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Abstract. We develop a theory for two recently-proposed spreadsheet
mechanisms: gridlets allow for abstraction and reuse in spreadsheets, and
build on spilled arrays, where an array value spills out of one cell into
nearby cells. We present the first formal calculus of spreadsheets with
spilled arrays. Since spilled arrays may collide, the semantics of spilling
is an iterative process to determine which arrays spill successfully and
which do not. Our first theorem is that this process converges determin-
istically. To model gridlets, we propose the grid calculus, a higher-order
extension of our calculus of spilled arrays with primitives to treat spread-
sheets as values. We define a semantics of gridlets as formulas in the grid
calculus. Our second theorem shows the correctness of a remarkably di-
rect encoding of the Abadi and Cardelli object calculus into the grid cal-
culus. This result is the first rigorous analogy between spreadsheets and
objects; it substantiates the intuition that gridlets are an object-oriented
counterpart to functional programming extensions to spreadsheets, such
as sheet-defined functions.

1 Introduction

Many spreadsheets contain repeated regions that share the same formatting and
formulas, perhaps with minor variations. The typical method for generating each
variation is to apply the operations copy-paste-modify. That is, the user copies
the region they intend to repeat, pastes it into a new location, and makes local
modifications to the newly pasted region such as altering data values, format-
ting, or formulas. A common problem associated with copy-paste-modify is that
updates to a source region will not propagate to a modified copy. A user must
modify each copy manually—a process that is tedious and error-prone.

Gridlets [12] are a high-level abstraction for re-use in spreadsheets based on
the principle of live copy-paste-modify : a pasted region of a spreadsheet can be
locally modified without severing the link to the source region. Changes to the
source region propagate to the copy.
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The central idea of this paper is that we can implement gridlets using a
formula operator G. If a cell a contains the formula

G(r, a1, F1, . . . , an, Fn)

then the behaviour is to copy range r, modify cells ai with formulas Fi, and
paste the computed array in cell a where its elements may be displayed in the
cells below and to the right.

Consider the following example:

A B C

1 “Edge” “Len.”

2 “a” 3 =B2^2

3 “b” 4 =B3^2

4 “c” =SQRT(C4) =C2 + C3

Source sheet

A B C

1 “Edge” “Len.”

2 “a” 3 9

3 “b” 4 16

4 “c” 5 25

Evaluated sheet

The table computes and displays a Pythagorean triple, with intermediate cal-
culation spread across many cells. To reuse the table a user creates a gridlet by
inserting5 a G formula in cell A6 as follows.

A B C
...

...
...

6 =G(A1:C4,B2, 7,B3, 24)

7

8

9

Source sheet

A B C
...

...
...

6 “Edge” “Len.”

7 “a” 7 49

8 “b” 24 576

9 “c” 25 625

Evaluated sheet

The formula in A6 is interpreted as: compute the source range A1:C4 with B2
bound to 7, and B3 bound to 24. The result of the formula is an array corre-
sponding to the computed range which then displays in the grid, emulating a
paste action. A consequence of this design is that this single formula controls
the content of a range of cells, below and to the right; we say that it spills into
these cells.

Our overall goal is to explain the semantics of the gridlet operator G using ar-
ray spilling. Spilling is not new in spreadsheets: both Microsoft Excel and Google
Sheets allow a cell to contain a formula that computes an array, and whose com-
puted value then spills into vacant cells below and to the right. While there is a
practical precedent for spilling in spreadsheets, there is no corresponding formal
precedent from which to derive a semantics for G. This paper therefore proceeds
in two parts.

5 The user may enter this formula either directly, or indirectly via some grid-based
interface [12]; details of the user experience are beyond the scope of this paper.
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First, we make sense of array spilling and its subtleties. Two formulas spilling
into the same cell, or colliding, is one problem. Another problem is a formula
spilling into an area on which it depends, triggering a spill cycle. Both problems
make preserving determinism and acyclicity of spreadsheet evaluation a chal-
lenge. We give a semantics of spilling that exploits iteration to determine which
arrays spill successfully, and which do not. Our solution ensures that there is at
most one array that spills into any address, and that the iteration converges.

Second, we develop three new spreadsheet primitives that implement G when
paired with spilled arrays. We present a higher-order spreadsheet calculus, the
grid calculus, that admits sheets as first-class values and provides operations
that manipulate sheet-values. Previous work has drawn connections between
spreadsheets and object-oriented programming [5,8,9,15,17], but we give the first
direct correspondence by showing that the Abadi and Cardelli object calculus [1]
can be embedded in the grid calculus. Our translation constitutes a precise
analogy between objects and sheets, and between methods and cells.

