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Abstract

Existing fully-supervised person re-identification (ReID)
methods usually suffer from poor generalization capabil-
ity caused by domain gaps. The key to solving this prob-
lem lies in filtering out identity-irrelevant interference and
learning domain-invariant person representations. In this
paper, we aim to design a generalizable person ReID frame-
work which trains a model on source domains yet is able to
generalize/perform well on target domains. To achieve this
goal, we propose a simple yet effective Style Normalization
and Restitution (SNR) module. Specifically, we filter out
style variations (e.g., illumination, color contrast) by In-
stance Normalization (IN). However, such a process in-
evitably removes discriminative information. We propose
to distill identity-relevant feature from the removed infor-
mation and restitute it to the network to ensure high dis-
crimination. For better disentanglement, we enforce a dual
causality loss constraint in SNR to encourage the separa-
tion of identity-relevant features and identity-irrelevant fea-
tures. Extensive experiments demonstrate the strong gen-
eralization capability of our framework. Our models em-
powered by the SNR modules significantly outperform the
state-of-the-art domain generalization approaches on mul-
tiple widely-used person ReID benchmarks, and also show
superiority on unsupervised domain adaptation.

1. Introduction
Person re-identification (ReID) aims at match-

ing/identifying a specific person across cameras, times, and
locations. It facilitates many applications and has attracted
a lot of attention.

Abundant approaches have been proposed for supervised
person ReID, where a model is trained and tested on differ-
ent splits of the same dataset [65, 47, 68, 10, 43, 67, 21, 20].
They typically focus on addressing the challenge of ge-
ometric misalignment among images caused by diversity
of poses/viewpoints. In general, they perform well on the
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Figure 1: Illustration of motivation and our idea. Person
images captured from different cameras and environments
present style variations which result in domain gaps. We
use style normalization (with Instance Normalization) to al-
leviate style variations. However, this also results in the loss
of some discriminative (identity-relevant) information. We
propose to further restitute such information from the resid-
ual of the original information and the normalized informa-
tion for generalizable and discriminative person ReID.

trained dataset but suffer from signicant performance degra-
dation (poor generalization capability) when testing on a
previously unseen dataset. There are usually style discrep-
ancies across domains/datasets which hinder the achieve-
ment of high generalization capability. Figure 1 shows
some example images1 from different ReID datasets. The
person images are captured by different cameras under dif-
ferent environments (e.g., lighting, seasons). They present a
large style discrepancy in terms of illumination, hue, color
contrast and saturation, quality/resolution, etc. For a ReID

1All faces in the images are masked for anonymization.
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system, we expect it to be able to identify the same per-
son even captured in different environments, and distinguish
between different people even if their appearance are simi-
lar. Both generalization and discrimination capabilities, al-
though seemly conflicting with each other, are very impor-
tant for robust ReID.

Considering the existence of domain gaps and poor gen-
eralization capability, fully-supervised approaches or set-
tings are not practical for real-world widespread ReID sys-
tem deployment, where the onsite manual annotation on the
target domain data is expensive and hardly feasible. In re-
cent years, some unsupervised domain adaptation (UDA)
methods have been studied to adapt a ReID model from
source to target domain [53, 50, 35, 42, 7, 64, 60]. UDA
models update using unlabeled target domain data, eman-
cipating the labelling efforts. However, data collection and
model update are still required, adding additional cost.

We mainly focus on the more economical and practi-
cal domain generalizable person ReID. Domain generaliza-
tion (DG) aims to design models that are generalizable to
previously unseen domains [40, 19, 45], without having to
access the target domain data and labels, and without re-
quiring model updating. Most DG methods assume that
the source and target domains have the same label space
[22, 26, 40, 44] and they are not applicable to ReID since
the target domains for ReID typically have a different label
space from the source domains. Generalizable person ReID
is challenging which aims to achieve high discrimination
capability on unseen target domain that may have large do-
main discrepancy. The study on domain generalizable ReID
is rare [45, 19] and remains an open problem. Jia et al. [19]
and Zhou et al. [75] integrate Instance Normalization (IN)
in the networks to alleviate the domain discrepancy due to
appearance style variations. However, IN inevitably results
in the loss of some discriminative features [17, 41], hinder-
ing the achievement of high efficiency ReID.

In this paper, we aim to design a generalizable ReID
framework which achieves both high generalization capa-
bility and discrimination capability. The key is to find a way
to disentangle the identity-relevant features and the identity-
irrelevant features (e.g., image styles). Figure 1 illustrates
our main idea. Considering the domain gaps among im-
age samples, we perform style normalization by means of
IN to eliminate style variations. However, the normaliza-
tion inevitably discards some discriminative information
and thus may hamper the ReID performance. From the
residual information (which is the difference between the
original information and the normalized information), we
further distill the identity-relevant information as a com-
pensation to the normalized information. Figure 2 shows
our framework with the proposed Style Normalization and
Restitution (SNR) modules embedded. To better disentan-
gle the identity-relevant features from the residual, a dual

causality loss constraint is added by ensuring the features
after restitution of identity-relevant features to be more dis-
criminative, and the features after compensation of identity-
irrelevant features to be less discriminative.

We summarize our main contributions as follows:
• We propose a practical domain generalizable person

ReID framework that generalizes well on previously un-
seen domains/datasets. Particularly, we design a Style
Normalization and Restitution (SNR) module. SNR is
simple yet effective and can be used as a plug-and-play
module for existing ReID architectures to enhance their
generalization capabilities.

• To facilitate the restitution of identity-relevant features
from those discarded in the style normalization phase, we
introduce a dual causality loss constraint in SNR for bet-
ter feature disentanglement.
We validate the effectiveness of the proposed SNR mod-

ule on multiple widely-used benchmarks and settings. Our
models significantly outperform the state-of-the-art domain
generalizable person ReID approaches and can also boost
the performance of unsupervised domain adaptation for
ReID.

2. Related Work
Supervised Person ReID. In the last decade, fully-
supervised person ReID has achieved great progress, espe-
cially for deep learning based approaches [47, 25, 68, 10,
43, 67]. These methods usually perform well on the test-
ing set of the source datasets but generalize poorly to previ-
ously unseen domains/datasets due to the style discrepancy
across domains. This is problematic especially in practical
applications, where the target scenes typically have differ-
ent styles from the source domains and there is no readily
available target domain data or annotation for training.
Unsupervised Domain Adaptation (UDA) for Person
ReID. When the target domain data is accessible, even with-
out annotations, it can be explored for the domain adap-
tation for enhancing the ReID performance. This requires
target domain data collection and model updating. UDA-
based ReID methods can be roughly divided into three cat-
egories: style transfer [5, 56, 35], attribute recognition
[53, 63, 42], and target-domain pseudo label estimation
[7, 46, 72, 50, 66, 64]. For pseudo label estimation, recently,
Yu et al. propose a method called multilabel reference
learning (MAR) which evaluates the similarity of a pair of
images by comparing them to a set of known reference per-
sons to mine hard negative samples [64].

Our proposed domain generalizable SNR module can
also be combined with the UDA methods (e.g., by plugging
into the UDA backbone) to further enhance the ReID perfor-
mance. We will demonstrate its effectiveness by combining
it with the UDA approach of MAR in Subsection 4.5.
Domain Generalization (DG). Domain Generalization is
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Figure 2: Overall flowchart. (a) Our generalizable person ReID network with the proposed Style Normalization and Resti-
tution (SNR) module being plugged in after some convolutional blocks. Here, we use ResNet-50 as our backbone for
illustration. (b) Proposed SNR module. Instance Normalization (IN) is used to eliminate some style discrepancies followed
by identity-relevant feature restitution (marked by red solid arrows). Note the branch with dashed green line is only used for
enforcing loss constraint and is discarded in inference. (c) Dual causality loss constraint encourages the disentanglement of a
residual featureR to identity-relevant one (R+) and identity-irrelevant one (R−), which enhances and decreases, respectively,
the discrimination by adding them to the style normalized feature F̃ .

a challenging problem of learning models that is general-
izable to unseen domains [40, 44]. Muandet et al. learn
an invariant transformation by minimizing the dissimilar-
ity across source domains [40]. A learning-theoretic anal-
ysis shows that reducing dissimilarity improves the gener-
alization ability on new domains. CrossGrad [44] gener-
ates pseudo training instances by pertubations in the loss
gradients of the domain classifier and category classifier re-
spectively. Most DG methods assume that the source and
target domains have the same label space. However, ReID
is an open-set problem where the target domains typically
have different identities from the source domains, so that the
general DG methods could not be directly applied to ReID.

