
Make Lead Bias in Your Favor: A Simple and Effective Method for
News Summarization

Chenguang Zhu1 , Ziyi Yang2 , Robert Gmyr1 , Michael Zeng1 and Xuedong Huang1

1Microsoft Speech and Dialogue Research Group
2Stanford University

{chezhu,rogmyr,nzeng,xdh}@microsoft.com, zy99@stanford.edu

Abstract

Lead bias is a common phenomenon in news
summarization, where early parts of an arti-
cle often contain the most salient information.
While many algorithms exploit this fact in sum-
mary generation, it has a detrimental effect on
teaching the model to discriminate and extract
important information. We propose that the
lead bias can be leveraged in a simple and ef-
fective way in our favor to pretrain abstrac-
tive news summarization models on large-scale
unlabeled corpus: predicting the leading sen-
tences using the rest of an article. Via care-
ful data cleaning and filtering, our transformer-
based pretrained model without any finetuning
achieves remarkable results over various news
summarization tasks. With further finetuning,
our model outperforms many competitive base-
line models. Human evaluations further show
the effectiveness of our method.

1 Introduction
The goal of text summarization is to condense a piece of
text into a shorter version that contains the salient infor-
mation. Due to the prevalence of news articles and the
need to provide succinct summaries for readers, a ma-
jority of existing datasets for summarization come from
the news domain [Hermann et al., 2015; Sandhaus, 2008;
Narayan et al., 2018]. However, according to journalistic
conventions, the most important information in a news
report usually appears near the beginning of the arti-
cle [Kedzie et al., 2018]. While it facilitates faster and
easier understanding of the news for readers, this lead
bias causes undesirable consequences for summarization
models. The output of these models is inevitably af-
fected by the positional information of sentences. Fur-
thermore, the simple baseline of using the top few sen-
tences as summary can achieve a stronger performance
than many sophisticated models [See et al., 2017]. It can
take a lot of effort for models to overcome the lead bias
[Kedzie et al., 2018].

Additionally, most existing summarization models are
fully supervised and require time and labor-intensive an-

notations to feed their insatiable appetite for labeled
data. For example, the New York Times Annotated
Corpus [Sandhaus, 2008] contains 1.8 million news ar-
ticles, with 650,000 summaries written by library sci-
entists. Therefore, some recent work [Gusev, 2019] ex-
plores the effect of domain transfer to utilize datasets
other than the target one. But this method may be af-
fected by the domain drift problem and still suffers from
the lack of labelled data.

The recent promising trend of pretraining models [De-
vlin et al., 2018; Radford et al., 2018] proves that a large
quantity of data can be used to boost NLP models’ per-
formance. Therefore, we put forward a novel method
to leverage the lead bias of news articles in our favor to
conduct large-scale pretraining of summarization mod-
els. The idea is to leverage the top few sentences of a
news article as the target summary and use the rest as
the content. The goal of our pretrained model is to gen-
erate an abstractive summary given the content. Cou-
pled with careful data filtering and cleaning, the lead
bias can provide a delegate summary of sufficiently good
quality, and it immediately renders the large quantity
of unlabeled news articles corpus available for training
news summarization models.

We employ this pretraining idea on a three-year col-
lection of online news articles. We conduct thorough
data cleaning and filtering. For example, to maintain
a quality assurance bar for using leading sentences as
the summary, we compute the ratio of overlapping non-
stopping words between the top 3 sentences and the rest
of the article. As a higher ratio implies a closer semantic
connection, we only keep articles for which this ratio is
higher than a threshold.

We end up with 21.4M articles based on which we pre-
train a transformer-based encoder-decoder summariza-
tion model. We conduct thorough evaluation of our mod-
els on five benchmark news summarization datasets. Our
pretrained model achieves a remarkable performance on
various target datasets without any finetuning. This
shows the effectiveness of leveraging the lead bias to
pretrain on large-scale news data. We further fine-
tune the model on target datasets and achieve better
results than a number of strong baseline models. For
example, the pretrained model without finetuning ob-

ar
X

iv
:1

91
2.

11
60

2v
2 

 [
cs

.C
L

] 
 7

 J
an

 2
02

0



tains state-of-the-art results among unsupervised mod-
els on CNN/DailyMail. The finetuned model obtains
3.2% higher ROUGE-1, 1.6% higher ROUGE-2 and 2.1%
higher ROUGE-L scores than the best baseline model on
XSum dataset [Narayan et al., 2018]. Human evaluation
results also show that our models outperform existing
baselines like pointer-generator network.

