16], SelectorGadget [39]), such technologies have generally
targeted web extraction as an isolated task in specialized
tools and have seen little adoption within the environments
that data analysts commonly work in, as is evident from
numerous online discussions in help forums as well as re-
quests made to product teams. For example, data scientists
working in Python environments (e.g. Pandas dataframes in
Jupyter Notebooks) commonly resort to using HTML pars-
ing libraries (e.g. Beautiful Soup or Scrapy) which require
them to hand-write code such as XPath or CSS expressions
to extract data fromwebpages as part of their analysis scripts.
This requires knowledge of these HTML query languages as
well as the time and effort to examine the schema of each
new website. Moreover, since the website schemas change
frequently, the analysis scripts are also fragile and must be
updated regularly. Figure 1 shows an example of a ques-
tion posted on Stack Overflow where the user would like
to extract information from a car catalog site into a Pandas
dataframe but is unable to specify a correct selection logic
for the data required. Web extraction support is similarly
(if not more) limited in spreadsheet environments, e.g. Mi-
crosoft Excel or Google Spreadsheets limit web extraction
to only explicit HTML tables or lists. Microsoft Power BI is
a more advanced tool targeting business intelligence ana-
lysts, which also provides a spreadsheet-like interface but
with support for automating analysis scripts: as the user
performs various data manipulation operations, the system
automatically develops a program (in the lightweight “M”
programming language) which the user can re-execute on
different datasets or manually edit for more advanced tasks.
However, web extraction support has again been severely
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Stack Overflow question:

Target webpage:

Figure 1: Forum question: web extraction in Python

limited: Figure 2 illustrates a YouTube video in which an
expert is demonstrating how to extract information from a
web page in Power BI, through a complex and fragile process
of first extracting the HTML source as text and then perform-
ing a long sequence of text manipulation operations, as seen
in the “Applied Steps” section of the UI which shows the
analysis script being created. In this work we present a pro-
gram synthesis approach for inferring web data extraction
programs from examples that addresses the difficulties faced
by analysts in performing web extraction tasks. We discuss
some of the goals in developing such a system, which include
robust inference from a small number of examples, learning
concise readable programs in standard web languages, and
inference from text-based examples.

Inference from few examples/robustness. An impor-
tant usability challenge is for the system to make robust
inference from a small number of examples provided by the
user. For example, the webpage in Figure 1 contains 1671
data records. Since a user cannot be expected to provide all
of these as examples even on a single webpage, we must sup-
port robust inference from a handful of manually provided

YouTube demo video:

Target webpage:

Figure 2: Demo video: web extraction in Power BI

examples. The number of examples required should also be
as small as possible as this indicates the robustness of the
system and how much burden of verification/risk there is
on the user to ensure that all of the data has been extracted.
Existing approaches not aimed at minimizing examples often
conservatively favour more specific programs [2, 23, 28, 29]
which can overfit and require many examples to sufficiently
generalize, which can lead to significant burden on the user.
For example, it would be difficult to identify random elements
missing from 1671 items in Figure 1. In general, correct infer-
ence from a few examples in the majority of cases would help
to instill user confidence in the robustness of the system.

Inferring simple programs in standard, lightweight
languages.Another common requirement in practice is that
the synthesized programs be represented in a standard and
lightweight language, such as DOM query languages like
XPath or CSS (which are W3C standards), so that users are
likely to be or can easily become familiar with the language
and can also understand or manipulate the synthesized pro-
grams in common HTML tools or modern web browsers.
This requirement is in contrast to wrapper induction ap-
proaches that often employ more complex extraction models,
such as incorporating visual/semantic features or specialized
treatment of particular verticals [5, 9, 14, 20, 31]. Moreover,
even with standard languages, the simplicity and readability
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of the synthesized programs is also an important require-
ment. Existing synthesis approaches do not aim for concise
programs that are easy for humans to understand, and their
focus on improving accuracy often yields very complex pro-
grams, e.g. long path sequences or large conjunctions in
path alignment or least general generalization approaches
[2, 28, 29, 32, 37], or large disjunctive expressions to guard
against overfitting [30, 35]. Such expressions are difficult to
interpret as compared to the simple selectors that a human
expert may write for the same task.

Text-based examples Many wrapper induction systems
provide a visual interface in which users can point-and-click
actions to give examples of data items of interest on a web-
page. Such visual interfaces may not always be easily in-
tegrated into data analysis environments that commonly
employ text-based interaction paradigms, e.g. Python scripts
in IDEs with intellisense or Notebooks that employ a REPL
(read-eval-print loop) interaction model. Other benefits of
text-based examples include: (1) Wide-scale adoption. Web
extraction support may be more easily integrated in differ-
ent products and services without the need for heavy UI
investment. (2) Bypassing limitations of visual UIs.Modern
websites often employ dynamic scripts on webpages that
alter the content or layout depending on user actions such
as hovering over regions in the page, which is an obstacle
for visual UIs. (3) Robustness to changing site formats. The
text examples may be used to relearn a new program if a
previously learned program fails due to format changes.

1.1 Key ideas and contributions
In this paper we present an approach to automatic synthesis
of web data extraction programs that addresses the chal-
lenges that we have discussed above. Our approach is based
on the following key technical contributions:

Combination of top-down and bottom-up synthesis.
The field of program synthesis has seen rising interest and
progress in recent years [1, 8, 12, 22, 24, 32, 34, 40]. Given a
fixed DSL (domain-specific language) the aim of a supervised
program synthesis system is to find a program in the DSL that
satisfies input-output examples given by the user. An efficient
way of performing this search is top-down, where examples
constraints are recursively propagated from candidate DSL
operators to their parameters until a satisfying program is
found [17, 23, 32, 35]. Such deductive approaches have the
benefit of efficiently constraining the search to only those
DSL fragments relevant to the examples provided by the user.
However, recent work has explored a bottom-up approach
[34] for unsupervised program synthesis, where extraction
programs are inferred without any examples from the user.
This is done by systematically enumerating DSL programs

Figure 3: IMDB movies list page & simplified HTML

and detecting alignment patterns between node selections
produced by these programs.