Recently, a strong baseline for domain generalizable per-
son ReID is proposed by simply combing multiple source
datasets and training a single CNN [24]. Song et al. [45]
propose a generalizable person ReID framework by using a
meta-learning pipeline to make the model domain invariant.
To overcome the inconsistency of label spaces among dif-
ferent datasets, it maintains a training datasets shared mem-
ory bank. Instance Normalization (IN) has been widely
used in image style transfer [17, 52] and proved that it actu-
ally performs a kind of style normalization [41, 17]. Jia et
al. [19] and Zhou et al. [75] apply this idea to ReID to al-
leviate the domain discrepancy and boost the generalization
capability. However, IN inevitably discards some discrimi-
native information. In this paper, we study how to design a
generalibale ReID framework that can exploit the merit of
IN while avoiding the loss of discriminative information.

3. Proposed Generalizable Person ReID
We aim at designing a generalizable and robust person

ReID framework. During the training, we have access to
one or several annotated source datasets. The trained model
will be deployed directly to unseen domains/datasets and is
expected to work well with high generalization capability.

Figure 2 shows the overall flowchat of our framework.
Particularly, we propose a Style Normalization and Resti-
tution (SNR) module to boost the generalization and dis-
crimination capability of ReID models especially on un-
seen domains. SNR can be used as a plug-and-play module
for existing ReID networks. Taking the widely used ReID
network of ResNet-50 [13, 1, 37] as an example (see Fig-
ure 2(a)), SNR module is added after each convolutional
block. In the SNR module, we first eliminate style discrep-
ancy among samples by Instance Normalization (IN). Then,
a dedicated restitution step is proposed to distill identity-
relevant (discriminative) features from those previsouly dis-
carded by IN, and add them to the normalized features.
Moreover, for the SNR module, we design a dual causal-
ity loss constraint to facilitate the distillation of identity-
relevant features from the information discarded by IN.

3.1. Style Normalization and Restitution (SNR)

Person images for ReID could be captured by different
cameras under different scenes and environments (e.g., in-
door/outdoors, shopping malls, street, sunny/cloudy). As
shown in Figure 1, they present style discrepancies (e.g., in
illumination, hue, contrast, saturation, quality), especially

3



for samples from two different datasets/domains. Domain
discrepancy between the source and target domain gener-
ally hinders the generalization capability of ReID models.

A learning-theoretic analysis shows that reducing dis-
similarity improves the generalization ability on new do-
mains [40]. Instance Normalization (IN) performs some
kinds of style normalization which reduces the discrep-
ancy/dissimilarity among instances/samples [17, 41], so it
can enhance the generalization ability of networks [41, 19,
75]. However, IN inevitably removes some discriminative
information and results in weaker discrimination capability
[41]. To address this problem, we propose to restitute the
task-specific discriminative features from the IN removed
information, by disentangling it into identity-relevant fea-
tures and identity-irrelevant features with a dual causality
loss constraint (see Figure 2(b)). We elaborate on the de-
signed SNR module hereafter.

For an SNR module, we denote the input (which is a
feature map) by F ∈ Rh×w×c and the output by F̃+ ∈
Rh×w×c, where h,w, c denote the height, width, and num-
ber of channels, respectively.
Style Normalization Phase. In SNR, we first try to reduce
the domain discrepancy on the input features by performing
Instance Normalization [51, 6, 52, 17] as

F̃ = IN(F ) = γ(
F − µ(F )
σ(F )

) + β, (1)

where µ(·) and σ(·) denote the mean and standard deviation
computed across spatial dimensions independently for each
channel and each sample/instance, γ, β ∈ Rc are parame-
ters learned from data. IN could filter out some instance-
specific style information from the content. With IN taking
place in the feature space, Huang et al. [17] have argued and
experimentally shown that IN has more profound impacts
than a simple contrast normalization and it performs a form
of style normalization by normalizing feature statistics.
Style Restitution Phase. IN reduces style discrepancy
and boosts the generalization capability. However, with
the mathematical operations being deterministic and task-
irrelevant, it inevitably discards some discriminative (task-
relevant) information for ReID. We propose to restitute the
identity-relevant feature to the network by distilling it from
the residual feature R. R is defined as

R = F − F̃ , (2)

which denotes the difference between the original input fea-
ture F and the style normalized feature F̃ .

Given R, we further disentangle it into two parts:
identity-relevant feature R+ ∈ Rh×w×c and identity-
irrelevant feature R− ∈ Rh×w×c through masking R by a
learned channel attention vector a = [a1, a2, · · · , ac] ∈ Rc:

R+(:, :, k) =akR(:, :, k),

R−(:, :, k) =(1− ak)R(:, :, k),
(3)

where R(:, :, k) ∈ Rh×w denotes the kth channel of feature
map R, k = 1, 2, · · · , c. We expect the channel attention
vector a to enable the adaptive distillation of the identity-
relevant features for restitution, and derive it by SE-like [16]
channel attention as

a = g(R) = σ(W2δ(W1pool(R))), (4)

which consists of a global average pooling layer followed
by two FC layers that are parameterized by W2 ∈ R(c/r)×c

and W1 ∈ Rc×(c/r) which are followed by ReLU activation
function δ(·) and sigmoid activation function σ(·), respec-
tively. To reduce the number of parameters, a dimension
reduction ratio r is used and is set to 16.

By adding the distilled identity-relevant feature R+ to
the style normalized feature F̃ , we obtain the output feature
F̃+ of the SNR module as

F̃+ = F̃ +R+. (5)

Dual Causality Loss Constraint. In order to facilitate the
disentanglement of identity-relevant feature and identity-
irrelevant feature, we design a dual causality loss constraint
by comparing the discrimination capability of features be-
fore and after the restitution. As illustrated in Figure 2(c),
the main idea is that: after restituting the identity-relevant
feature R+ to the normalized feature F̃ , the feature be-
comes more discriminative; On the other hand, after resti-
tuting the identity-irrelevant feature R− to the normalized
feature F̃ , the feature should become less discriminative.
We achieve this by defining a dual causality loss LSNR

which consists of clarification loss L+
SNR and destruction

loss L−
SNR, i.e., LSNR = L+

SNR + L−
SNR.

Within a mini-batch, we sample three images, i.e., an an-
chor sample a, a positive sample p that has the same identity
as the anchor sample, and a negative sample n that has a dif-
ferent identity from the anchor sample. For simplicity, we
differentiate the three samples by subscript. For example,
the style normalized feature of sample a is denoted by F̃a.

Intuitively, adding the identity-relevant feature R+ to
the normalized feature F̃ , which we refer to as enhanced
feature F̃+ = F̃ + R+, results in better discrimination
capability — the sample features with same identities are
closer and those with different identities are farther apart.
We calculate the distances between samples on a spatially
average pooled feature to avoid the distraction caused by
spatial misalignment among samples (e.g., due to different
poses/viewpoints). We denote the spatially average pooled
feature of F̃ and F̃+ as f̃ = pool(F̃ ), f̃+ = pool(F̃+),
respectively. The clarification loss is thus defined as

L+
SNR = Softplus(d(f̃+a , f̃

+
p )− d(f̃a, f̃p))

+ Softplus(d(f̃a, f̃n)− d(f̃+a , f̃+n )),
(6)
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where d(x,y) denotes the distance between x and y
which is defined as d(x,y) = 0.5 − xTy/(2‖x‖‖y‖).
Softplus(·) = ln(1 + exp(·)) is a monotonically increas-
ing function that aims to reduce the optimization difficulty
by avoiding negative loss values.