The rest of paper is organized as follows. We introduce
related work in news summarization and pretraining in
Section 2. We describe the details of pretraining using
lead bias in Section 3. We introduce the transformer-
based summarization model in Section 4. We show the
experimental results in Section 5 and conclude the paper
in Section 6.

2 Related work

2.1 Document Summarization

End-to-end abstractive text summarization has been
intensively studied in recent literature. To generate
summary tokens, most architectures take the encoder-
decoder approach [Sutskever et al., 2014]. [Rush et
al., 2015a] first introduces an attention-based seq2seq
model to the abstractive sentence summarization task.
However, its output summary degenerates as document
length increases, and out-of-vocabulary (OOV) words
cannot be efficiently handled. To tackle these challenges,
[See et al., 2017] proposes a pointer-generator network
that can both produce words from the vocabulary via a
generator and copy words from the source article via a
pointer. [Paulus et al., 2017] utilizes reinforcement learn-
ing to improve the result. [Gehrmann et al., 2018] uses a
content selector to over-determine phrases in source doc-
uments that helps constrain the model to likely phrases.
[You et al., 2019] adds Gaussian focal bias and a salience-
selection network to the transformer encoder-decoder
structure [Vaswani et al., 2017] for abstractive summa-
rization. [Grenander et al., 2019] randomly reshuffles the
sentences in news articles to reduce the effect of lead bias
in extractive summarization.

2.2 Pretraining

In recent years, pretraining language models have proved
to be quite helpful in NLP tasks. The state-of-the-art
pretrained models include ELMo [Peters et al., 2018],
GPT [Radford et al., 2018], BERT [Devlin et al., 2018]
and UniLM [Dong et al., 2019]. Built upon large-scale
corpora, these pretrained models learn effective repre-
sentations for various semantic structures and linguis-
tic relationships. As a result, pretrained models have
been widely used with considerable success in applica-
tions such as question answering [Zhu et al., 2018], senti-
ment analysis [Peters et al., 2018] and passage reranking
[Nogueira and Cho, 2019]. Furthermore, UniLM [Dong
et al., 2019] leverages its sequence-to-sequence capabil-
ity for abstractive summarization; the BERT model has
been employed as an encoder in BERTSUM [Liu and
Lapata, 2019] for extractive/abstractive summarization.

Compared to our work, UniLM [Dong et al., 2019]
is a general language model framework and does not
take advantage of the special semantic structure of news
articles. Similarly, BERTSUM [Liu and Lapata, 2019]
directly copies the pretrained BERT structure into its
encoder and finetunes on labelled data instead of pre-
training with the large quantity of unlabeled news cor-
pus available. Recently, PEGASUS [Zhang et al., 2019]
leverages a similar idea of summarization pretraining,
but they require finetuning with data from target do-
mains, whereas our model has a remarkable performance
without any finetuning.

3 Pretraining with Leading Sentences

News articles usually follow the convention of placing the
most important information early in the content, form-
ing an inverted pyramid structure. This lead bias has
been discovered in a number of studies [Kedzie et al.,
2018; Grenander et al., 2019]. One of the consequences
is that the lead baseline, which simply takes the top few
sentences as the summary, can achieve a rather strong
performance in news summarization. For instance, in the
CNN/Daily Mail dataset [Hermann et al., 2015], using
the top three sentences as summaries can get a higher
ROUGE score than many deep learning based models.
This positional bias brings lots of difficulty for models
to extract salient information from the article and gen-
erate high-quality summaries. For instance, [Grenander
et al., 2019] discovers that most models’ performances
drop significantly when a random sentence is inserted in
the leading position, or when the sentences in a news
article are shuffled.

On the other hand, news summarization, just like
many other supervised learning tasks, suffers from the
scarcity of labelled training data. Abstractive summa-
rization is especially data-hungry since the efficacy of
models depends on high-quality handcrafted summaries.

We propose that the lead bias in news articles can be
leveraged in our favor to train an abstractive summariza-
tion model without human labels. Given a news article,
we treat the top three sentences, denoted by Lead-3, as
the target summary, and use the rest of the article as
news content. The goal of the summarization model is
to produce Lead-3 using the following content, as illus-
trated in Figure 1.