In our semantics for gridlets, we make three distinct technical contributions:

– We develop the spill calculus, the first formalisation of spilled arrays for
spreadsheets. Our first theorem is that the iterative process of spilling we
present converges deterministically (Section 4). Our formal analysis of spilled
arrays, a feature now available in commercial spreadsheet systems, is a sub-
stantial contribution of this work, independent of our gridlet semantics.

– We develop the grid calculus, an extension of the spill calculus with three
higher-order operators: GRID, VIEW, and UPDATE. These correspond to
copy, paste, and modify, and suffice to encode the operator G (Section 5).

– In the course of developing the grid calculus, we realised a close connection
between gridlets and object-oriented programming. We make this precise by
encoding the Abadi and Cardelli object calculus into the grid calculus. Our
second theorem shows the correctness of this encoding (Section 6).

2 Challenges of Spilling

In this section we describe the challenges of implementing spilled arrays. We de-
scribe core design principles for spreadsheet implementations and then illustrate
how spilled arrays challenge these principles.

2.1 Design Principles for Spreadsheet Evaluation

Spreadsheet implementations rely on the following two properties to be pre-
dictable and efficient.

Determinism Evaluation should produce identical output given identical in-
put; this property is exploited for efficient recalculation.

Acyclicity Evaluation should not be self-referential. The dependency graph of
a spreadsheet should form a directed acyclic graph and no cell should depend
on its own value. Creating self-referential formulas cannot be prevented, but
violations of acyclicity should be observable and not cause divergence.
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Both properties are satisfied by standard spreadsheet implementations, if we
exclude a few nondeterministic worksheet functions such as RAND. Through-
out this work we consider only deterministic worksheet functions. Given this
assumption, spreadsheet formulas constitute a purely functional language, and
so evaluation is deterministic. Cell evaluation tracks a calculating state for every
cell and raises a circularity violation for any cell that depends on its own value.

Spilled arrays pose a challenge for preserving determinism and acyclicity
which we illustrate with examples. For the remainder of our technical develop-
ments we drop the leading = from formulas. We begin with core terminology.

Arrays Spreadsheet arrays are finite two-dimensional matrices that use one-
based indexing and are non-empty. We denote an (m,n) array literal as

{V1,1, . . . , V1,n; . . . ;Vm,1, . . . , Vm,n}

where (,) delimits the n columns and (;) delimits the m rows. We use V to
range over values, which are described in Section 3.

Spilling Address ar (i, j)-spills into address at iff the value of ar is an (m,n)
array and at is i−1 rows below and j−1 columns right of ar, where i ∈ 1..m
and j ∈ 1..n. In particular, ar (1,1)-spills into itself.

Roots, targets, & areas If ar (i, j)-spills into address at we call ar the spill
root and at a spill target. The spill area of ar is the set of its spill targets.
The value of at is element (i, j) of the array that is the value of ar.

Consider the following example:

A B
1 {10, 20}
2

Source Sheet

A B
1 10 20
2

Evaluated Sheet

Address A1 evaluates to a (1, 2) array and is a spill root with spill area {A1,B1}.
Address A1 (1, 1)-spills into A1, and (1, 2)-spills into B1.

2.2 Spill Collisions

Spill collisions can be static or dynamic, and may interfere with determinism.

Static Collision Every cell in a spill area should be blank except for the spill
root; a blank cell has no formula. A static collision occurs when a spill root spills
into another non-blank cell, and we say the non-blank cell is an obstruction.
The choice to read the value from the obstruction or the spilled value violates
determinism. We adopt a simple mechanism used by Excel and Sheets to resolve
static spill collisions: the root evaluates to an error value, not an array, and spills
nowhere. The ambiguity between reading the obstructing cell’s value and the
root’s spilled value is resolved by preventing the root from spilling—we always
read the value from the obstructing cell. Consider the following example:
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A B
1 {10, 20} 40
2 B1 + 2

Source Sheet

A B
1 ERR 40
2 42

Evaluated Sheet

The address B1 obstructs spill root A1 and consequently address A1 evaluates
to an error value, address B1 evaluates to 40, and address B2 evaluates to 42.

Dynamic Collisions A dynamic collision occurs when a blank cell is a spill target
for two distinct spill roots. Dynamic collisions can be resolved in different ways.

– The conservative approach is to say no colliding spill root spills and each
root evaluates to an error.

– The liberal approach is to say that every colliding spill root spills. This
approach can be non-deterministic because the spill target obtains its value
by choosing one of the multiple colliding spill roots. Google Sheets takes the
liberal approach.

– An intermediate approach enforces what we call the single-spill policy. One
root from the set of colliding roots is permitted to spill and the rest evaluate
to an error. This approach can be non-deterministic because there is a choice
of which root is permitted to spill. Excel takes the single-spill approach.