On the other hand, we expect that the adding of the
identity-irrelevant feature R− to the normalized feature F̃ ,
which we refer to as contaminated feature F̃− = F̃ + R−,
could decrease the discrimination capability. In comparison
with the normalized feature F̃ before the compensation, we
expect that adding R− would push the sample features with
same identities farther apart and pull those with different
identities closer. We denote the spatially average pooled
feature of F̃− as f̃− = pool(F̃−). The destruction loss is:

L−
SNR = Softplus(d(f̃a, f̃p)− d(f̃−a , f̃−p ))

+ Softplus(d(f̃−a , f̃
−
n )− d(f̃a, f̃n)).

(7)

3.2. Joint Training

We use the commonly used ResNet-50 as a base
ReID network and insert the proposed SNR module af-
ter each convolution block (in total four convolution
blocks/stages)(see Figure 2(a)). We train the entire network
in an end-to-end manner. The overall loss is

L = LReID+

4∑
b=1

λbL
b
SNR, (8)

where Lb
SNR denotes the dual causality loss for the bth SNR

module. LReID denotes the widely-used ReID Loss (classi-
fication loss [48, 9], and triplet loss with batch hard mining
[14]) on the ReID feature vectors. λb is a weight which con-
trols the relative importance of the regularization at stage b.
In considering that the features of stage 3 and 4 are more
relevant to the task (high-level semantics), we experimen-
tally set λ3, λ4 to 0.5, and λ1,λ2 to 0.1.

4. Experiments
In this section, we first describe the datasets and eval-

uation metrics in Subsection 4.1. Then, for generalizable
ReID, we validate the effectiveness of SNR in Subsection
4.2 and study its design choices in Subsection 4.3. We con-
duct visualization analysis in Subsection 4.4. Subsection
4.5 shows the comparisons of our schemes with the state-
of-the-art approaches for both generalizable person ReID
and unsupervised domain adapation ReID, respectively. In
Subsection 4.6, we further validate the effectiveness of ap-
plying the SNR modules to another backbone network and
to cross modality (Infrared-RGB) person ReID.

We use ResNet-50 [13, 1, 67, 37] as our base network for
both baselines and our schemes. We build a strong baseline
Baseline with some commonly used tricks integrated.

4.1. Datasets and Evaluation Metrics

To evaluate the generalization ability of our approach
and to be consistent with what were done in prior works
for performance comparisons, we conduct extensive exper-
iments on commonly used public ReID datasets, including
Market1501 [69], DukeMTMC-reID [71], CUHK03 [28],
the large-scale MSMT17 [56], and four small-scale ReID
datasets of PRID [15], GRID [36], VIPeR [11], and i-LIDS
[57]. We denote Market1501 by M, DukeMTMC-reID by
Duke or D, and CUHK03 by C for simplicity.

We follow common practices and use the cumulative
matching characteristics (CMC) at Rank-1, and mean av-
erage precision (mAP) to evaluate the performance.

4.2. Ablation Study

We perform comprehensive ablation studies to demon-
strate the effectiveness of the SNR module and its dual
causality loss constraint. We mimic the real-world scenario
for generalizable person ReID, where a model is trained on
some source dataset(s) A while tested on previously unseen
dataset B. We denote this as A→B. We have several ex-
perimental settings to evaluate the generalization capability,
e.g., Market1501→Duke and others, Duke→Market1501
and others, M+D+C+MSMT17→others. Our settings cover
both single source dataset for training and multiple source
datasets for training.
Effectiveness of Our SNR. Here we compare several
schemes. Baseline: a strong baseline based on ResNet-
50. Baseline-A-IN: a naive model where we replace all
the Batch Normalization(BN) [18] layers in Baseline by In-
stance Normalization(IN). Baseline-IBN: Similar to IBN-
Net (IBN-b) [41] and OSNet [75], we add IN only to the last
layers of Conv1 and Conv2 blocks of Baseline respectively.
Baseline-A-SN: a model where we replace all the BN layers
in Baseline by Switchable Normalization (SN). SN [38] can
be regarded as an adaptive ensemble version of normaliza-
tion techniques of IN, BN, and LN (Layer Normalization)
[2]. Baseline-IN: four IN layers are added after the first
four convolutional blocks/stages of Baseline respectively.
Baseline-SNR: our final scheme where four SNR modules
are added after the first four convolutional blocks/stages of
Baseline respectively (see Figure 2(a)). We also refer to it
as SNR for simplicity. Table 5 shows the results. We have
the following observations/conclusions:
1) Baseline-A-IN improves Baseline by 4.3% in
mAP for Market1501→Duke, and 4.7% in mAP for
Duke→Market1501. Other IN-related baselines also bring
gains, which demonstrates the effectiveness of IN for im-
proving the generalization capability for ReID. But, IN also
inevitably discards some discriminative (identity-relevant)
information and we can see it clearly decreases the perfor-
mance of Baseline-A-IN, Baseline-IBN and Baseline-IN for
the same-domain ReID (e.g., Market1501→Market1501).
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Table 1: Performance (%) comparisons of our scheme and others to demonstrate the effectiveness of our SNR module for
generalizable person ReID. The rows denote source dataset(s) for training and the columns correspond to different target
datasets for testing. We mask the results of supervised ReID by gray where the testing domain has been seen in training. Due
to space limitation, we only show a portion of the results here and more comparisons can be found in Supplementary.

Source Method
Target: Market1501 Target: Duke Target: PRID Target: GRID Target: VIPeR Target: iLIDs
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Market1501 (M)

Baseline 82.8 93.2 19.8 35.3 13.7 6.0 25.8 16.0 37.6 28.5 61.5 53.3
Baseline-A-IN 75.3 89.8 24.1 42.7 33.9 21.0 35.6 27.2 38.1 29.1 64.2 55.0
Baseline-IBN 81.1 92.2 21.5 39.2 19.1 12.0 27.5 19.2 32.1 23.4 58.3 48.3
Baseline-A-SN 83.2 93.9 20.1 38.0 35.4 25.0 29.0 22.0 32.2 23.4 53.4 43.3
Baseline-IN 79.5 90.9 25.1 44.9 35.0 25.0 35.7 27.8 35.1 27.5 64.0 54.2
Baseline-SNR (Ours) 84.7 94.4 33.6 55.1 42.2 30.0 36.7 29.0 42.3 32.3 65.6 56.7

Duke (D)

Baseline 21.8 48.3 71.2 83.4 15.7 11.0 14.5 8.8 37.0 26.9 68.3 58.3
Baseline-A-IN 26.5 56.0 64.5 78.9 38.6 29.0 19.6 13.6 35.1 27.2 67.4 56.7
Baseline-IBN 24.6 52.5 69.5 81.4 27.4 19.0 19.9 12.0 32.8 23.4 63.5 61.7
Baseline-A-SN 25.3 55.0 73.0 85.9 41.4 32.0 18.8 12.8 31.3 24.1 64.8 63.3
Baseline-IN 27.2 58.5 68.9 80.4 40.5 27.0 20.3 13.2 34.6 26.3 70.6 65.0
Baseline-SNR (Ours) 33.9 66.7 72.9 84.4 45.4 35.0 35.3 26.0 41.2 32.6 79.3 68.7

M + D + CUHK03
+ MSMT17

Baseline 72.4 88.7 70.1 83.8 39.0 28.0 29.6 20.8 52.1 41.5 89.0 85.0
Baseline-SNR (Ours) 82.3 93.4 73.2 85.5 60.0 49.0 41.3 30.4 65.0 55.1 91.9 87.0