The benefit of this approach is that the model can
leverage the large number of unlabeled news articles for
pretraining. In the experiment, we find that the pre-
trained model alone can have a strong performance on
various news summarization datasets, without any fur-
ther training. We also finetune the pretrained model
on downstream datasets with labelled summaries. The
model can quickly adapt to the target domain and fur-
ther increase its performance.

It is worth noting that this idea of utilizing structural
bias for large-scale summarization pretraining is not lim-
ited to specific types of models, and it can be applied to
other types of text as well: academic papers with ab-



stracts, novels with editor’s notes, books with tables of
contents.

However, one should carefully examine and clean the
source data to take advantage of lead bias, as the top
three sentences may not always form a good summary.
We provide more details in the experiments about the
data filtering and cleaning mechanism we apply.

4 Model

In this section, we introduce our abstractive summa-
rization model, which has a transformer-based encoder-
decoder structure. We first formulate the supervised
summarization problem and then present the network
architecture.

4.1 Problem formulation

We formalize the problem of supervised abstractive sum-
marization as follows. The input consists of a pairs of ar-
ticles and summaries: {(X1, Y1), (X2, Y2), ..., (Xa, Ya)}.
Each article and summary are tokenized: Xi =
(x1, ..., xLi

) and Yi = (y1, ..., yNi
). In abstractive sum-

marization, the summary tokens need not be from the
article. For simplicity, we will drop the data index sub-
script. The goal of the system is to generate summary
Y = (y1, ..., ym) given the transcript X = {x1, ..., xn}.

4.2 Network Structure

We utilize a transformer-based encoder-decoder struc-
ture that maximizes the conditional probability of the
summary: P (Y |X, θ), where θ represents the parame-
ters.

Encoder

The encoder maps each token into a fixed-length vec-
tor using a trainable dictionary D randomly initialized
using a normal distribution with zero mean and a stan-
dard deviation of 0.02. Each transformer block conducts
multi-head self-attention. And we use sinusoidal posi-
tional embedding in order to process arbitrarily long in-
put. In the end, the output of the encoder is a set of
contextualized vectors:

Encoder-Transformer({x1, ..., xn}) = {uE1 , ..., uEn }

Decoder

The decoder is a transformer that generates the sum-
mary tokens one at a time, based on the input and pre-
viously generated summary tokens. Each token is pro-
jected onto a vector using the same dictionary D as the
encoder.

The decoder transformer block includes an additional
cross-attention layer to fuse in information from the en-
coder. The output of the decoder transformer is denoted
as:

Decoder-Transformer({w1, ..., wk−1}) = {uD1 , ..., uDk−1}
(1)

To predict the next token wk, we reuse the weights
of dictionary D as the final linear layer to decode

uDk−1 into a probability distribution over the vocabulary:

P (wk|w<k, u
E
1:m) = softmax(DuDk−1).

Training. During training, we seek to minimize the
cross-entropy loss:

L(θ) = − 1

m

m∑
k=1

logP (yk|y<k, X) (2)

We use teacher-forcing in decoder training, i.e. the
decoder takes ground-truth summary tokens as input.
The model has 10 layers of 8-headed transformer blocks
in both its encoder and decoder, with 154.4M parame-
ters.

Inference. During inference, we employ beam search
to select the best candidate. The search starts with the
special token 〈BEGIN〉. We ignore any candidate word
which results in duplicate trigrams. We select the sum-
mary with the highest average log-likelihood per token.

5 Experiments

5.1 Datasets

We evaluate our model on five benchmark summariza-
tion datasets: the New York Times Annotated Corpus
(NYT) [Sandhaus, 2008], XSum [Narayan et al., 2018]
and the CNN/DailyMail dataset [Hermann et al., 2015].
These datasets contain 104K, 227K, 312K news articles
and human-edited summaries respectively, covering dif-
ferent topics and various summarization styles. For NYT
dataset, we use the same train/val/test split and filtering
methods following [Durrett et al., 2016].

5.2 Implementation Details

We use SentencePiece [Kudo and Richardson, 2018] for
tokenization, which segments any sentence into sub-
words. We train the SentencePiece model on pretrained
data to generate a vocabulary of size 32K and of dimen-
sion 720. The vocabulary stays fixed during pretraining
and finetuning.