In this work we observe that the bottom-up and top-down
strategies have complimentary strengths and weaknesses,
and we develop a hybrid program synthesis approach that
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utilises the bottom-up analysis to improve top-down infer-
ence. We illustrate this concept with a practical example
which we shall discuss further as we describe our technique
in more detail. Figure 3 shows a sample from an IMDB page
containing a list of 100 movies, and a very simplified ver-
sion of its source HTML markup. In this case a bottom-up
enumeration method was able to detect extraction programs
for all 100 movie records and their various fields such as the
movie year, running time, description, etc. However, notably
the movie title could not be detected as it required a more
complex selector. A purely top-down approach used a more
expressive DSL in which the title extraction was supported.
However, given the first two example titles (“Snow White
and the Seven Dwarfs” and “Fantasia”), there are many possi-
ble extraction programs that can satisfy these two examples.
The top-down approach yields a logic of selecting any <b>
element that is the 6th child of its parent when counting
from the end. This logic works for the first two movies, and
all other movies except the 12th one (“Fun & Fancy Free”),
because in this case the title is the 5th child from last since
the director field is missing in this record. In our hybrid
approach, we utilise the bottom-up analysis that detected
all 100 movie records to improve the top-down inference
so that it synthesizes a better program generalizing to all
records. This yields an improved alternative selection logic
that selects all <b> elements that are children of elements
of class “.info”. Thus a global bottom-up document analysis
helps disambiguate between many possible alternative selec-
tion logics that may satisfy a small number of examples. To
our knowledge, ours is the first semi-supervised approach to
synthesis of XPath-style programs for web data extraction.

Predicate inference beyond least general conjunc-
tions. The choice of which node selection logic to infer from
a small set of example nodes is a key challenge in synthesis
methods. This is because there can be many properties that a
small number of example nodes may share, and any of the ex-
ponential possible subsets of these properties can be a valid
generalization of the examples. Common approaches usu-
ally adopt heuristic predicate preferences or favour largest
conjunctions of all the common properties (least general
generalizations) [2, 23, 29, 32, 37]. Apart from creating syn-
tactically complex programs, this easily causes overfitting by
constraining to too many shared properties of the examples.
We describe a method to address such overfitting based on
soft negative examples, which are nodes that are less likely
to be part of the target selection (e.g. occurring outside com-
mon ancestors of example nodes) and show how concise
predicate conjunctions can be inferred using a maximal set
cover approach to exclude negative examples.

Text-to-node disambiguation. For cases where node-
based examples cannot be provided, our system supports
inference from text-only examples. In general there is no

start Node[] f := Filter(p, s) | Disj(f , ..., f )
Node[] s := AllNodes() | ChildrenOf (f )

| DescendantsOf (f ) | RightSiblingsOf (f ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Node→Bool p := Tag(t) | Class(t) | Id(t) | ItemProp(t)

| NthChild(k) | NthLastChild(k)
| IdSub(t) | Style(t, t) | Attr(t, t)
| Conjunction(p, p)

input DomTree inp string t int k

Figure 4: The DSL L for HTML node selection

unique correspondence between a set of text examples and
nodes in the webpage DOM, e.g. a flight search results page
may contain the same airline name or flight times multiple
times, or product search pages may contain the same prices
or brand names for different products in the list. A set of a
few text examples can combinatorially lead to hundreds of
matching node combinations. We address the text-to-node
disambiguation problem by ranking possible node combi-
nations using a number of structural features, as well as
utilising the global bottom-up document analysis.

Some details of this work are in our technical report [36].

2 WEB EXTRACTION LANGUAGE
In this section we describe the domain specific language
(DSL) that we use for data extraction from webpages. Apart
from the design consideration of programs being express-
ible in standard webpage query languages, another technical
trade-off in the DSL design in any program synthesis ap-
proach is between expressivity of the language and tractabil-
ity of the synthesis algorithm, as too much expressivity can
severely affect the performance of synthesis. Figure 4 shows
the context-free grammar of the DSL L that we use for ex-
tracting nodes from an HTML document. It defines programs
that are based on path expressions and filter predicates, and
can be directly translated to common DOM query languages
including XPath and CSS (we define the DSL independently
of the syntax of these languages to keep the synthesis for-
mulation generic). The terminal input symbol inp indicates
the input to a program which is the DOM tree of the en-
tire HTML document. The start symbol f of the grammar
indicates the output of any complete program, which is a
sequence of nodes selected from the input tree.
A complete program can either be a simple filter expres-