Consider the following example that uses the single-spill approach:

A B
1 B2 {3; 4}
2 {1, 2}

Source Sheet

A B
1 2 ERR
2 1 2

Root A2 wins

A B
1 4 3
2 ERR 4

Root B1 wins

Addresses A2 and B1 are spill roots: the former evaluates to an array of size
(1, 2) while the latter evaluates to an array of size (2, 1). The value of address A1
depends on which address from the colliding spill roots A2 and B1 are permitted
to spill. Arbitrarily selecting which root is permitted to spill violates determinis-
tic evaluation. Sheets and Excel resolve collisions using an ordering that prefers
newer formulas. While consecutive evaluations of the same spreadsheet will pro-
duce the same result, two syntactically identical spreadsheets constructed in
different ways can produce different results. In Section 4 we give a deterministic
semantics for spilling that uses a total ordering on addresses to select a single
root from a set of colliding roots.

2.3 Spill Cycles

A spill cycle occurs when the value of a spill root depends on an address in its
spill area. Spill cycles violate acyclicity and subtly differ from cell cycles. A cell
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cycle occurs when the value of a formula in a cell depends on the value of the
cell itself. We know that it is never legal for a cell to read its own value and
therefore it is possible to eagerly detect cell cycles during evaluation of a cell. In
contrast, a spill cycle only occurs if the cell evaluates to an array that is spilled
into a range the cell depends on, so it is not possible to detect the cycle until
the cell has been evaluated.

We can thus proactively detect cell cycles, but only retroactively detect spill
cycles. To see why, let us consider the following example, wherein we assume
the definition of a conditional operator IF that is lazy in the second and third
arguments, and the function INC that maps over an array and increments every
number and converts ε to 0, where ε is the value read from a blank cell.

A B
1 42 IF(A1 = 42,SUM(B2:B3), INC(B2:B3))
2
3

The evaluation of address B1 returns the sum of the range B2:B3. While the
value of B1 depends on the values in the range B2:B3, the sum returns a scalar
and therefore no spilling is required.

Consider the case where the value in A1 is changed to 43. The address B1
will evaluate the formula INC(B2:B3), first by dereferencing the range B2:B3
to yield {ε; ε}, and then by applying INC to yield {0; 0}. The array {0; 0} will
attempt to spill into the range B1:B2—a range just read from by the formula.
The attempt to spill will induce a spill cycle; there is no consistent value that
can be assigned to the addresses B1, B2, and B3.

In Section 4 we give a semantics for spilling that uses dynamic dependency
tracking to ensure that no spill root depends on its own spill area.

3 Core Calculus for Spreadsheets

In this section we present a core calculus for spreadsheets that serves as the
foundation of our technical developments.

3.1 Syntax

Figure 1 presents the syntax of the core calculus. Let a and b range over A1-style
addresses, written Nm, composed from a column name N and row index m. A
column name is a base-26 numeral written using the symbols A..Z. A row index
is a decimal numeral written as usual. Let m and n range over positive natural
numbers which we typically use to denote row or array indices. We assume a
locale in which rows are numbered from top to bottom, and columns from left to
right, so that A1 is the top-left cell of the sheet. We use the terms address and cell
interchangeably. Let r range over ranges that are pairs of addresses that denote
a rectangular region of a grid. Modern spreadsheet systems do not restrict which
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A1-style column name N ::= A | . . . | Z | AA | AB | . . .
m, n ∈ N1

Address a, b ::= Nm
Range r ::= a1 :a2
Value V ::= ε | c | ERR | {Vi,j

i∈1..m,j∈1..n}
Formula F ::= V | r | f(F1, . . . , Fn) (f function name)
Sheet S ::= [ai 7→ Fi

i∈1..n] (ai distinct and no Fi = ε)
Grid γ ::= [ai 7→ Vi

i∈1..n] (ai distinct)

Fig. 1. Syntax for Core Calculus

corners of a rectangle are denoted by a range but will automatically normalise the
range to represent the top-left and bottom-right corners. We implicitly assume
that all ranges are written in the normalised form such that range B1:A2 does
not occur; instead, the range is denoted A1:B2.

A value V is either the blank value ε, a constant c, an error ERR, or a
two-dimensional array {Vi,j i∈1..m,j∈1..n}. We write {Vi,j i∈1..m,j∈1..n} as short
for array literal {V1,1, . . . , V1,n; . . . ;Vm,1, . . . , Vm,n}.

Let F range over formulas. A formula is either a value V , a range r, or a
function application f(F1, . . . , Fn), where f ranges over names of pre-defined
worksheet functions such as SUM or PRODUCT.

Let S range over sheets, where a sheet is a partial function from addresses
to formulas that has finite domain. We write [] to denote the empty map, and
we write S[a 7→ F ] to denote the extension of S to map address a to formula
F , potentially shadowing an existing mapping. We do not model the maximum
numbers of rows or columns imposed by some implementations. Each finite S
represents an unbounded sheet that is almost everywhere blank: we say a cell a
is blank to mean that a is not in the domain of S.