Pretraining. We collect three years of online news
articles from June 2016 to June 2019. We filter out arti-
cles overlapping with the evaluation data on media do-
main and time range. We then conduct several data
cleaning strategies.

First, many news articles begin with reporter names,
media agencies, dates or other contents irrelevant to the
content, e.g. “New York (CNN) –”, “Jones Smith, May
10th, 2018:”. We therefore apply simple regular expres-
sions to remove these prefixes.

Second, to ensure that the summary is concise and
the article contains enough salient information, we only
keep articles with 10-150 words in the top three sen-
tences and 150-1200 words in the rest, and that contain
at least 6 sentences in total. In this way, we filter out
i) articles with excessively long content to reduce mem-
ory consumption; ii) very short leading sentences with
little information which are unlikely to be a good sum-
mary. To encourage the model to generate abstrative
summaries, we also remove articles where any of the top



Figure 1: Using Lead-3 summary as target in pretraining.

three sentences is exactly repeated in the rest of the ar-
ticle.

Third, we try to remove articles whose top three sen-
tences may not form a relevant summary. For this pur-
pose, we utilize a simple metric: overlapping words.
We compute the portion of non-stopping words in the
top three sentences that are also in the rest of an arti-
cle. A higher portion implies that the summary is rep-
resentative and has a higher chance of being inferred
by the model using the rest of the article. To ver-
ify, we compute the overlapping ratio of non-stopping
words between human-edited summary and the article
in CNN/DailyMail dataset, which has a median value of
0.87. Therefore, in pretraining, we keep articles with an
overlapping word ratio higher than 0.65.

These filters rule out around 95% of the raw data and
we end up with 21.4M news articles, 12,000 of which are
randomly sampled for validation.

We pretrain the model for 10 epochs and evaluate its
performance on the validation set at the end of each
epoch. The model with the highest ROUGE-L score is
selected.

During pretraining, we use a dropout rate of 0.3 for
all inputs to transformer layers. The batch size is 1,920.
We use RAdam [Liu et al., 2019] as the optimizer, with
a learning rate of 10−4. Also, due to the different nu-
merical scales of the positional embedding and initialized
sentence piece embeddings, we divide the positional em-
bedding by 100 before feeding it into the transformer.
The beam width is set to 5 during inference.

Finetuning. During finetuning, we keep the opti-
mizer, learning rate and dropout rate unchanged as in
pretraining. The batch size is 32 for all datasets. We
pick the model with the highest ROUGE-L score on the
validation set and report its performance on the test set.

Our strategy of Pretraining with unlabeled Lead-3
summaries is called PL. We denote the pretrained model

0

10

20

30

40

50

60

70

80

1-gram 2-gram 3-gram 4-gram

Pe
rc

en
ta

ge

Ratio of Novel n-grams in Summaries

Reference PL-NoFT PL-FT

Figure 2: Ratio of novel n-grams in summaries from ref-
erence, PL-NoFT and PL-FT models in NYT test set.

with finetuning on target datasets as PL-FT. The model
with only pretraining and no finetuning is denoted as
PL-NoFT, which is the same model for all datasets.

5.3 Baseline

To compare with our model, we select a number of strong
summarization models as baseline systems. Lead-X
uses the top X sentences as a summary [Liu and Lapata,
2019]. The value ofX is 3 for NYT and CNN/DailyMail1

and 1 for XSum to accommodate the nature of summary
length. PTGen [See et al., 2017] is the pointer-generator
network. DRM [Paulus et al., 2017] leverages deep re-
inforcement learning for summarization. TConvS2S
[Narayan et al., 2018] is based on convolutional neural
networks. BottomUp [Gehrmann et al., 2018] uses a
bottom-up approach to generate summarization. ABS
[Rush et al., 2015b] uses neural attention for summary
generation. DRGD [Li et al., 2017] is based on a deep

1The ROUGE scores here on CNN/Daily Mail are higher
than those reported in the original paper, because we extract
3 sentences in Daily Mail rather than 4.



Model R1 R2 RL
Lead-3 39.58 20.11 35.78
PTGen 42.47 25.61 —
PTGen + Cov 43.71 26.40 —
DRM 42.94 26.02 —
PL-NoFT 35.32 17.80 31.88
PL-FT 44.18∗ 27.49∗ 40.65∗∗

Table 1: ROUGE recall scores on NYT test set.