sion Filter(p, s) or a disjunction Disj(f , ..., f ) of any num-
ber of filter expressions (disjunction is equivalent to the
union operator “|” in XPath or “,” in CSS). A simple filter
expression Filter(p, s) applies a filtering condition p on a
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selection of nodes s. The selection s can be all the nodes
in the document (AllNodes) or obtained as the immediate
children (ChildrenOf), any descendants (DescendantsOf), or
right siblings (RightSiblingsOf) of a set of nodes obtained
from a previous filter operation. The condition p used for
filtering is a boolean function on nodes that is either an
atomic predicate or conjunction Conjunction(p, p) of any
number of atomic predicates. Atomic predicates include
checks for the tag type of the node (Tag), its class (Class),
ID (full match Id or substring match IdSub), item property
frommicrodata (ItemProp), sibling index (NthChild from left
or NthLastChild from right), as well as arbitrary key-value
checks on styles (Style) and attributes (Attr). In principle, our
approach is independent of the particular atomic node-level
predicates, and these may vary in different environments (e.g.
some attributes such as text content may be expressible in
XPath but not in CSS, and we also avoid attributes that may
cause overfitting such as href). As an example, a program to
select any node of class “c1” that is the second child of any
“DIV” element that occurs under the node with ID “mydata” is
Filter(Conjunction(Class(“c1”),NthChild(2)),ChildrenOf(Filter(
Tag(“DIV”),DescendantsOf (Filter(AllNodes(), Id(“mydata”))))))
An inductive translation exists for any program in our DSL
to the CSS or XPath languages. The above program directly
translates to the CSS selector “#mydata DIV > .c1:nth-child(2)”.

In Figure 4, we have distinguished two notable fragments
of the DSL: we refer to as L𝑡 the fragment that excludes
operators with a dotted underline, andL𝑏 excludes operators
with full underline. These fragments are notable in the way
they are better suited to different synthesis strategies. L𝑏

is a very limited language better suited to efficient bottom-
up enumeration of programs, as shown in [34]. Its use of
the descendant operator also allows a bottom-up search to
explore more expressive logics rather than the limited node
neighborhoods accessible to the direct child operator. In
contrast, L𝑡 is a richer fragment but uses the direct child
operator that is better suited to top-down deductive inference
as constraints can be tractably propagated through the node
levels [17, 32, 35]. In this work, the richness of our full DSLL
which includes bothL𝑡 andL𝑏 enables the inference of more
concise programs (e.g. a single descendant expression rather
than a long sequence of child steps) as well as handling tasks
that may otherwise not be expressible in either approach.

3 PROGRAM SYNTHESIS ALGORITHM
In this section we describe the algorithm for synthesizing
programs in the DSL L given a web document and examples
specification provided by the user. An examples specification
provides a sequence of text values from the webpage that is
a prefix of some long sequence of data that the user would
like to extract from the page. The example specification may
optionally include the precise nodes on the webpage which

1: function SynthProg(𝑑, 𝐸)
2: 𝑃 ← SynthFilterProg(𝑑, 𝐸)
3: if 𝑃 ≠ null return 𝑃

4: 𝐸1 ← Max({𝐸 ′ | 𝐸 ′ ⊆ 𝐸∧SynthFilterProg(𝑑, 𝐸 ′) ≠ null})
5: 𝑃1 ← SynthFilterProg(𝑑, 𝐸1)
6: 𝑃2 ← SynthProg(𝑑, 𝐸\𝐸1)
7: return Disj(𝑃1, 𝑃2)
1: function SynthFilterProg(𝑑, 𝐸)
2: E ← EnumerateBottomUp(𝑑)
3: G ← TopAlignmentGroups(E)
4: N ← TopNodeCombinations(𝑑, 𝐸,G)
5: for each 𝑁 ∈ N until max iterations bound do
6: 𝑃𝑡 ← SynthTopDown(𝑑, 𝑁 , null)
7: if 𝑃𝑡 ≠ null then
8: 𝑃ℎ ← SynthHybrid(𝑑, 𝑁 ,G, 𝑃𝑡 )
9: if 𝑃ℎ ≠ null return 𝑃ℎ else return 𝑃𝑡

10: return SynthBottomUp(𝑑, 𝐸,G, E)

Figure 5: Program synthesis algorithm

contain each of the text values (e.g. from a visual point-and-
click UI for instance). For instance, Figure 3 shows a sample
of an IMDB page containing 100 movies. To extract all the
movie names the user can provide the first two examples:

[(“Snow White and the Seven Dwarfs”, 𝑛1), (“Fantasia”, 𝑛2)]
where 𝑛1 and 𝑛2 can be null if examples are text-only, or
they may be the nodes in the webpage that contain those
text values. Given this specification, with or without node in-
formation, the algorithm generates a program represented by
the CSS selector “.info > B > A” which extracts all 100 movie
names from the page. Formally, for a given web document
𝑑 and example specification 𝐸 = [(𝑡1, 𝑛1), . . . , (𝑡𝑘 , 𝑛𝑘 )], the
algorithm learns a DSL program 𝑃 ∈ L such that J𝑃K(𝑑) =
[𝑛′1, ..., 𝑛′𝑘 , ..., 𝑛

′
𝑠 ], where 𝑛′𝑖 .Text = 𝑡𝑖 and if 𝑛𝑖 ≠ null then

𝑛𝑖 = 𝑛′𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 . We write Satisfies(𝑃, 𝐸, 𝑑) when a
program 𝑃 satisfies an example specification 𝐸 on a docu-
ment 𝑑 in this way.