Let γ range over grids, where a grid is a partial function from addresses to
values that has finite domain. A grid can be viewed as a function that assigns
values to addresses, obtained by evaluating a sheet.

3.2 Operational Semantics

Figure 2 presents the operational semantics of the core calculus. Auxiliary defi-
nitions are present at the top of Figure 2.

Formula Evaluation The relation S ` F ⇓ V means that in sheet S, formula
F evaluates to value V . A value V evaluates to itself. A function application
f(F1, . . . , Fn) evaluates to V if the result of applying JfK to evaluated arguments
is V , where JfK is the underlying semantics of f , a total function on values. A
single cell range a :a evaluates to V if address a dereferences to V . A multiple
cell range a1 :a2 evaluates to an array of the same dimensions, where each value
in the array is obtained by dereferencing the corresponding single cell within the
range. We write size(a1:a2) to denote the operation that returns the dimensions
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size(N1m1 :N2m2) = (m2 −m1 + 1, N2 −N1 + 1)
Nm+ (i, j) = (N + j − 1)(m+ i− 1)

Formula evaluation: S ` F ⇓ V

S ` V ⇓ V
S ` Fi ⇓ Vi JfK(V1, . . . , Vn) = V

S ` f(F1, . . . , Fn) ⇓ V
S ` a !V

S ` a:a ⇓ V

a1 6= a2 size(a1 :a2) = (m,n) ∀i ∈ 1..m, j ∈ 1..n. S ` (a1 + (i, j)) !Vi,j

S ` a1 :a2 ⇓ {Vi,j
i∈1..m,j∈1..n}

Address dereferencing: S ` a !V

S(a) = F S ` F ⇓ V
S ` a !V

a 6∈ dom(S)

S ` a ! ε

Sheet evaluation: S ⇓ γ

S ⇓ γ def
= ∀a ∈ dom(S). S ` a ! γ(a)

Fig. 2. Operational Semantics for Core Calculus

of a range written (m,n), where m is the number of rows, and n is the number of
columns. We write a+(i, j) to denote the address offset to the right and below a
by i−1 rows and j−1 columns. For example, a+(1, 1) maps to a, and a+(1, 2)
maps to the address immediately to the right of a. Both size(a1:a2) and a+(i, j)
are defined in Figure 2.

Address Dereferencing The relation S ` a !V means that in sheet S, address a
dereferences to V . If address a maps to formula F in sheet S, then dereferencing
a returns V when F evaluates to V . If address a is not in the domain of S then
dereference a returns the blank value ε. We make range evaluation and address
dereferencing distinct relations to aid our presentation in Section 4.

Sheet Evaluation The relation S ⇓ γ means that sheet S evaluates to grid γ
and the relation is defined by point-wise dereferencing of every address in the
sheet. Recall the spreadsheet design principles of determinism and acyclicity
from Section 2.1. The relations of our semantics are partial functions (as stated
in Appendix A of the extended version [21]). As for acyclicity, if there is a cycle
where S(a) = F and evaluation of formula F must dereference cell a, then we
cannot derive S ` F ⇓ V for any V . Although our calculus could be modified to
model a detection mechanism for cell cycles, we omit any such mechanism for
the sake of simplicity.
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Formula F ::= · · · | a# (postfix operator)
Dependency set D ::= {a1, . . . , an}
Grid γ ::= [ai 7→ (V #

i , V !
i ,Di)

i∈1..n] (ai distinct)
Spill permit p ::= X | ×
Spill oracle ω ::= [ai 7→ (mi, ni, pi)

i∈1..n] (ai distinct)

Fig. 3. Syntax for Spill Calculus (Extends and modifies Figure 1)

4 Spill Calculus: Core Calculus with Spilled Arrays

The spill calculus, presented in this section, is the first formalism to explain the
semantics of arrays that spill out of cells in spreadsheets. The spill calculus and
its convergence, Theorem 1, is our first main technical contribution.

4.1 Syntax

Figure 3 presents the extensions and modifications to the syntax of Figure 1; we
omit syntax classes that remain unchanged.

Let F range over formulas, extended to include the postfix root operator a#.
The root operator a# evaluates to an array if address a is a spill root. Accessing
an array via the root operator instead of a fixed-size range is more robust to
future edits. For example, consider the sheet [A1 7→ F,B1 7→ SUM(A1:A10)]
where formula F evaluates to a (10, 1) array. If the user modifies F such that
the formula evaluates to an array of size (11, 1) then the summation in B1 still
applies only to the first ten elements that spill from A1, even if the user intends
to sum the whole array. The root operator allows a more robust formulation:
[A1 7→ F,B1 7→ SUM(A1#)]. The summation in B1 applies to the entire array
that spills from A1, regardless of its size. Section 4.3 shows the full semantics of
the root operator.