Baseline-A-SN learns the combination weights of IN,
BN, and LN in the training dataset and thus has superior
performance in the same domain, but it does not have
dedicated design for boosting the generalization capability.
2) Thanks to the compensation of the identity-relevant in-
formation through the proposed restitution step, our fi-
nal scheme Baseline-SNR achieves superior generalization
capability, which significantly outperforms all the base-
line schemes. In particular, Baseline-SNR outperforms
Baseline-IN by 8.5%, 6.7%, 15.0% in mAP for M→D,
D→M, and D→GRID, respectively.
3) The generalization performance on previously unseen
target domain increases consistently as the number of
source datasets increases. When all the four source datasets
are used (the large-scale MSMT17 [56] also included), we
have a very strong baseline (i.e., 52.1% in mAP on VIPeR
dataset vs. 37.6% when Market1501 alone is used as
source). Interestingly, our method still significantly outper-
forms the strong baseline Baseline, even by 21.0% in mAP
on PRID dataset, demonstrating SNR’s effectiveness.
4) The performance of different schemes with respects to
PRID/GRID varies greatly and the mAPs are all relatively
low, which is caused by the large style discrepancy between
PRID/GRID and other datasets. For such challenging cases,
our scheme still outperforms Baseline-IN significantly by
7.2% and 4.9% in mAP for M→PRID and D→PRID, re-
spectively.
5) For supervised ReID (masked by gray), our scheme also
clearly outperforms Baseline by 1.9% and 1.7% in mAP
for M→M and D→D, respectively. That is because there is
also style discrepancy within the source domain.
Influence of Dual Causality Loss Constraint. We study
the effectiveness of the proposed dual causality loss LSNR

which consists of clarification loss L+
SNR and destruction

loss L−
SNR. Table 2a shows the results. Our final scheme

SNR with the dual causality loss LSNR outperforms that
without such constraints (i.e., scheme SNR w/o LSNR) by

7.5% and 4.7% in mAP for M→D and D→M, respectively.
Such constraints facilitate the disentanglement of identity-
relevant/identity-irrelevant features. In addition, both the
clarification loss L+

SNR and the destruction loss L−
SNR, are

vital to SNR and they are complementary and jointly con-
tribute to a superior performance.
Complexity. The model size of our final scheme SNR is
very similar to that of Baseline (24.74 M vs. 24.56 M).

4.3. Design Choices of SNR

Which Stage to Add SNR? We compare the cases of
adding a single SNR module to a different convolutional
block/stage, and to all the four stages (i.e., stage-1 ∼ 4) of
the ResNet-50 (see Figure 2(a)). The module is added after
the last layer of a convolutional block/stage. As Table 2b
shows, in comparison with Baseline, the improvement from
adding SNR is significant on stage-3 and stage-4 and is a
little smaller on stage-1 and stage-2. When SNR is added to
all the four stages, we achieve the best performance.
Influence of Disentanglement Design. In our SNR mod-
ule, as described in (3)(4) of Subsection 3.1, we use g(·),
and its complementary one 1 − g(·) as masks to extract
identity-relevant feature R+ and identity-irrelevant feature
R− from the residual feature R. Here, we study the in-
fluence of different disentanglement designs within SNR.
SNRconv: we disentangle the residual feature R through
1×1 convolutional layer followed by non-liner ReLU acti-
vation, i.e., R+ = ReLU(W+R), R− = ReLU(W−R).
SNRg(·)2 : we use two unshared gates g(·)+, g(·)− to obtain
R+ and R− respectively. Table 2c shows the results. We
observe that (1) ours outperforms SNRconv by 3.9% and
4.5% in mAP for M→D and D→M, respectively, demon-
strating the benefit of content-adaptive design; (2) ours out-
performs SNRg(·)2 by 2.4%/2.9% in mAP on the unseen
target Duke/Market1501, demonstrating the benefit of the
design which encourages interaction between R+ and R−.
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Table 2: Effectiveness of dual causality loss constraint (a), and study on design choices of SNR (b) and (c).
(a) Study on the dual causality loss constraint.

Method
M−→D D−→M

mAP Rank-1 mAP Rank-1

Baseline 19.8 35.3 21.8 48.3
SNR w/o LSNR 26.1 45.0 29.2 57.4
SNR w/o L+

SNR 28.8 48.9 30.2 59.8
SNR w/o L−SNR 28.0 48.1 30.3 59.1
SNR 33.6 55.1 33.9 66.7

(b) Study on which stage to add SNR.

Method
M−→D D−→M

mAP Rank-1 mAP Rank-1

Baseline 19.8 35.3 21.8 48.3
stage-1 23.7 42.8 27.6 57.7
stage-2 24.0 44.4 28.6 58.8
stage-3 26.4 46.3 29.5 60.7
stage-4 26.2 45.8 29.4 59.7
stages-all 33.6 55.1 33.9 66.7

(c) Disentanglement designs in SNR.

Method
M−→D D−→M

mAP Rank-1 mAP Rank-1

Baseline 19.8 35.3 21.8 48.3
SNRconv 29.7 51.1 29.4 61.7
SNRg(·)2 31.2 52.9 31.0 63.8
SNR 33.6 55.1 33.9 66.7

෨𝐹 ෨𝐹− = ෨𝐹 + 𝑅−Input

B
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Original Contrast changed Illumination changed
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෨𝐹+ = ෨𝐹 + 𝑅+

Figure 3: (a) Activation maps of different features within
an SNR module (SNR 3). They show SNR can disentangle
the identity-relevant/irrelevant features well. (b) Activation
maps of our scheme (bottom) and the strong baseline Base-
line (top) corresponding to images of varied styles. Our
maps are more consistent/invariant to style variants.

4.4. Visualization
Feature Map Visualization. To better understand how an
SNR module works, we visualize the intermediate feature
maps of the third SNR module (SNR 3). Following [75,
70], we get each activation map by summarizing the feature
maps along channels followed by a spatial `2 normalization.

Figure 6(a) shows the activation maps of normalized fea-
ture F̃ , enhanced feature F̃+ = F̃ +R+, and contaminated
feature F̃− = F̃ + R−, respectively. We see that after
adding the identity-irrelevant feature R−, the contaminated
feature F̃− has high response mainly on background. In
contrast, the enhanced feature F̃+ with the restitution of
identity-relevant feature R+ has high responses on regions
of the human body, better capturing discriminative regions.

Moreover, in Figure 6(b), we further compare the activa-
tion maps F̃+ of our scheme and those of the strong base-
line scheme Baseline by varying the styles of input images
(e.g., contrast, illumination, saturation). We can see that, for
the images with different styles, the activation maps of our
scheme are more consistent/invariant than those of Base-
line. In contrast, the activation maps of Baseline are more
disorganized and are easily affected by style variants. These
indicate our scheme is more robust to style variations.
Visualization of Feature Distributions. In Figure 4, we
visualize the distribution of the features from the 3rd SNR
module of our network using t-SNE [39]. They denote the
distributions of features for (a) input F , (b) style normal-
ized feature F̃ , and (c) output F̃+ of the SNR module. We
observe that, (a) before SNR, the extracted features from

Input 𝐹 to SNR module Output ෨𝐹+ of SNR module

source
target

After IN ෨𝐹 in SNR module

(a) (b) (c)

Same ID

Sam
e ID

Same ID

Same ID

Figure 4: Visualization of distributions of intermediate fea-
tures before/within/after the SNR module using the tool
of t-SNE [39]. ‘Red’/‘green’ nodes: samples from source
dataset Market1501/unseen target dataset Duke.

two datasets (‘red’: source training dataset Market1501;
‘green’: unseen target dataset Duke) are largely separately
distributed and have an obvious domain gap. (b) Within the
SNR module, after IN, this domain gap has been eliminated.
But the samples of the same identity (‘yellow’ and ‘purple’
colored nodes denote two identities respectively) become
dispersive. (c) After the restitution of identity-relevant fea-
tures, not only has the domain gap of feature distributions
been shrunk, but also the feature distribution of samples
with same identity become more compact than that in (b).

4.5. Comparison with State-of-the-Arts

Thanks to the capability of reducing style discrepancy
and restitution of identity-relevant features, our proposed
SNR module can enhance the generalization ability and
maintain the discrimintive ability of ReID networks. It can
be used for generalizable person ReID, i.e., domain gener-
alization (DG), and can also be used to build the backbone
networks for unsupervised domain adaptation (UDA) for
person ReID. We evaluate the effectiveness of SNR on both
DG-ReID and UDA-ReID by comparing with the state-of-
the-art approaches in Table 6.

Domain generalizable person ReID is very attractive
in practical applications, which supports “train once and
run everywhere”. However, there are very few works in
this field [45, 19, 75, 24]. Thanks to the exploration of the
style normalization and restitution, our scheme SNR(Ours)
significantly outperforms the second best method OSNet-
IBN [75] by 6.9% and 7.8% for Market1501→Duke and
Duke→Market1501 in mAP, respectively. OSNet-IBN adds
Instance Normalization (IN) to the lower layers of their pro-
posed OSNet following [41]. However, this does not over-
come the intrinsic shortcoming of IN and is not optimal.