We first give a summary description of the top-level algo-
rithm, which is shown in Figure 5, and shall then describe the
main components in more detail. The algorithm implements
a combination of top-down and bottom-up program synthe-
sis. It uses bottom-up exploration to infer sets of programs
that reveal alignment patterns of nodes on the webpage, in-
dependent of any user-provided examples. This global anal-
ysis is used as a signal to improve a supervised top-down
synthesis in order to favour those programs whose results
align with the inferred structural patterns. The main func-
tion SynthProg(𝑑, 𝐸) returns a program in L that satisfies
examples 𝐸 on document 𝑑 . This function first attempts to
synthesize a filter program that satisfies the examples (lines 2-
3), and if no such program is found then it returns a minimal
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1: function TopNodeCombinations(𝑑, 𝐸,G)
2: let 𝐸 = [(𝑡1, 𝑛1), ..., (𝑡𝑘 , 𝑛𝑘 )]
3: if 𝑛𝑖 ≠ null for all 𝑖 = 1 . . . 𝑘 then
4: 𝑁 ← [𝑛1, ..., 𝑛𝑘 ]
5: return [𝑁 ]
6: let 𝑇 = [𝑡1, ..., 𝑡𝑘 ]
7: let [𝑆1, ..., 𝑆𝑘 ] such that 𝑆𝑖 = {𝑛 ∈ 𝑑 | 𝑛.Text = 𝑡𝑖 }
8: N ← 𝑆1 × . . . × 𝑆𝑘
9: return N where 𝑁 ∈ N are ordered lexically by
10: BottomUpAlignment(𝑁,G),UniformTags(𝑁,𝑑),
11: ExtremalNodes(𝑁,𝑑),UniqueCommonAncestor(𝑁,𝑑),
12: UniformTagClass(𝑁,𝑑),NodeDistanceDev(𝑁,𝑑)

Figure 6: Node combinations from text specification

disjunction of filter expressions that cover all the examples
(lines 4-7). The function SynthFilterProg(𝑑, 𝐸) synthesizes
non-disjunctive filter expressions. It starts by performing an
unsupervised analysis of the webpage enumerating a large
number of programs and obtaining groups of highly aligned
programs from this set (lines 2-3). This information is used
in various ways in the remainder of the algorithm. Next we
infer the top-ranked node combinations that match the text-
based examples if node examples are not given (line 4). We
then try each of the node combinations until a valid program
can be found using top-down synthesis (line 6). If this infer-
ence is successful on a node combination, then we perform
the hybrid synthesis that checks if top-down inference can
be improved using the bottom-up analysis (lines 7-9). Finally,
if no satisfying programs could be found, then we fall back
to a purely bottom-up search (line 10).
We state some basic definitions. For nodes 𝑛, 𝑛′ in a web-

page, we say IsAnc(𝑛, 𝑛′) when 𝑛′ is an ancestor of 𝑛. For a
sequence of nodes𝑁 we define LCA(𝑁 ) to be the lowest com-
mon ancestor of all nodes in 𝑁 . For node sequences 𝑁, 𝑁 ′ we
say 𝑁 ′ is an ancestor sequence of 𝑁 , stated IsAncSeq(𝑁, 𝑁 ′),
iff𝑁 = [𝑛1, . . . , 𝑛𝑘 ] and there exists a subsequence [𝑛′1, . . . , 𝑛′𝑘 ]
of 𝑁 ′ such that each 𝑛′𝑖 is an ancestor of 𝑛𝑖 .
Bottom-up synthesis. The bottom-up method we use

is based on [34], and proceeds by enumerating and finding
groups of programs that exhibit strong alignment patterns.
Enumeration is done by themethod EnumerateBottomUp(𝑑)
in Figure 5, which returns a set of states E, where each state
is a pair (𝑃, 𝑁 ) of a program and the sequence of nodes it
selects from the webpage, that is J𝑃K(𝑑) = 𝑁 . It performs
efficient enumeration in the DSL fragment L𝑏 by recursive
rule application using lifting functions and other optimiza-
tions such as semantic equivalence [34]. After enumeration,
the TopAlignmentGroups(E) function is used to find the
list G of the top ranked alignment groups of programs. An
alignment group is of the form (𝑃𝑎, (𝑃1, . . . , 𝑃𝑛)), where for
J𝑃𝑎K(𝑑) = 𝑁𝑎 and J𝑃𝑖K(𝑑) = 𝑁𝑖 we have 𝑁𝑎 and all 𝑁𝑖 are

minimal sequences of nodes in the sense that no node in the
sequence is an ancestor of any other node in the sequence,
and for each 𝑁𝑖 , we have |𝑁𝑖 | = |𝑁𝑎 | and IsAncSeq(𝑁𝑖 , 𝑁𝑎).
We refer to 𝑃𝑎 as the common ancestor program for the
alignment group, and the other programs as field programs.
We compute alignment groups by performing a pairwise
quadratic-time comparison of the enumerated states E with
each other to check interleaving, and then rank by largest
alignment groups. Unlike [34], we do the additional step of
finding an ancestor state from E for each alignment group.
Considering the IMDB example from Figure 3, the enumera-
tion and alignment analysis yields a highly ranked alignment
group with ancestor program “.list_item” that selects the 100
DIV elements for each movie. The inferred field programs ex-
tract various properties such as the movie year (“.year_type”),
the running time (“.item_desc SPAN”), etc. However, not all
fields are captured, e.g. the movie title requires a selector
“.info > B > A” which lies outside the bottom-up DSL L𝑏 , and
we shall describe how our hybrid synthesis approach utilises
the alignment group to infer the title selector.
Although the bottom-up synthesis is mainly used for an

unsupervised analysis of the webpage, in the final step of the
main algorithm (Figure 5) we resort to a purely bottom-up
search if no satisfying program is found in the top-down
DSL. The function SynthBottomUp(𝑑, 𝐸,G, E) searches for
a satisfying program first within the top-ranked alignment
groups G, and then all remaining enumerated states E.
Text-node disambiguation. Figure 6 shows the func-