Model R1 R2 RL
Lead-1 16.30 1.60 11.95
PTGen 29.70 9.21 23.24
PTGen+Cov 28.10 8.02 21.72
TConvS2S 31.89 11.54 25.75
PL-NoFT 24.12 5.59 19.20
PL-FT 35.06∗∗ 13.12∗∗ 27.86∗∗

Table 2: ROUGE F1 results on XSum test set.

Model R1 R2 RL
Lead-3 40.5 17.7 36.7
Unsupervised
SEQ3 17.85 3.94 19.53
GPT-2 29.34 8.27 26.58
PL-NoFT 38.95∗∗ 16.27∗∗ 35.11∗∗

Supervised
PTGen 36.44 15.66 33.42
PTGen+Cov 39.53 17.28 36.38
DRM 39.87 15.82 36.90
BottomUp 41.22 18.68 38.34
PL-FT 40.41 17.81 37.19

Table 3: ROUGE F1 results on CNN/DailyMail test
set.

recurrent generative decoder.
To compare with our pretrain-only model, we include

several unsupervised abstractive baselines: SEQ3 [Bazio-
tis et al., 2019] employs the reconstruction loss and topic
loss for summarization. BottleSum [West et al., 2019]
leverages unsupervised extractive and self-supervised ab-
stractive methods. GPT-2 [Radford et al., 2018] is a
large-scaled pretrained language model which can be di-
rectly used to generate summaries2.

5.4 Metrics

We employ the standard ROUGE-1, ROUGE-2 and
ROUGE-L metrics [Lin, 2004] to evaluate all summa-
rization models. These three metrics respectively evalu-
ate the accuracy on unigrams, bigrams and longest com-
mon subsequence. ROUGE metrics have been shown to
highly correlate with the human judgment [Lin, 2004].
Following [Durrett et al., 2016; West et al., 2019], we
use F-measure ROUGE on XSUM and CNN/DailyMail,
and use limited-length recall-measure ROUGE on NYT.
In NYT, the prediction is truncated to the length of the
ground-truth summaries.

5.5 Results

The results are displayed in Table 1, Table 2 and Ta-
ble 3. As shown, on both NYT and XSum dataset,
PL-FT outperforms all baseline models by a large mar-
gin. For instance, PL-FT obtains 3.2% higher ROUGE-

2We follow GPT-2’s approach to add TL;DR: after the
article for summary generation. And we use the GPT-2 small
model available.

1, 1.6% higher ROUGE-2 and 2.1% higher ROUGE-L
scores than the best baseline model on XSum dataset.
We conduct statistical test and found that the results are
all significant with p-value smaller than 0.05 (marked by
*) or 0.01 (marked by **), compared with previous best
scores. On CNN/DailyMail dataset, PL-FT outperforms
all baseline models except BottomUp [Gehrmann et al.,
2018].

PL-NoFT, the pretrained model without any finetun-
ing, also gets remarkable results. On XSum dataset, PL-
NoFT is almost 8% higher than Lead-1 in ROUGE-1 and
ROUGE-L. On CNN/DailyMail dataset, PL-NoFT sig-
nificantly outperforms unsupervised models SEQ3 and
GPT-2, and even surpasses the supervised pointer-
generator network. It’s worth noting that PL-NoFT is
the same model for all experiments, which proves that
our pretrain strategy is effective across different news
corpus.

5.6 Abstractiveness Analysis

We measure the abstractiveness of our model via the
ratio of novel n-grams in summaries, i.e. the percent-
age of n-grams in the summary that are not present
in the article. Figure 2 shows this ratio in summaries
from reference and generated by PL-NoFT and PL-FT
in NYT dataset. Both PL-NoFT and PL-FT yield more
novel 1-grams in summary than the reference. And PL-
NoFT has similar novelty ratio with the reference in
other n-gram categories. Also, we observe that the nov-
elty ratio drops after finetuning. We attribute this to
the strong lead bias in the NYT dataset which affects
models trained on it.

5.7 Human Evaluation

We conduct human evaluation of the generated sum-
maries from our models and the pointer generator net-
work with coverage. We randomly sample 100 articles
from the CNN/DailyMail test set and ask 3 human label-
ers from Amazon Mechanical Turk to assess the quality
of summaries with a score from 1 to 5 (5 means perfect
quality. The labelers need to judge whether the sum-
mary can express the salient information from the arti-
cle in a concise form of fluent language. The evaluation
guidelines are given in Table 5. To reduce bias, we ran-
domly shuffle summaries from different sources for each
article.