Song et al. [45] also explore domain generalizable
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Table 3: Performance (%) comparisons with the state-of-the-art approaches for the Domain Generalizable Person ReID (top
rows) and the Unsupervised Domain Adaptation Person ReID (bottom rows), respectively. “(U)” denotes “unlabeled”. We
mask the schemes that use our Baseline and those that use our SNR modules by gray, which provides fair comparison.

Method Venue Source
Target: Duke

Source
Taeget: Market1501

mAP Rank-1 mAP Rank-1

Domain
Generalization

(w/o using
target data)

OSNet-IBN [75] ICCV’19 Market1501 26.7 48.5 Duke 26.1 57.7
Baseline This work Market1501 19.8 35.3 Duke 21.8 48.3

Baseline-IBN [19] BMVC’19 Market1501 21.5 39.2 Duke 24.6 52.5
SNR(Ours) This work Market1501 33.6 55.1 Duke 33.9 66.7

StrongBaseline [24] ArXiv’19 MSMT17 43.3 64.5 MSMT17 36.6 64.8
OSNet-IBN [75] ICCV’19 MSMT17 45.6 67.4 MSMT17 37.2 66.5

Baseline This work MSMT17 39.1 60.4 MSMT17 33.8 59.9
SNR(Ours) This work MSMT17 50.0 69.2 MSMT17 41.4 70.1

Unsupervised
Domain

Adaptation
(using unlabeled

target data)

ATNet [35] CVPR’19 Market1501 + Duke (U) 24.9 45.1 Duke + Market1501 (U) 25.6 55.7
CamStyle [74] TIP’19 Market1501 + Duke (U) 25.1 48.4 Duke + Market1501 (U) 27.4 58.8

ARN [30] CVPRW’19 Market1501 + Duke (U) 33.4 60.2 Duke + Market1501 (U) 39.4 70.3
ECN [73] CVPR’19 Market1501 + Duke (U) 40.4 63.3 Duke + Market1501 (U) 43.0 75.1
PAST [66] ICCV’19 Market1501 + Duke (U) 54.3 72.4 Duke + Market1501 (U) 54.6 78.4

SSG [8] ICCV’19 Market1501 + Duke (U) 53.4 73.0 Duke + Market1501 (U) 58.3 80.0
Baseline+MAR [64] This work Market1501 + Duke (U) 35.2 56.5 Duke + Market1501 (U) 37.2 62.4

SNR(Ours)+MAR [64] This work Market1501 + Duke (U) 58.1 76.3 Duke + Market1501 (U) 61.7 82.8

MAR [64] CVPR’19 MSMT17 + Duke (U) 48.0 67.1 MSMT17 + Market1501 (U) 40.0 67.7
PAUL [60] CVPR’19 MSMT17 + Duke (U) 53.2 72.0 MSMT17 + Market1501 (U) 40.1 68.5

Baseline+MAR [64] This work MSMT17 + Duke (U) 46.2 66.3 MSMT17 + Market1501 (U) 39.4 66.9
SNR(Ours) + MAR [64] This work MSMT17 + Duke (U) 61.6 78.2 MSMT17 + Market1501 (U) 65.9 85.5

person ReID and propose a Domain-Invariant Mapping
Network (DIMN) to learn the mapping between a per-
son image and its identity classifier with a meta-learning
pipeline. We follow [45] and train SNR on the same
five datasets (M+D+C+CUHK02[27]+CUHK-SYSU[59]).
SNR outperforms DIMN by 14.6%/6.6%/1.2%/11.5% in
mAP and 12.9%/10.9%/1.7%/13.9% in Rank-1 on the
PRID/GRID/VIPeR/i-LIDS.

Unsupervised domain adaptation for ReID has been
extensively studied where the unlabeled target data is also
used for training. We follow the most commonly-used
source→target setting [73, 35, 75, 64, 60] for comparison.
We take SNR (see Figure 2(a)) as the backbone followed
by a domain adaptation strategy MAR [64] for domain
adaptation, which we denote as SNR(Ours)+MAR [64]. For
comparison, we take our strong Baseline as the backbone
followed by MAR, which we denote as Baseline+MAR, to
evaluate the effectiveness of the proposed SNR modules.
We can see that SNR(Ours)+MAR [64] significantly
outperforms the second-best UDA ReID method by
3.8%, 3.4% in mAP for Market1501+Duke(U)→Duke
and Duke+Market1501(U)→Market1501, respec-
tively. In addition, SNR(Ours)+MAR outperforms
Baseline+MAR by 22.9%, 24.5% in mAP. Similar
trends can be found for MSMT17+Duke(U)→Duke and
MSMT17+Market1501(U)→Market1501.

In general, as a plug-and-play module, SNR clearly en-
hances the generalization capability of ReID networks.

4.6. Extension

Performance on Other Backbone. We add SNR into the
recently proposed lightweight ReID network OSNet [75]
and observe that by simply inserting SNR modules between

the OS-Blocks, the new scheme OSNet-SNR outperforms
their model OSNet-IBN by 5.0% and 5.5% in mAP for
M→D and D→M, respectively (see Supplementary).
RGB-Infrared Cross-Modality Person ReID. To further
demonstrate the capability of SNR in handling images with
large style variations, we conduct experiment on a more
challenging RGB-Infrared cross-modality person ReID task
on benchmark dataset SYSU-MM01 [58]. Our scheme
which integrates SNR to Baseline outperforms Baseline sig-
nificantly by 8.4%, 8.2%, 11.0%, and 11.5% in mAP un-
der 4 different settings, and also achieves the state-of-the-art
performance (see Supplementary for more details).

5. Conclusion
In this paper, we propose a generalizable person ReID

framework to enable effective ReID. A Style Normaliza-
tion and Restitution (SNR) module is introduced to exploit
the merit of Instance Normalization (IN) that filters out the
interference from style variations, and restitute the identity-
relevant features that are discarded by IN. To efficiently dis-
entangle the identity-relevant and -irrelevant features, we
further design a dual causality loss constraint in SNR. Ex-
tensive experiments on several benchmarks/settings demon-
strate the effectiveness of SNR. Our framework with SNR
embedded achieves the best performance on both domain
generalization and unsupervised domain adaptation ReID.
Moreover, we have also verified SNR’s effectiveness on
RGB-Infrared ReID task, and on another backbone.
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Appendix

1. Implementation Details
Network Details. We use ResNet-50 [13, 1, 67, 37] as our
base network for both baselines and our schemes. We build
a strong baseline Baseline with some commonly used tricks
integrated. Similar to [1, 67, 37], the last spatial down-
sample operation in the last Conv block is removed. The
proposed SNR module is added after the last layer of each
convolutional block/stage of the first four stages. The input
image resolution is 256×128.

Data Augmentation. We use the commonly used data
augmentation strategies of random cropping [54, 67], hori-
zontal flipping, and label smoothing regularization [49]. To
enhance the generalization ability, we further incorporate
some useful data augmentation tricks, such as color jitter-
ing and disabling random erasing (REA) [37, 75]. REA
hurts models in cross-domain ReID task [37, 24], because
REA which masks the regions of training images makes the
model learn more knowledge in the training source domain.
It causes the model to perform worse in the unseen target
domain.

Training Details for Domain Generalization. Following
[14], a batch is formed by first randomly sampling P iden-
tities. For each identity, we sample K images. Then the
batch size is B = P ×K. We set P = 24 and K = 4 (i.e.,
batch size B = P ×K = 96.

We use the Adam optimizer [23] for model optimiza-
tion. Similar to [37, 67], we first warm up the model for
20 epochs with a linear growth learning rate from 8×10−6

to 8×10−4. Then we set the initial learning rate as 8×10−4

and optimize the Adam optimizer with a weight decay of
5×10−4. The learning rate is decayed by a factor of 0.5
for every 40 epochs. Our model (here we use ResNet-50
as our backbone) with SNR converges well after training of
280 epochs and we use it for evaluating the generalization
performance on target datasets. All our models are imple-
mented on PyTorch and trained on a single 32G NVIDIA-
V100 GPU.