Let D range over dependency sets, which denote a set of addresses that a
formula bound to an address depends on.

Let γ range over grids, which now map addresses to tuples of the form
(V #, V !,D). If γ(a) = (V #, V !,D) then V # is the pre-spill value obtained by
applying the root operator # to a, while V ! is the post-spill value obtained
by evaluating a, and D is the dependency set required to dereference a. Each
dereferenced address has both a pre-spill and post-spill value, even if the cell
content does not spill. If the pre-spill value is not an array, it cannot spill, and
the post-spill value equals the pre-spill value.

Let p range over spill permits, where X denotes that a root is permitted to
spill and × denotes that it is not.

Let ω range over spill oracles, which map addresses to tuples of the form
(m,n, p). A spill oracle governs how arrays spill in a sheet.

– If ω(a) = (m,n, p) we expect a to be a spill root for an (m,n) array:
– If p = X the contents of a can spill with no obstruction.
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Let S def
= [A1 7→ {7; 8},B1 7→ IF(A2 = 8, {9; 10}, 100)]

A B

1 {7; 8} 100

2

Round 1: ω1 = []

A B

1 7 {9; 10}
2 8

Round 2:
ω2 = [A1 7→ (2, 1,X)]

A B

1 7 9

2 8 10

Round 3: ω3 = [A1 7→
(2, 1,X),B1 7→ (2, 1,X)]

Fig. 4. Example Spill Iteration

– If p = × then a cannot spill because either a formula obstructs the spill
area, or another spill root will spill into the area.

Oracles track the size of each spilled array so we can find the spill root a of any
spill target, and hence obtain the value for a spill target by dereferencing a.

4.2 Spill Oracles and Iteration

As discussed in Section 2.2, spill collisions have the potential to introduce non-
determinism if not handled appropriately. Our solution is to evaluate a sheet in a
series of rounds, each determined by a spill oracle. Given a sheet, a grid is induced
by evaluating the sheet and using the oracle to deterministically predict how
each root spills. A discrepancy could be a new spill root the oracle missed, or an
existing spill root with dimensions differing from the oracle. If any discrepancies
are found we compute a new oracle, and start a new round. Iteration halts when
the oracle is consistent with the induced grid. The notion of a consistent oracle
is defined in Section 4.4. We can view the iteration as a sequence of n oracles
where only the final oracle is consistent:

[] = ω1 −→ ω2 −→ · · · −→ ωn and ωn is consistent

Consider the example in Figure 4. At the top we show the bindings of the sheet;
at the bottom we show the oracle and induced grid for each round of spilling.

We define the initial spill oracle as ω1 = [] and in the first round the oracle
is empty. An empty oracle anticipates no spill roots and therefore no roots are
permitted to spill. The array in A1 remains collapsed and B1 evaluates using the
false branch. Once the sheet has been fully evaluated we determine that ω1 was
not a consistent prediction because there is an array in A1 with no corresponding
entry in ω1. We compute a new oracle that determines that A1 is allowed to spill
because the area is blank. We define the new oracle as ω2 = [A1 7→ (2, 1,X)].

In the second round the root A1 is permitted to spill by the oracle and as a
consequence B1 now evaluates to the array {9; 10}—this array is not anticipated
by the oracle and remains collapsed. Once the sheet has been fully evaluated we
determine that ω2 was not a consistent prediction because there is an array in



Higher-Order Spreadsheets with Spilled Arrays 11

B1 with no corresponding entry in ω2. We compute a new oracle that determines
that B1 is allowed to spill because the area is blank in the grid induced by ω2.
We define the third oracle as ω3 = [A1 7→ (2, 1,X),B1 7→ (2, 1,X)].

In the third and final round the root A1 is permitted to spill by the oracle
and B1 evaluates to the array {9; 10}. This time the oracle anticipates the root
in B1 and permits the array to spill. Once the sheet has been fully evaluated we
determine that ω3 is a consistent prediction because the spill roots A1 and B1
are contained in the oracle. The iteration is the sequence of three oracles:

[] −→ [A1 7→ (2, 1,X)] −→ [A1 7→ (2, 1,X),B1 7→ (2, 1,X)]

Spill Rejection Spill oracles explicitly track the anticipated size of the array
to ensure that spill rejections based on incorrect dimensions can be corrected.
Consider the following example:

A B C
1 IF(C2 = 2, {10; 20}, {10; 20; 30}) {1; 2}
2
3 {1, 2, 3}

After the first round using an empty spill oracle there are three spill roots:
A3 = {1, 2, 3}, B1 = {10; 20; 30}, and C1 = {1; 2}. There is sufficient space to
spill C1 but only space to spill one of A3 and B1; the decision is resolved using
the total ordering on addresses. Suppose that we allow A3 to spill such that the
new oracle is: [A3 7→ (1, 3,X),B1 7→ (3, 1,×),C1 7→ (2, 1,X)].