As shown in Table 5, both of our models PL-NoFT and
PL-FT outperform the pointer generator network (PT-



Score Criteria
5 Summary contains all key points.
4 Summary misses one key point.
3 Summary misses two key points.
2 Summary misses all key points.

1
Summary is hardly related to the news

or the language is not natural and fluent.

Table 4: Scoring criteria for human evaluation of sum-
maries.

Model Average Score Standard deviation

PTGen+Cov 3.24 1.17
PL-NoFT 3.47 1.12
PL-FT 4.09∗∗ 0.88

Table 5: Average and standard deviations of human eval-
uation scores for summaries on CNN/DailyMail test set.
Scores range from 1 to 5 with 5 being perfect. Each sum-
mary is judged by 3 human evaluators. PL-FT’s result is
statistically significant compared with pointer-generator
network with coverage with a p-value less than 10−7.

Gen+Cov), and PL-FT’s advantage over PTGen+Cov
is statistically significant. This shows the effectiveness
of both our pretraining and finetuning strategy. To
evaluate the inter-annotator agreement, we compute the
kappa statistics among the labels and the score is 0.34.

6 Conclusions
In this paper, we propose a simple and effective pre-
training method for news summarization. By employing
the leading sentences from a news article as its target
summary, we turn the problematic lead bias for news
summarization in our favor. Based on this strategy, we
conduct pretraining for abstractive summarization in a
large-scale news corpus. We conduct thorough empirical
tests on five benchmark news summarization datasets,
including both automatic and human evaluations. Re-
sults show that the same pretrained model without any
finetuning can achieve state-of-the-art results among un-
supervised methods over various news summarization
datasets. And finetuning on target domains can fur-
ther improve the model’s performance. We argue that
this pretraining method can be applied in more scenarios
where structural bias exists.

References
[Baziotis et al., 2019] Christos Baziotis, Ion An-

droutsopoulos, Ioannis Konstas, and Alexandros
Potamianos. Seqˆ 3: Differentiable sequence-to-
sequence-to-sequence autoencoder for unsupervised
abstractive sentence compression. arXiv preprint
arXiv:1904.03651, 2019.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang,
Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transform-
ers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[Dong et al., 2019] Li Dong, Nan Yang, Wenhui Wang,
Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao,
Ming Zhou, and Hsiao-Wuen Hon. Unified language
model pre-training for natural language understand-
ing and generation. arXiv preprint arXiv:1905.03197,
2019.

[Durrett et al., 2016] Greg Durrett, Taylor Berg-
Kirkpatrick, and Dan Klein. Learning-based
single-document summarization with compres-
sion and anaphoricity constraints. arXiv preprint
arXiv:1603.08887, 2016.

[Gehrmann et al., 2018] Sebastian Gehrmann, Yuntian
Deng, and Alexander M Rush. Bottom-up abstrac-
tive summarization. arXiv preprint arXiv:1808.10792,
2018.

[Grenander et al., 2019] Matt Grenander, Yue Dong,
Jackie C.K. Cheung, and Annie Louis. Countering the
effects of lead bias in news summarization via multi-
stage training and auxiliary losses. EMNLP, 2019.

[Gusev, 2019] Ilya Gusev. Importance of copying mech-
anism for news headline generation. arXiv preprint
arXiv:1904.11475, 2019.

[Hermann et al., 2015] Karl Moritz Hermann, Tomas
Kocisky, Edward Grefenstette, Lasse Espeholt, Will
Kay, Mustafa Suleyman, and Phil Blunsom. Teaching
machines to read and comprehend. Advances in neu-
ral information processing systems, pages 1693–1701,
2015.

[Kedzie et al., 2018] Chris Kedzie, Kathleen McKeown,
and Hal Daume III. Content selection in deep
learning models of summarization. arXiv preprint
arXiv:1810.12343, 2018.

[Kudo and Richardson, 2018] Taku Kudo and John
Richardson. Sentencepiece: A simple and language in-
dependent subword tokenizer and detokenizer for neu-
ral text processing. arXiv preprint arXiv:1808.06226,
2018.