tion for inferring top-ranked node combinations that match
text-based examples. It returns a ranked list N , where each
𝑁 ∈ N is a sequence of nodes such that |𝑁 | = |𝑇 | and
𝑁 [𝑘] .Text = 𝑇 [𝑘] for all 𝑘 . It infer combinations match-
ing the text examples by performing a cartesian product
over the sets of all matching nodes for each text value, and
then ranking them using a number of features leveraging
both the bottom-up analysis as well as structural properties
of the document. The BottomUpAlignment feature prefers
node combinations that are consistent with any of the align-
ment groups created by the bottom-up analysis. Formally,
BottomUpAlignment(𝑁,G, 𝑑) if and only if there exists some
(𝑃𝑎, (𝑃1, . . . , 𝑃𝑛)) ∈ G such that IsAncSeq(𝑁, J𝑃𝑎K(𝑑)). The
remaining features are based on uniformity of node attributes
and structural properties of the nodes in the document. They
include UniformTags (all nodes in the combination have the
same tag), ExtremalNodes (nodes are either all maximal or
all minimal in ancestor hierarchy),UniqueCommonAncestor
(any common ancestor of 2 or more nodes is a common an-
cestor of all nodes), UniformTagClass (all nodes have same
pattern of tags and class names in their ancestor hierarchy),
andNodeDistanceDev (the nodes occur at uniform distances
between each other, in terms of document ordering).
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1: function SynthTopDown(𝑑, 𝑁𝑒 , 𝑁𝑎)
2: 𝑁𝑝 ← {𝑛 ∈ 𝑑 | 𝑛 is parent of some 𝑛′ ∈ 𝑁𝑒 }
3: 𝑃𝑝 ← SynthTopDown(𝑑, 𝑁𝑝 , 𝑁𝑎)
4: P𝑠 = { ChildrenOf (𝑃𝑝 ), AllNodes() }
5: P ← ∅
6: for each 𝑃𝑠 ∈ P𝑠 do
7: 𝑁𝑠 ← J𝑃𝑠K(𝑑)
8: 𝑃𝑐 ← SynthPredicate(𝑑, 𝑁𝑠 , 𝑁𝑒 , 𝑁𝑎)
9: 𝑃 = Filter(𝑃𝑐 , 𝑃𝑠 )
10: if 𝑁𝑎 = null ∨ SatisfiesAncSeq(J𝑃K(𝑑), 𝑁𝑒 , 𝑁𝑎) then
11: P ← P ∪ {𝑃}
12: return ArgMin

𝑃 ∈P
( |J𝑃K(𝑑) |, Size(𝑝))

1: function SatisfiesAncSeq(𝑁, 𝑁𝑒 , 𝑁𝑎)
2: if IsAncSeq(𝑁𝑒 , 𝑁𝑎) return ∀𝑛 ∈𝑁 .∃𝑛′ ∈𝑁𝑎 . IsAnc(𝑛, 𝑛′)
3: else return ∀𝑛 ∈ 𝑁𝑎 .∃𝑛′ ∈ 𝑁 . IsAnc(𝑛, 𝑛′)

Figure 7: Top-down synthesis

As an example, one of the pages in our test scenarios
was a Kayak flight search results page, where the airline
name “United” appears 44 times in different regions of the
page: in many onward/return journey legs, under the price
in the second result, and even before the main search results
in the left margin of the page. Despite such ambiguity, for
the task of extracting the onward flight name for each flight
result, from just the first 2 examples [“United”, “United”] (both
happened to be the same airline in this case), using the above
features our method matches the correct nodes required to
infer the program for extracting airline names.

Top-down synthesis & predicate inference. The func-
tion SynthTopDown(𝑑, 𝑁𝑒 , 𝑁𝑎) in Figure 7 returns a program
𝑃 in the DSL fragment L𝑡 such that J𝑃K(𝑑) = 𝑁 ′ where
𝑁𝑒 is a prefix subsequence of 𝑁 ′. The parameter 𝑁𝑎 to the
function imposes an optional ancestor constraint on 𝑁 ′ that
∀𝑛 ∈ 𝑁𝑎 .∃𝑛′ ∈ 𝑁 ′.IsAnc(𝑛′, 𝑛) (this is an optional parame-
ter we make use of in hybrid synthesis). Following standard
top-down approaches [17, 32, 35], the function proceeds by
propagating examples constraints for each of the parameters
of the applicable DSL operators (in this case Filter, AllNodes
and ChildrenOf). However, unlike previous techniques, we
use a novel predicate inference method that alleviates over-
fitting and infers concise conjunctions.

The SynthPredicate(𝑑, 𝑁𝑠 , 𝑁𝑒 , 𝑁𝑎) function infers a pred-
icate 𝑃 that satisfies all the example nodes 𝑁𝑒 from a set of
nodes 𝑁𝑠 and satisfies the ancestor constraint 𝑁𝑎 . The first
step is to synthesize all the atomic predicates satisfied by all
examples, which is done by a simple analysis of all common
attributes of nodes in 𝑁𝑒 . At this point, the key question
is what conjunction of these predicates to choose, as any
subset of the predicates is a valid generalization but selects
different nodes from 𝑁𝑠 . Approaches that simply take the

1: function SynthHybrid(𝑑, 𝑁 ,G, 𝑃𝑡 )
2: 𝑁𝑡 ← J𝑃𝑡 K(𝑑)
3: N𝑎 ← ∅
4: for each (𝑃𝑎, (𝑃1, ..., 𝑃𝑘 )) ∈ G do
5: 𝑁𝑎 ← J𝑃𝑎K(𝑑)
6: if IsAncSeq(𝑁𝑡 , 𝑁𝑎) ∧ LCA(𝑁𝑡 ) = LCA(𝑁𝑎) then
7: for 𝑖 = 1...𝑘 do
8: 𝑁𝑖 ← J𝑃𝑖K(𝑑)
9: if ∀𝑗 = 1...|𝑁 |. 𝑁𝑖 [ 𝑗] = 𝑁 [ 𝑗] return 𝑃𝑖