After the second round we find that address B1 returns an array of a smaller
size because the root C1 spills into C2. Previously we thought B1 was too big to
spill but with the new oracle we find there is now sufficient room; by explicitly
recording the anticipated size it is possible to identify cases that require further
refinement. We compute the new oracle [A3 7→ (1, 3,X),B1 7→ (2, 1,X),C1 7→
(2, 1,X)] that is consistent.

An interesting limitation arises if the total ordering places B1 before A3,
which we discuss in Section 4.6.

4.3 Operational Semantics

Figure 5 presents the operational semantics for the spill calculus. The key ad-
ditions to the relations for formula evaluation and address dereferencing are an
oracle ω that is part of the context, and a dependency set D that is part of the
output. We discuss each relation in turn and focus on the extensions and modi-
fications from Figure 2. Auxiliary definitions are present at the top of Figure 5.

Formula Evaluation: S, ω ` F ⇓ V,D The spill oracle ω is not inspected by the
relation but is threaded through the definition. Dependency set D denotes the
transitive dependencies required to evaluate F . Evaluating a value or function
application is as before, except we additionally compute the dependencies of the
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owners(ω, a) = {(ar, i, j) | ω(ar) = (m,n,X) and ar + (i, j) = a and (i, j) ≤ (m,n)}
area(a,m, n) = { a+ (i, j) | ∀i ∈ 1..m, ∀j ∈ 1..n }

size(V ) =

{
(m,n) if V = {Vi,j

i∈1..m,j∈1..n}
⊥ otherwise

Formula evaluation: S, ω ` F ⇓ V,D

S, ω ` V ⇓ V,∅
S, ω ` Fi ⇓ Vi,Di JfK(V1, . . . , Vn) = V

S, ω ` f(F1, . . . , Fn) ⇓ V,
n⋃

i=1

Di

S, ω ` a !V #, V !,D
S, ω ` a# ⇓ V #,D ∪ {a}

S, ω ` a !V #, V !,D
S, ω ` a:a ⇓ V !,D ∪ {a}

a1 6= a2
size(a1 :a2) = (m,n) ∀i ∈ 1..m, j ∈ 1..n. S, ω ` a1 + (i, j) !V #

i,j , V
!
i,j ,Di,j

S, ω ` a1 :a2 ⇓ {V !
i,j

i∈1..m,j∈1..n},
m,n⋃

i,j=1,1

Di,j ∪ {a1 + (i, j)}

Address dereferencing: S, ω ` a !V #, V !,D

owners(ω, a) = ∅ a 6∈ dom(ω) S(a) = F S, ω ` F ⇓ V,D
S, ω ` a !V, V,D

(1)

owners(ω, a) = ∅ a 6∈ dom(ω) a 6∈ dom(S)

S, ω ` a ! ε, ε,∅
(2)

owners(ω, a) = ∅ ω(a) = (m,n,×) S(a) = F S, ω ` F ⇓ V,D
S, ω ` a !V,ERR,D

(3)

(ar, i, j) ∈ owners(ω, a) ω(ar) = (m,n,X) S(ar) = F
S, ω\ar ` F ⇓ V,D size(V ) = (m,n) area(ar,m, n) ∩ D = ∅

S, ω ` a ! (a = ar ?V : ε), Vi,j ,D
(4)

(ar, i, j) ∈ owners(ω, a)
ω(ar) = (m,n,X) S(ar) = F S, ω\ar ` F ⇓ V,D size(V ) 6= (m,n)

S, ω ` a ! (a = ar ?V : ε), (a = ar ?V : ε), (a = ar ?D : ∅)
(5)

Sheet evaluation: S, ω ⇓ γ

S, ω ⇓ γ def
= ∀a ∈ dom(S). S, ω ` a ! γ(a)

Fig. 5. Operational Semantics for Spill Calculus
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formula. The dependency set required to evaluate a value is ∅. The dependency
set required to evaluate a function application is the union of the dependencies
of the arguments. Evaluating a root operation a# dereferences a and returns the
pre-spill value V #. The dependency set required to evaluate a root operation a#
is the dependency set required to dereference a and the address a itself. Evaluat-
ing a single cell range a:a dereferences a and returns the post-spill value V !. The
dependency set required to evaluate a single cell range a :a is the dependency
set required to dereference a and the address a itself. Evaluating a multiple cell
range a1:a2 returns an array of the same dimensions, where each value in the ar-
ray is obtained by dereferencing the corresponding single cell and extracting the
post-spill value. The dependency set required to evaluate a multiple cell range is
the dependency set required to dereference every address in the range, and the
range itself.