[Li et al., 2017] Piji Li, Wai Lam, Lidong Bing, and
Zihao Wang. Deep recurrent generative decoder
for abstractive text summarization. arXiv preprint
arXiv:1708.00625, 2017.

[Lin, 2004] Chin-Yew Lin. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out,, 2004.

[Liu and Lapata, 2019] Yang Liu and Mirella Lap-
ata. Text summarization with pretrained encoders.
EMNLP, 2019.

[Liu et al., 2019] Liyuan Liu, Haoming Jiang,
Pengcheng He, Weizhu Chen, Xiaodong Liu, Jian-
feng Gao, and Jiawei Han. On the variance of the
adaptive learning rate and beyond. arXiv preprint
arXiv:1908.03265, 2019.



[Narayan et al., 2018] Shashi Narayan, Shay B Cohen,
and Mirella Lapata. Don’t give me the details, just
the summary! topic-aware convolutional neural net-
works for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

[Nogueira and Cho, 2019] Rodrigo Nogueira and
Kyunghyun Cho. Passage re-ranking with bert. arXiv
preprint arXiv:1901.04085, 2019.

[Paulus et al., 2017] Romain Paulus, Caiming Xiong,
and Richard Socher. A deep reinforced model
for abstractive summarization. arXiv preprint
arXiv:1705.04304, 2017.

[Peters et al., 2018] Matthew E Peters, Mark Neumann,
Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep con-
textualized word representations. arXiv preprint
arXiv:1802.05365, 2018.

[Radford et al., 2018] Alec Radford, Karthik
Narasimhan, Tim Salimans, and Ilya Sutskever.
Improving language understanding by generative
pre-training. 2018.

[Rush et al., 2015a] Alexander M Rush, Sumit Chopra,
and Jason Weston. A neural attention model for
abstractive sentence summarization. arXiv preprint
arXiv:1509.00685, 2015.

[Rush et al., 2015b] Alexander M Rush, Sumit Chopra,
and Jason Weston. A neural attention model for
abstractive sentence summarization. arXiv preprint
arXiv:1509.00685, 2015.

[Sandhaus, 2008] Evan Sandhaus. The new york times
annotated corpus. Linguistic Data Consortium,
Philadelphia, 6(12):e26752, 2008.

[See et al., 2017] Abigail See, Peter J Liu, and Christo-
pher D Manning. Get to the point: Summariza-
tion with pointer-generator networks. arXiv preprint
arXiv:1704.04368, 2017.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals,
and Quoc V Le. Sequence to sequence learning with
neural networks. Advances in neural information pro-
cessing systems,, pages 3104–3112, 2014.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer,
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez,  Lukasz Kaiser, and Illia Polosukhin. Atten-
tion is all you need. pages 5998–6008, 2017.

[West et al., 2019] Peter West, Ari Holtzman, Jan Buys,
and Yejin Choi. Bottlesum: Unsupervised and
self-supervised sentence summarization using the
information bottleneck principle. arXiv preprint
arXiv:1909.07405, 2019.

[You et al., 2019] Yongjian You, Weijia Jia, Tianyi Liu,
and Wenmian Yang. Improving abstractive docu-
ment summarization with salient information model-
ing. Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2132–
2141, 2019.

[Zhang et al., 2019] Jingqing Zhang, Yao Zhao, Moham-
mad Saleh, and Peter J. Liu. Pegasus: Pre-training
with extracted gap-sentences for abstractive summa-
rization jingqing zhang, yao zhao, mohammad saleh,
peter j. liu. arXiv preprint arXiv:1912.08777, 2019.

[Zhu et al., 2018] Chenguang Zhu, Michael Zeng, and
Xuedong Huang. Sdnet: Contextualized attention-
based deep network for conversational question an-
swering. arXiv preprint arXiv:1812.03593, 2018.


	1 Introduction
	2 Related work
	2.1 Document Summarization
	2.2 Pretraining

	3 Pretraining with Leading Sentences
	4 Model
	4.1 Problem formulation
	4.2 Network Structure
	Encoder
	Decoder


	5 Experiments
	5.1 Datasets
	5.2 Implementation Details
	5.3 Baseline
	5.4 Metrics
	5.5 Results
	5.6 Abstractiveness Analysis
	5.7 Human Evaluation

	6 Conclusions