Training Details for Domain Adaptation. For unsuper-
vised domain adaptation person ReID, we combine our net-
work with the unsupervised ReID approach MAR [64] for
fine-tuning on the unlabelled target domain data. MAR [64]
plays the role of assigning psudeo labels by hard negative
mining, which facilitates the fine-tuning of base network.
Similar to [64], during the fine-tuning, both source labeled
data and target unlabelled data are jointly used for effective
joint training. Specifically, during fine-tuning, a training

batch of size 96 is composed of 1) labeled source data (size
B1 = P × K = 48, where P = 12,K = 4), and 2) un-
labeled target data (size B2 = 48). For the labeled source
data, we optimize the network with the ReID loss LReID

and the proposed dual causality loss LSNR. For the unla-
beled target data, we follow the adaptation strategy of MAR
[64] to assign a pseudo soft multilabel for each sample and
utilize these pseudo labels to perform soft multilabel-guided
hard negative mining for training. We fine-tune the network
also with the Adam optimizer [23] with a initial learning
rate of 1×10−5 for 200 epochs. We optimize the Adam op-
timizer with a weight decay of 5×10−4. The learning rate
is decayed by a factor of 0.5 at 50, 100 and 150 epochs.
Why do we perform disentanglement only on channel
level? We perform feature disentanglement only on chan-
nel level for two reasons: 1) Those identity-irrelevant style
factors (e.g., illumination, contrast, saturation) are typically
regarded as spatially consistent, which are hard to disentan-
gle by spatial-attention. 2) In our SNR, “disentanglement”
aims at better “restitution” of the lost discriminative infor-
mation due to Instance Normalization (IN). IN reduces style
discrepancy of input features by performing normalization
across spatial dimensions independently for each channel,
where the normalization parameters are the same across dif-
ferent spatial positions. To be consistent with IN, we disen-
tangle the features and restitute the identity-relevant ones to
the normalized features on channel level.

2. Details of Datasets

Table 4: Details about the ReID datasets.

Datasets Identities Images Cameras Scene

Market1501 [69] 1501 32668 6 outdoor
DukeMTMC-reID [71] 1404 32948 8 outdoor

CUHK03 [28] 1467 28192 2 indoor
MSMT17 [56] 4101 126142 15 outdoor, indoor

VIPeR [11] 632 1264 2 outdoor
PRID2011 [15] 385 1134 2 outdoor

GRID [36] 250 500 2 indoor
i-LIDS [57] 119 476 N/A indoor

In Table 4, we present the detailed information about
the related person ReID datasets. Market1501 [69],
DukeMTMC-reID [71], CUHK03 [28], and large-scale
MSMT17 [56] are the most commonly used datasets for
fully supervised ReID [67, 75] and unsupervised domain
adaption ReID [64, 66, 8]. VIPeR [11], PRID2011 [15],
GRID [36], and i-LIDS [57] are small ReID datasets which
could be used for evaluating cross-domain/generalizable
person ReID [45, 19, 24]. Market1501 [69] and
DukeMTMC-reID [71] have pre-established test probe and
test gallery splits which we use for our training and cross-
test (i.e., M→D, D→M). For the smaller datasets (VIPeR,
PRID2011, GRID, and i-LIDS), we use the standard 10 ran-
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Table 5: Performance (%) comparisons of our scheme and others to demonstrate the effectiveness of our SNR module for
generalizable person ReID. The rows denote source dataset(s) for training and the columns correspond to different target
datasets for testing. We mask the results of supervised ReID by gray where the testing domain has been seen in training.
Note that we show the total number of source training images by data num..

Source Method
Target: Market1501 Target: Duke Target: PRID Target: GRID Target: VIPeR Target: iLIDs
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Market1501 (M)
data num. 32.6k

Baseline 82.8 93.2 19.8 35.3 13.7 6.0 25.8 16.0 37.6 28.5 61.5 53.3
Baseline-A-IN 75.3 89.8 24.1 42.7 33.9 21.0 35.6 27.2 38.1 29.1 64.2 55.0
Baseline-IBN 81.1 92.2 21.5 39.2 19.1 12.0 27.5 19.2 32.1 23.4 58.3 48.3
Baseline-A-SN 83.2 93.9 20.1 38.0 35.4 25.0 29.0 22.0 32.2 23.4 53.4 43.3
Baseline-IN 79.5 90.9 25.1 44.9 35.0 25.0 35.7 27.8 35.1 27.5 64.0 54.2
Baseline-SNR (Ours) 84.7 94.4 33.6 55.1 42.2 30.0 36.7 29.0 42.3 32.3 65.6 56.7

Duke (D)
data num. 32.9k

Baseline 21.8 48.3 71.2 83.4 15.7 11.0 14.5 8.8 37.0 26.9 68.3 58.3
Baseline-A-IN 26.5 56.0 64.5 78.9 38.6 29.0 19.6 13.6 35.1 27.2 67.4 56.7
Baseline-IBN 24.6 52.5 69.5 81.4 27.4 19.0 19.9 12.0 32.8 23.4 63.5 61.7
Baseline-A-SN 25.3 55.0 73.0 85.9 41.4 32.0 18.8 12.8 31.3 24.1 64.8 63.3
Baseline-IN 27.2 58.5 68.9 80.4 40.5 27.0 20.3 13.2 34.6 26.3 70.6 65
Baseline-SNR (Ours) 33.9 66.7 72.9 84.4 45.4 35.0 35.3 26.0 41.2 32.6 79.3 68.7

Market1501 (M)
+ Duke (D)

data num. 65.5k

Baseline 72.6 88.2 60.0 77.8 14.8 9.0 23.1 15.2 39.4 30.4 74.3 65.0
Baseline-A-IN 76.5 91.4 62.2 80.1 45.0 30.0 36.7 28.0 37.3 28.2 73.6 65.2
Baseline-IBN 74.6 90.4 62.3 80.1 43.7 32.0 32.6 24.0 42.8 33.2 73.8 65.0
Baseline-A-SN 73.1 89.8 61.7 79.0 47.9 37.0 28.0 21.6 38.0 28.8 68.1 61.7
Baseline-IN 77.5 91.6 63.9 81.5 48.1 36.0 39.2 31.2 43.8 33.9 73.2 64.3
Baseline-SNR (Ours) 80.3 92.9 67.2 83.1 57.9 50.0 41.3 34.4 46.7 37.7 85.2 80.0

Market1501 (M)
+ Duke (D)

+ CUHK03 (C)
data num. 93.7k

Baseline 76.4 89.8 63.6 79.0 27.0 19.0 25.7 18.4 46.3 36.4 77.1 66.3
Baseline-A-IN 76.8 90.7 63.0 81.3 55.6 44.0 40.8 33.6 50.9 41.8 77.7 70.0
Baseline-IBN 76.2 91.3 62.8 80.5 56.6 48.0 40.9 31.2 48.4 38.9 76.9 68.3
Baseline-A-SN 71.1 89.3 62.0 78.8 55.4 46.0 34.1 26.4 50.3 39.8 79.6 71.7
Baseline-IN 77.8 91.3 64.4 81.6 56.4 47.0 41.0 31.8 49.3 39.9 80.9 74.7
Baseline-SNR (Ours) 81.2 93.3 68.4 84.2 60.9 52.0 45.2 36.8 52.3 42.4 91.0 86.7

MSMT17 (MT)
data num. 126k

Baseline 23.1 48.2 29.2 47.6 16.4 11.0 9.8 5.6 40.8 30.1 74.0 66.7
Baseline-SNR (Ours) 40.9 69.5 49.9 69.2 48.4 39.0 30.3 24.0 57.2 47.5 87.7 81.9

M + D + C + MT
data num. 220k

Baseline 72.4 88.7 70.1 83.8 39.0 28.0 29.6 20.8 52.1 41.5 89.0 85.0
Baseline-SNR (Ours) 82.3 93.4 73.2 85.5 60.0 49.0 41.3 30.4 65.0 55.1 91.9 87.0

PRID (IDs: 385) GRID (IDs: 250) iLIDs (IDs: 119)VIPeR (IDs: 632)

Market1501 (IDs: 1501) DukeMTMC-reID (IDs: 1404) MSMT17 (IDs: 4101)CUHK03 (IDs: 1467)

Figure 5: Person images from different ReID datasets:
Market-1501 [69], DukeMTMC-reID [71], CUHK03 [28],
MSMT17 [56], and the four small-scale ReID datasets of
PRID [15], GRID [36], VIPeR [11], and i-LIDS [57]. All
images have been re-sized to 256×128 for easier compari-
son. We observe there are obvious domain gaps/style dis-
crepancies across different datasets, especially for PRID
[15] and GRID [36].

dom splits as in [19, 24] for testing (the four small datasets
are not involved in training). CUHK03 [28] and MSMT17
[56] are used for training.