10: N𝑎 ← N𝑎 ∪ {𝑁𝑎}
11: for each 𝑁𝑎 ∈ N𝑎 do
12: 𝑃ℎ ← SynthTopDown(𝑑, 𝑁 , 𝑁𝑎)
13: if 𝑃ℎ ≠ null return 𝑃ℎ

14: return null

Figure 8: Hybrid program synthesis

conjunction of all predicates (least general generalization)
create syntactically complex programs that also overfit and
require many examples to generalize. The approach we use
here is to formulate the predicate inference as a minimal
set cover problem in which we aim to find the smallest set
of predicates that avoid as many implicit negative examples
as possible. The implicit negative examples we choose is
a heuristic choice that prefers to avoid nodes that lie out-
side the LCA of the example nodes (prefer generalization
to within the LCA) and those that occur before any of the
example nodes (since the example nodes are a prefix of the
desired sequence). We use a greedy approximation algorithm
to the set cover problem [6] to produce the smallest conjunc-
tions, by incrementally adding predicates that exclude the
largest number of uncovered negative examples. The one
additional check we make is to exclude any predicates that
do not satisfy the ancestor constraint 𝑁𝑎 if one is provided
(details available in our full technical report [36]).

Hybrid synthesis.We now describe our hybrid synthesis
approach which combines the top down inference (which
is prone to overfitting given the expressive DSL and a few
examples) with the bottom-up analysis (which infers global
structural patterns but it is limited by the very restrictedDSL).
In the main synthesis algorithm SynthFilterProg in Figure
5, if the top-down synthesis succeeds on a particular node
combination, then we attempt to improve this program using
the hybrid approach (line 8). The SynthHybrid(𝑑, 𝑁 ,G, 𝑃𝑡 )
function is shown in Figure 8. It synthesizes a program that
satisfies the node specification 𝑁 , using the top-ranked align-
ment groups G created by the bottom-up synthesis and the
top-ranked program 𝑃𝑡 created by the top-down synthesis.
The key idea underlying the hybrid approach is that when-
ever the top-down program 𝑃𝑡 produces results that are con-
sistent with any of the alignment groups in G, then we try
to ensure the alignment is completely satisfied: that 𝑃𝑡 is
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not missing some of the records of the alignment group by
overfitting to the examples. Hence, in the main loop at line 4,
for each alignment group we check if the ancestor program
of the group is also an ancestor program for the top-down
result and they share a common LCA. If so, then the first
preference is to simply prefer any program in the alignment
group if it directly satisfies the examples, since this program
satisfies the full alignment group and the examples and is
also within the simpler DSL L𝑏 (lines 7-9). But such a pro-
gram may not exist in the alignment group because of the
restricted bottom-up language. In this case we collect the
ancestor programs for all the satisfying groups in N𝑎 (line
10). We then try each of these ancestor programs 𝑁𝑎 ∈ N𝑎

as an ancestor constraint in a top-down synthesis in order
to find a program that can generalize to all of the records of
the alignment group (lines 11-14).

We illustrate the hybrid approachwith the examplemovies
page in Figure 3. We have described how the bottom-up
analysis detects the correct alignment group with all 100
result records, and some fields such as movie runtimes, years,
etc. However, the movie title field was not detected in this
limited DSL. To extract the movie titles, if we provide the
first 2 examples to the purely top-down algorithm we get the
program “B:nth-last-child(6) > A”. This extracts 99 of the 100
titles: all except the 12th one, which is different because it is
missing the director field as shown in Figure 3. Hence the
nth-last-child logic fails in this case. However, considering
our hybrid synthesis approach, this program is consistent
with the correct alignment group with 100 records. Since
none of the field programs in the group directly satisfy the
examples, we re-perform the top-down synthesis using the
group ancestor nodes as the ancestor constraint. This forces
a generalization to all records in the group and gives the
improved program “.info > B > A” which is expressible in the
top-down DSL and correctly extracts all 100 movie titles.

4 EVALUATION
In this section we describe an evaluation of our method with
respect to different aspects of quality.

Overall accuracy across documents. We first demon-
strate improvement in overall accuracy of our hybrid syn-
thesis approach (HYB) in comparison to the current state-
of-the-art approaches. These include the recent work [30]
on forgiving data extractors (FX), their corresponding non-
forgiving synthesis method (NFX), the C4.5 classifier of [33]
(C4.5), a naive bayes classifier [19] (NB), XPath alignment-
based synthesis [29] (XA), and synthesis using least general
generalizations [23, 32] (LGG). The implementations for FX,
NFX, C4.5, NB, and XA were from [30] (some using Weka
[13]), and LGG is from [32] (many thanks to the authors).

Precision Recall F1
HYB 0.86 ± 0.03 0.87 ± 0.03 0.86 ± 0.03
FX 0.21 ± 0.03 0.97 ± 0.01 0.25 ± 0.03
NFX 0.77 ± 0.03 0.89 ± 0.03 0.78 ± 0.03
C4.5 0.61 ± 0.04 0.86 ± 0.03 0.65 ± 0.04
NB 0.32 ± 0.03 0.97 ± 0.01 0.38 ± 0.03
XA 0.73 ± 0.04 0.76 ± 0.04 0.73 ± 0.04
LGG 0.74 ± 0.04 0.75 ± 0.04 0.74 ± 0.04

Figure 9: Precision, recall & F1 with 95% C.I.