Address dereferencing The relation S, ω ` a !V #, V !,D means that in sheet S
with oracle ω, address a dereferences to pre-spill value V # and post-spill value
V !, and depends upon the addresses in D. Five rules govern address dereferenc-
ing, based on spill oracle ω and owners set owners(ω, a).

The set owners(ω, a) is key to the operational semantics and denotes the set of
owners for address a. If a tuple (ar, i, j) is in the set owners(ω, a), we say ar owns
a, meaning that ar is a spill root that we expect to spill into address a, and that a
is offset from ar by i−1 rows and j−1 columns. Hence, to dereference a we must
first compute the root ar and extract the (i, j)th spilled value from the root array.
Our definition allows an address to own itself, denoted (a, 1, 1) ∈ owners(ω, a),
and does not preclude an address having multiple owners, violating the single-
spill policy. We enforce the single-spill policy in our technical results using an
additional well-formedness condition on oracles, defined in Section 4.5.

Rule (1) applies when the address has no owner, the address is not a spill
root, and the address has a formula binding in S. The pre-spill and post-spill
values are the value obtained by evaluating the bound formula.

Rule (2) applies when the address has no owner, the address is not a spill
root, and the address has no formula binding in S. The pre-spill and post-spill
values are the blank value ε and the dependency set is empty. Rules (1) and (2)
correspond to the address dereferencing behaviour described in the core calculus
(Section 3) which is lifted to the new relation.

Rule (3) rule applies when the address is a spill root and the root is not
permitted to spill. The pre-spill value is the value obtained by evaluating the
bound formula; the post-spill value is an error value. If the address has no bound
formula then the relation is undefined.

Rules (4) and (5) apply when an address with an owner is dereferenced. The
owner ar is omitted from the spill oracle before evaluating the associated formula,
denoted by S, ω\ar ` F ⇓ V,D. This prevents cycles when the oracle incorrectly
expects the root to spill, but the root does not, and instead depends on the
expected spill area. For example, B1 = SUM(B2:B3) and ω = [B1 7→ (3, 1,X)].
The address B1 owns B2 according to ω, therefore dereferencing address B2
requires dereferencing B1, which in-turn depends on B2. If we did not remove
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B1 from ω when evaluating the formula bound to B1 we would create a cycle. We
remove B1 from ω so that when formula SUM(B2:B3) dereferences B2 a blank
value is returned. Genuine spill cycles are detected post-dereferencing using the
dependency set.

Rule (4) applies when the address has an owner and the formula bound to
the owner evaluates to an array of the expected size according to ω. This rule is
only defined when the intersection of the spill root’s dependencies and its spill
area is empty, preventing spill cycles. The pre-spill value is obtained using the
conditional operator a = ar ?V : ε. When the dereferenced cell is the root then
the value is the root array, otherwise the value is blank. The post-spill value is
obtained by indexing into the root array at the (i, j)th position.

Rule (5) applies when the address has an owner and the formula bound to the
owner does not evaluate to an array of the expected size according to ω. In this
case there is no attempt to spill as the oracle is incorrect. When the dereferenced
address is the root then the pre-spill and post-spill values are obtained from the
formula, otherwise the pre-spill and post-spill values are blank.

Sheet evaluation: S, ω ⇓ γ Sheet evaluation in the spill calculus accepts a spill
oracle, but is otherwise unchanged from sheet evaluation in the core calculus. The
computed grid only contains the value of addresses with a bound formula, and
does not include the value of any blank cells that are in a spill area. In contrast,
a spreadsheet application would display the value for all addresses, including
those within a spill area. Obtaining this view can be done by dereferencing
every address in the viewport using the sheet and oracle.

4.4 Oracle Refinement

We have shown how to compute a grid given a sheet and oracle, but we have not
considered the accuracy of the predictions provided by the oracle. In Section 4.2
we informally describe an iterative process to refine an oracle from a computed
grid; in this section we give the precise semantics of oracle refinement. Figure 6
presents the full definition of oracle refinement.

Consistency The relation γ |= ω states that grid γ is consistent with oracle ω. A
grid is consistent if every address is consistent, written γ |=a ω. An address a is
consistent in γ and ω if, and only if, the grid and oracle agree on the size of the
value at address a. Consistency tells us that the oracle has correctly predicted
the location and size of every spill root in the grid, and has not predicted any
spurious roots.