We randomly pick up 10 identities from each ReID

dataset and show them in Figure 5. We observe that: 1)
there is style discrepancy across datasets, which is rather
obvious for PRID and GRID; 2) MSMT17 has large style
variants within the same dataset.

3. More Ablation Study Results
We show more comparisons of our scheme and others to

demonstrate the effectiveness of our SNR module for gen-
eralizable person ReID in Table 5.

We have observations consistent with those in our pa-
per. 1) IN-related baselines bring generalization ability
improvement but decrease the performance for the same-
domain. 2) Our Baseline-SNR achieves superior generaliza-
tion capability thanks to the restitution of identity-relevant
information by the SNR modules. 3) The generalization
performance on unseen target domain increases consistently
as the number of source datasets increases.

In Table 5, we also present the total number of source
training images as marked by data num. N. For the sin-
gle source dataset settings, MSMT17 is the largest dataset,
which contains 126k images while Market1501 or Duke
has about 33K images. For the target testing datasets
VIPeR and iLIDs, the performance of Baseline trained by
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Figure 6: Activation maps of our scheme (bottom) and the strong baseline Baseline (top) corresponding to images of varied
styles. The maps of our method are more consistent/invariant to style variants.

this large scale dataset MSMT17 is 3.8% to 12.5% higher
than those trained by Market1501 or Duke in mAP. Gen-
erally, the increase of training data could improve the per-
formance. However, the performance of Baseline trained
by MSMT17 has a rather low mAP accuracy of 9.8% on
the target dataset GRID, being even poorer than that trained
on Market1501 (25.8%) or Duke (14.5%). For the target
dataset PRID, similarly, MSMT17 does not provide clear
superiority. These indicate that it is not always true that a
larger amount of training data results in better performance.
The domain gap between MSMT17 and GRID is larger than
that between Market1510/Duke and GRID. To validate this,
we analyze the feature divergence (FD, detailed descrip-
tions can be found in Section 4 below) between GRID and
MSMT17, Market1501, Duke, respectively. We find that
the divergence (here we calculate the feature divergence of
the third convolutional block/stage within our Baseline-SNR
trained by combining all the four datasets) of Market1501
vs. GRID, Duke vs. GRID, MSMT17 vs. GRID are 2.17,
3.49, and 4.51, respectively. Note that the larger the FD
value, the larger the feature discrepancy between the two
domains. The domain gap between MSMT17 and GRID is
larger than that between Market1501 (or Duke) and GRID.
For the similar reason, we find that additionally adding
MSMT17 as the source training data does not bring fur-
ther performance improvement on GRID and PRID target
datasets in our scheme Baseline-SNR in comparison with
the model trained by M+D+C source datasets.

4. More Visualization Analysis

More Feature Map Visualization. In our paper, we com-
pare the activation maps F̃+ of our scheme and those of the
strong baseline scheme Baseline by varying the styles of
input images (e.g., contrast, illumination, saturation). Here,
Figure 6(a) shows more visualization and Figure 6(b) shows
visualization results on real images. We have the similar ob-
servations that the activation maps of our scheme are more
consistent/invariant to style variants.
Feature Divergence Analysis. We analyze the feature di-

21.1

6.4

8.6

13.4

3.2

4.6

6

1.9

4

8.9

2.8

6.2

Figure 7: Analysis of the feature divergence between two
different domains, Market1501 and Duke.

vergence between two datasets on three schemes: Base-
line, Baseline-IN, and ours SNR, respectively. Following
[41, 29], we use the symmetric KL divergence of features
between domain A and B as the metric to measure feature
divergence of the two domains. We train the models us-
ing Market1501 training dataset and evaluate the feature
divergences between the test set of Market1501 and Duke
(500 samples are randomly selected from each set). We
calculate the feature divergence of the four convolutional
blocks/stages respectively and show the results in Figure 7.

We observe that the feature divergence (FD) is large for
Baseline. The introduction of IN as in scheme Baseline-
IN significantly reduces the FD on all the four stages. The
FD of Stage-4 is higher than that in Stage-3. That is likely
because Stage-4 is more related to high-level discriminative
semantic features for distinguishing different identities. The
discrimination may increase the feature divergence. Due to
the introduction of the SNR modules, the FD on all con-
volutional blocks/stages is also significantly reduced in our
scheme in comparison with Baseline. It is higher than that
of the scheme Baseline-IN which is probably because the
restitution of some identity-relevant features increases the
discrimination capability and thus increases the FD.
Visualization of ReID Feature Vector Distributions. In

14



Table 6: Performance (%) comparisons with the state-of-the-art approaches for the Domain Generalizable Person ReID (top
rows) and Unsupervised Domain Adaptation for Person ReID (bottom rows), respectively. “(U)” denotes “unlabeled”. We
mask the schemes of our Baseline and our Baseline with SNR modules (i.e., SNR(Ours)) by gray, with fair comparison
between each pair to validate the effectiveness of SNR modules.

Method Venue Source
Target: Duke

Source
Taeget: Market1501

mAP Rank-1 mAP Rank-1

Domain
Generalization

(w/o using
target data)

OSNet-IBN [75] ICCV’19 Market1501 26.7 48.5 Duke 26.1 57.7
Baseline This work Market1501 19.8 35.3 Duke 21.8 48.3

Baseline-IBN [19] BMVC’19 Market1501 21.5 39.2 Duke 24.6 52.5
SNR(Ours) This work Market1501 33.6 55.1 Duke 33.9 66.7

StrongBaseline [24] ArXiv’19 MSMT17 43.3 64.5 MSMT17 36.6 64.8
OSNet-IBN [75] ICCV’19 MSMT17 45.6 67.4 MSMT17 37.2 66.5

Baseline This work MSMT17 39.1 60.4 MSMT17 33.8 59.9
SNR(Ours) This work MSMT17 50.0 69.2 MSMT17 41.4 70.1

Unsupervised
Domain

Adaptation
(using unlabeled

target data)

PTGAN [56] CVPR’18 Market1501 + Duke (U) – 27.4 Duke + Market1501 (U) – 38.6
PUL [7] TOMM’18 Market1501 + Duke (U) 16.4 30.0 Duke + Market1501 (U) 20.5 45.5

MMFA [34] BMVC’18 Market1501 + Duke (U) 24.7 45.3 Duke + Market1501 (U) 27.4 56.7
SPGAN [5] CVPR’18 Market1501 + Duke (U) 26.2 46.4 Duke + Market1501 (U) 26.7 57.7

TJ-AIDL [53] CVPR’18 Market1501 + Duke (U) 23.0 44.3 Duke + Market1501 (U) 26.5 58.2
ATNet [35] CVPR’19 Market1501 + Duke (U) 24.9 45.1 Duke + Market1501 (U) 25.6 55.7

CamStyle [74] TIP’19 Market1501 + Duke (U) 25.1 48.4 Duke + Market1501 (U) 27.4 58.8
HHL [72] ECCV’18 Market1501 + Duke (U) 27.2 46.9 Duke + Market1501 (U) 31.4 62.2
ARN [30] CVPRW’19 Market1501 + Duke (U) 33.4 60.2 Duke + Market1501 (U) 39.4 70.3
ECN [73] CVPR’19 Market1501 + Duke (U) 40.4 63.3 Duke + Market1501 (U) 43.0 75.1

UDAP [46] ArXiv’18 Market1501 + Duke (U) 49.0 68.4 Duke + Market1501 (U) 53.7 75.8
PAST [66] ICCV’19 Market1501 + Duke (U) 54.3 72.4 Duke + Market1501 (U) 54.6 78.4