We evaluated the systems using three datasets which
contain extraction tasks over a broad range of verticals,
websites and attributes (all our datasets are available from:
https://app.box.com/s/vi4c976afptq39524y1pofz7fw995qf9).
We used the DS1 dataset from [30] which contains 166 man-
ually annotated pages from 30 websites ranging over 4 ver-
ticals (books, shopping, hotels and movies). However, we
observed that the ground truth in the DS1 dataset included
significant redundancy in terms of multiple labelled nodes
for the same attribute value: e.g. if the title of the book occurs
in multiple nodes in different regions of a book webpage,
then all of these nodes are marked as the ground truth. Since
such redundant extraction is often not the case in practice,
we created the datasetDS1-b, which uses the samewebpages
and tasks from DS1 but without duplicates. To consider a
wider range of verticals and websites, we used another bigger
dataset SWDE which consists of 626 annotated webpages
from 80 websites ranging over 8 verticals (auto, book, camera,
job, movie, NBA player, restaurant, university). We obtained
SWDE as a subset of the larger structured web data extrac-
tion dataset from [14]. Since the original dataset contained
text values rather than node annotations, we manually an-
notated the first two pages for each (vertical, site, attribute)
combination so that SWDE maintains the same variety as
the original dataset but fewer page instances.

We performed experiments on each system using the three
datasets DS1, DS1-b and SWDE. In each case, we trained the
system on the webpages from the training set, and measured
accuracy of the synthesized extractor on the pages from the
test set. Figure 9 shows the precision, recall and F-measure
averaged across all tasks in all datasets, along with the corre-
sponding 95% confidence interval (CI). Themain result is that
our system HYB had the highest average F1 score of 0.86 and
this is a statistically significant improvement over all other
systems at the 95% confidence level (no overlap between the
CIs). HYB also had the highest precision with significance.
For recall, FX and NBwere significantly higher but they were
the lowest ranking systems overall, while NFX was slightly
higher but with overlapping CIs. The top performers on each
dataset individually were DS1: HYB, FX and NFX; DS1-b:

https://app.box.com/s/vi4c976afptq39524y1pofz7fw995qf9
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Figure 10: Number of examples for tasks in EX1& EX2

HYB and NFX; SWDE: HYB and XA (detailed results in our
full technical report [36]). As SWDE mostly contains tasks
with very few extractions per page, most baselines suffered
on precision here likely due to overgeneralization, while XA
performed well on this dataset but worse on others likely
due to insufficient generalization. Overall, HYB was the only
system that was among the top performers in each of the
datasets individually, and it was the single best performer
overall with statistical significance.

Number of examples per document.Measuring accu-
racy across documents using training/test sets assumes the
user must provide all of the desired nodes from each docu-
ment when training the system. As this can be difficult and
error-prone for list pages where a single page may contain
hundreds of nodes to extract, systems supporting partial
examples specifications allow the user to only give a small
subset of the desired nodes in a page. Here we evaluate how
many examples are required to give to the system before it
can learn the full extraction. The first dataset we used is EX1,
consisting of all list-like extraction tasks from the datasets
DS1, DS1-b and SWDE where there are at least 5 nodes to
extract (since inference from few examples would be trivial
for smaller extractions). This gave a total of 93 tasks (aver-
age of 12.8 nodes per task). We also used a bigger dataset
EX2 containing 225 list extraction tasks from 66 webpages
(average of 56.9 nodes per task). These were representative
customer scenarios from the Power BI product team, as well
as real use cases we collected from online forums (links to
the original sources are included with our dataset).

We compared against the two baseline systems LGG and
XA that also support partial examples (FX, NFX, C4.5 and
NB do not support partial examples by design, as they as-
sume all non-example nodes are negative examples). We also
compared with TDSN, which is our top-down system using
the greedy soft negative examples heuristic but not hybrid
synthesis. For each task, we provided examples to the system
incrementally according to document order of nodes in the
webpage, until all nodes were extracted. Figure 10 shows
the number of examples required for completion of tasks
in EX1 and EX2. The main result is that for both datasets,
our system HYB completed the most tasks with 2 examples
or less. The relative performance of the systems followed a
similar pattern in both datasets: the proportion of tasks com-
pleted with under 2 examples in EX1 was XA: 45.2%, LGG:
44.1%, TDSN: 53.8%, HYB: 65.6%, while for EX2 it was XA:
63.1%, LGG: 62.7%, TDSN: 72.0%, HYB: 85.8%. More examples
were required by all systems for EX1, which is likely due
to the high redundancy in tasks from DS1. Improvement in
TDSN over LGG or XA (∼9%) shows the effectiveness of the
greedy set cover heuristic in reducing the number of exam-
ples. The more significant improvement in HYB over TDSN
(∼13%) shows the greater benefits obtained with our hybrid
approach using bottom-up analysis. To compare against the
purely unsupervised bottom-up approach that works with-
out examples: the top table from such a system [34] failed
on 68.8% of tasks in EX1 and 31.6% for EX2.