SSG [8] ICCV’19 Market1501 + Duke (U) 53.4 73.0 Duke + Market1501 (U) 58.3 80.0
Baseline+MAR [64] This work Market1501 + Duke (U) 35.2 56.5 Duke + Market1501 (U) 37.2 62.4

SNR(Ours)+MAR [64] This work Market1501 + Duke (U) 58.1 76.3 Duke + Market1501 (U) 61.7 82.8

MAR [64] CVPR’19 MSMT17 + Duke (U) 48.0 67.1 MSMT17 + Market1501 (U) 40.0 67.7
PAUL [60] CVPR’19 MSMT17 + Duke (U) 53.2 72.0 MSMT17 + Market1501 (U) 40.1 68.5

Baseline+MAR [64] This work MSMT17 + Duke (U) 46.2 66.3 MSMT17 + Market1501 (U) 39.4 66.9
SNR(Ours) + MAR [64] This work MSMT17 + Duke (U) 61.6 78.2 MSMT17 + Market1501 (U) 65.9 85.5

Table 7: Performance (%) comparison with the latest domain generalizable ReID method Domain-Invariant
Mapping Network (DIMN) [45] under the same experimental setting (i.e., training on the same five datasets,
Market1501[69]+DukeMTMC-reID[71]+CUHK02[27]+CUHK03[28]+CUHK-SYSU[59]).

Source Method
Target: PRID Target: GRID Target: VIPeR Target: iLIDs

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Market + Duke + CUHK02 + CUHK03 + CUHK-SYSU

DIMN [45] CVPR’19 51.9 39.2 41.1 29.3 60.1 51.2 78.4 70.2
Baseline 43.8 35.0 37.7 28.0 54.6 45.6 75.3 65.0
SNR (Ours) 66.5 52.1 47.7 40.2 61.3 52.9 89.9 84.1

Baseline Ours

Figure 8: Visualization of the final ReID feature vector dis-
tribution for Baseline and Ours on the unseen target dataset
Duke. Different identities are denoted by different colors.

Figure 8, we further visualize the distribution of the final
ReID feature vectors using t-SNE [39] for Baseline scheme
and our final scheme on the unseen target dataset Duke

Table 8: Differences between settings of supervised, do-
main adaptive, and domain generalizable ReID.

Setting Use target
domain data?

Use target
domain label?

Supervised 3 3
Domain adaptation 3 7

Domain generalization 7 7

(i.e., Market1501→Duke). In comparison with Baseline,
the feature distribution of the same identity (same color) be-
comes more compact while those of the different identities
are pushed away in our scheme. It is easier to distinguish
between different identities by our method.
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Table 9: Performance (%) comparisons with the state-of-the-art RGB-IR ReID approaches on SYSU-MM01 dataset. R1,
R10, R20 denote Rank-1, Rank-10 and Rank-20 accuracy, respectively.

Method Veneue

All Search Indoor-Search

Single-Shot Multi-shot Single-Shot Multi-Shot

mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20

HOG [4] CVPR’05 4.24 2.76 18.3 32.0 2.16 3.82 22.8 37.7 7.25 3.22 24.7 44.6 3.51 4.75 29.1 49.4
MLBP [32] ICCV’15 3.86 2.12 16.2 28.3 – – – – – – – – – – – –
LOMO [31] CVPR’15 4.53 3.64 23.2 37.3 2.28 4.70 28.3 43.1 10.2 5.75 34.4 54.9 5.64 7.36 40.4 60.4
GSM [33] TPAMI’17 8.00 5.29 33.7 53.0 – – – – – – – – – – – –

One-stream [58] ICCV’17 13.7 12.1 49.7 66.8 8.59 16.3 58.2 75.1 56.0 17.0 63.6 82.1 15.1 22.7 71.8 87.9
Two-stream [58] ICCV’17 12.9 11.7 48.0 65.5 8.03 16.4 58.4 74.5 21.5 15.6 61.2 81.1 14.0 22.5 72.3 88.7

Zero-Padding [58] ICCV’17 16.0 14.8 52.2 71.4 10.9 19.2 61.4 78.5 27.0 20.6 68.4 85.8 18.7 24.5 75.9 91.4
TONE [61] AAAI’18 14.4 12.5 50.7 68.6 – – – – – – – – – – – –
HCML [61] AAAI’18 16.2 14.3 53.2 69.2 – – – – – – – – – – – –
BCTR [62] IJCAI’18 19.2 16.2 54.9 71.5 – – – – – – – – – – – –
BDTR [62] IJCAI’18 19.7 17.1 55.5 72.0 – – – – – – – – – – – –

D-HSME [12] AAAI’19 23.2 20.7 62.8 78.0 – – – – – – – – – – – –
cmGAN [3] IJCAI’18 27.8 27.0 67.5 80.6 22.3 31.5 72.7 85.0 42.2 31.7 77.2 89.2 32.8 37.0 80.9 92.3
D2RL [55] CVPR’19 29.2 28.9 70.6 82.4 – – – – – – – – – – – –

Baseline This work 25.5 26.3 66.7 80.2 19.2 32.7 73.5 86.8 39.4 30.8 75.1 86.8 29.0 40.1 83.1 93.6
Ours This work 33.9 34.6 75.9 86.6 27.4 41.7 83.3 92.3 50.4 40.9 83.8 91.8 40.5 50.0 91.4 96.1

5. Comparison with State-of-the-Arts (Com-
plete version)

To save space, we only present the latest approaches in
the paper and here we show comparisons with more ap-
proaches in Table 6. Besides the description in Introduc-
tion and Related Work sections of our paper, we illustrate
the difference between domain generalization and domain
adaptation for person ReID in Table 8.

Moreover, in Table 7, we further compare our SNR with
the latest generalizable ReID method Domain-Invariant
Mapping Network (DIMN) [45] under the same experimen-
tal setting, i.e., training on the same five datasets, Mar-
ket1501 [69] + DukeMTMC-reID [71] + CUHK02 [27] +
CUHK03 [28] + CUHK-SYSU [59]. We observe that SNR
not only outperforms the Baseline by a large margin (up
to 22.7% in mAP on PRID), but also significantly outper-
forms DIMN[45] by 14.6%/6.6%/1.2%/11.5% in mAP on
PRID/GRID/VIPeR/i-LIDS, respectively.

6. Performance on Another Backbone

Our SNR is a plug-and-play module which can be added
to available ReID networks. We integrate it into the recently
proposed lightweight ReID network OSNet [75] and Table
10 shows the results. We can see that by simply insert-
ing SNR modules between the OS-Blocks, the new scheme
OSNet-SNR outperforms their best model OSNet-IBN by
5.0% and 5.5% in mAP for M→D and D→M, respectively.
Note that, for fair comparison, we use the official released
weights and codes 2 of OSNet [75] to conduct these experi-
ments.

2https://github.com/KaiyangZhou/deep-person-reid

Table 10: Evaluation of the generalization capability of pro-
posed SNR modules on OSNet [75]. We use the official
released weights and codes of OSNet for the experiments.

Method
M−→D D−→M

mAP Rank-1 mAP Rank-1

Baseline (ResNet50) 19.8 35.3 21.8 48.3
OSNet [75] 19.3 35.2 21.7 49.9
OSNet-IBN [75] 26.7 48.5 26.1 57.7
OSNet-SNR 31.7 53.6 31.6 62.7

7. RGB-Infrared Cross-Modality Person ReID
To further demonstrate the generalization capability of

the proposed SNR module, we conduct experiment on
a more challenging RGB-Infrared cross-modality person
ReID task, where there is a large style discrepancy between
RGB images and Infrared images.

We evaluate our models on the standard benchmark
dataset SYSU-MM01 [58]. Following [58], we conduct
evaluation using the released official code based on the
average of 10 repeated random split of gallery and probe
sets. As shown in Table 9, in comparison with Baseline,
our scheme which integrates the proposed SNR module on
Baseline achieves a significant gain of 8.4%, 8.2%, 11.0%,
and 11.5% in terms of mAP under 4 different experimental
settings, and achieves the state-of-the-art performance.
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