Program complexity. The complexity of synthesized
programs is another important usability aspect, as programs
with numerous expressions can be difficult for users to un-
derstand or edit if required. We compared the number of op-
erators used in the CSS selectors synthesized by our system
HYB with the other systems that also synthesize CSS selec-
tors (LGG and TDSN). Across all datasets, 13.4% of programs
from LGG had three operators or fewer, while this increased
to 68.4% for programs from HYB. The average number of
operators were LGG: 7.9, TDSN: 3.8, HYB: 3.6. The complex-
ity of HYB programs is also comparable to human-written
CSS selectors which usually contain about 3 to 4 operators
for most extraction tasks. For some qualitative illustration,
the following table shows the CSS selectors synthesized by
the three systems for a sample task, where HYB could create
a much simpler selector by using the descendant operator
rather than long child paths created by the other systems:

HYB .above-button .price
TDSN .Theme-featured > A.booking-link[id*="-booking-link"][tabindex="0"]

[role="option"][target="_blank"]:nth-child(1):nth-last-child(1) > .price
LGG DIV.Common-Booking-MultiBookProvider.featured-provider.Theme-featured

.multi-row[id*="-price-mb-aE"][aria-hidden="false"]:nth-child(1):nth-last-child(1)
> A.booking-link[id*="-booking-link"][tabindex="0"][role="option"][target="_blank"]
:nth-child(1):nth-last-child(1) > SPAN.price.option-text:nth-child(1):nth-last-child(2)

As we cannot compare number of operators with XPath
synthesis methods, for approximate comparison we give the
string size of synthesized expressions. NFX and FX were
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running out of memory on EX2, but on EX1 the average
string sizes were HYB: 129, TDSN: 155, LGG: 345, XA: 272,
NFX: 227, FX: 1010. Particularly complex expressions were
created by FX (many disjuncts) and XA (long paths).
We have addressed program complexity using methods

like minimal set cover and expressive DSLs. Though the prob-
lem is more general than program equivalence (unequivalent
programs may be preferable if they satisfy examples), reduc-
tion based on full equivalence may yield further benefits.

Text-based examples. As previous approaches have not
addressed learning from text-only examples, we compared
our text-node disambiguation system with a naive baseline
in which we use our system but simply accept the first nodes
in the document that match the text examples. We provided
each system with the text-only examples for all the tasks in
datasets EX1 and EX2. We observed overall improvement in
the number of examples gained with our approach, which
succeeded with at most 2 examples in 76.4% of tasks as com-
pared to 70.1% for the naive baseline. The baseline also failed
altogether in 9.1% of tasks as compared to 3.8% for our ap-
proach. More details are in the full technical report [36].

Deployment. Our approach has been deployed as a fea-
ture in the Microsoft Power BI product (under active develop-
ment, with a version of the TDSN system currently released
for general audience). It has been well-received by users as
seen from numerous comments in online forums (see the
sources for tasks in our EX2 dataset). One example sentiment:
“I got so excited about this the day of release! I’ve managed to
get so many obscure things working!”

5 RELATEDWORK
Supervised approaches to web data extraction have mainly
centered around wrapper induction [21], where the goal is to
learn extraction rules from HTML pages given sample an-
notations. Early work in this area mainly focused on string
or token-based approaches [15, 21, 26], where the document
is viewed as a sequence of characters or tokens, and extrac-
tion is based around delimiter patterns. This is in contrast
to HTML-aware systems, which exploit the tree-structure
of HTML explicitly. This began with some interactive pro-
gramming approaches where the user provided various struc-
tural constraints [4, 27, 38], and since then there has been
greater focus on learning wrappers from examples in stan-
dard HTML query languages such as XPath or CSS [2, 10, 28–
30, 32, 42], which has also been our focus in this work. XPath
alignment approaches [28, 29] work by aligning and merging
the steps within the XPaths of sample nodes based on edit
distances, while least general generalization methods [32]
produce largest conjunctions of all common node attributes.
Such approaches can lead to long path expressions or numer-
ous predicates, which are complex to understand and over-fit

to the examples. Some approaches such as forgiving XPaths
(FX) [30] attempt to improve the recall and learn cross-site
selectors by using multiple disjuncts in the generated selec-
tors, but we have shown how this can lead to severe loss in
precision. Machine learning techniques have also been ex-
plored such as naive-bayes classifiers [10] and decision trees
(NFX system [30]), and we have also shown improvement
over such approaches with our hybrid synthesis method.
Other related work has gone beyond the use of standard

HTML languages and explored more complex extraction
models, such as using visual or semantic features or special-
ized handling for particular vertical domains [5, 9, 14, 20, 31].
Though beneficial in many scenarios, such approaches are
not designed to generate simple selector expressions that
users can understand. Thus in this respect, our problem
definition is more specialized than arbitrary information ex-
traction, as it includes the requirement of inferring concise,
readable programs in standard languages.
Fully automated web extraction approaches attempt to

mine recurring patterns in the DOM structure of web pages
without examples [3, 7, 34, 41]. Such approaches are good at
finding prominent patterns, but cannot extract all kinds of in-
formation desired by different users. However, in our hybrid
approach we have shown how to leverage such unsupervised
analysis to quickly converge to the desired extraction.

Program synthesis has seen rising progress in recent years
[1, 8, 11, 12, 22, 24, 25, 32, 34, 40], with commercial successes
such as the Flash Fill feature in Microsoft Excel [11]. Such
approaches aim to find a program in a domain-specific lan-
guage (DSL) that satisfies user examples, usually using either
bottom-up approaches that enumerate DSL programs [1, 34],
or top-down approaches [12, 32] where constraints are prop-
agated through the DSL structure. We have presented the
first hybrid technique that combines the benefits of the two
approaches into a semi-supervised synthesis system.

6 CONCLUSION
We have described a novel hybrid program synthesis ap-
proach for web data extraction programs, which provides
inference of concise programs expressible in common lan-
guages from very few examples and text-only examples. Our
evaluation illustrates the effectiveness of our approach in
dealing with the usability challenges on real-world datasets,
and meets the high bar for shipping in the mass-market
Power BI product. Although we have focussed on webpages,
the fundamental concepts of hybrid synthesis may be for-
mulated at a more abstract level and applicable to different
document domains if we consider other selection DSLs, e.g.
regex-based selectors for plain text, or spatial/position based
selections for PDF or scanned documents. These will be in-
teresting explorations for future work.
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