Refinement The function refine(S, ω, γ) takes an inconsistent oracle and returns
a new oracle that is refined using the computed grid. The function is defined as
follows. First, start with subset ωok of ω that is consistent with γ. Second, collect
the remaining unresolved spill roots in γ, denoted γr. Finally, recursively select
the smallest address in γr according to a total order on addresses, determining
whether the root is permitted to spill and adding the permit to the accumulating
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γ |=a ω
def
= ∀m,n, p. (ω(a) = (m,n, p))⇔

∃V #, V !,D. (γ(a) = (V #, V !,D) ∧ size(V #) = (m,n))

γ |= ω
def
= ∀a. γ |=a ω

refine(S, ω, γ) = decide(S, ωok, γr) where

ωok = {a 7→ (m,n, p) ∈ ω | γ |=a ω}
γr = {a 7→ (V #, V !,D) ∈ γ | ∃m,n. size(V #) = (m,n) and a 6∈ dom(ωok)}

decide(S, ω, []) = ω

decide(S, ω, γ[a 7→ (V #, V !,D)]) = decide(S, ω[a 7→ (m,n, p)], γ)

where a is the least element in dom(γ) and size(V #) = (m,n)

p =

{
X if ∀at ∈ area(a,m, n). a 6= at ⇒ at 6∈ dom(S) and owners(ω, at) = ∅
× otherwise

Spill iteration: ω −→S ω′ Final oracle: S ` ω final

S, ω ⇓ γ γ 6|= ω refine(S, ω, γ) = ω′

ω −→S ω′
S, ω ⇓ γ γ |= ω

S ` ω final

Final sheet evaluation: S ⇓ γ

S ⇓ γ def
= [] −→∗S ω and S ` ω final and S, ω ⇓ γ

Fig. 6. Oracle Refinement

oracle. A root is permitted to spill if the potential spill area is blank (excluding
the root itself) and each address in the spill area has no owner, thereby preserving
the single-spill policy.

Spill iteration The relation ω −→S ω′ denotes a single iteration of oracle refine-
ment. When a computed grid is not consistent with the spill oracle that induced
it, written γ 6|= ω, a new oracle is produced using function refine(S, ω, γ). We
write −→∗S for the reflexive and transitive closure of −→S .

Final oracle The relation S ` ω final states that oracle ω is final for sheet S,
and is valid when the grid induced by ω is consistent with ω.

Final sheet evaluation The relation S ⇓ γ denotes the evaluation of sheet S to
grid γ which implicitly refines an oracle to a final state. The process starts with
an empty oracle [] and iterates until a final oracle is found.
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4.5 Technical Results

This section presents the main technical result of the spill calculus: that iteration
of oracle refinement converges for well-behaved sheets. We begin with prelimi-
nary definitions and results.

To avoid ambiguous evaluation every spill area must be disjoint and unob-
structed; an oracle is well-formed if it predicts non-blank spill roots, and predicts
disjoint and unobstructed spill areas, defined below:

Definition 1 (Well-formed oracle). We write S ` ω wf if oracle ω is well-
formed for sheet S. An oracle ω is well-formed if for all addresses a the following
conditions are satisfied:

1. If a 6∈ dom(S) then a 6∈ dom(ω).
2. |owners(ω, a)| ≤ 1.
3. If (ar, i, j) ∈ owners(ω, a) and a 6= ar then a 6∈ dom(S).

The definition of oracle refinement in Figure 6 preserves well-formedness.

Lemma 1. If S ` ω wf and S, ω ⇓ γ then S ` refine(S, ω, γ) wf.

Producing well-formed oracles alone is insufficient to guarantee convergence.
Oracle refinement would never reach a consistent state if the predicted spill areas
were incorrectly sized.

The definition of oracle refinement in Figure 6 predicts spill areas that are
correctly sized with respect to the current grid.

Lemma 2. If S ` ω wf and S, ω ⇓ γ then γ |= refine(S, ω, γ).

Predicting correctly sized spill areas is also insufficient to guarantee con-
vergence. Oracle refinement would never reach a consistent state if it oscillates
between permitting and rejecting the same root to spill. Consider the sheet:

Let S def
= [A1 7→ {1; 2},B1 7→ IF(A2 = 2, {3; 4}, 0)]

Spill iteration would continue indefinitely if refinement cycled between the
following two well-formed and correctly sized oracles:

[A1 7→ (2, 1,X)] −→ [A1 7→ (2, 1,×),B1 7→ (2, 1,X)] −→ · · ·

To avoid oscillating spill iteration the process of oracle refinement should be
permit preserving, defined below:

Definition 2 (Permit preserving extension). We write γ ` ω . ω′ if
oracle ω′ is a permit preserving extension of ω in context γ. Defined as:

γ ` ω . ω′ def= ∀a,m, n, p. (γ |=a ω ∧ ω(a) = (m,n, p))⇒ ω′(a) = (m,n, p)

The definition of oracle refinement in Figure 6 is permit preserving.
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Lemma 3. If S ` ω wf and S, ω ⇓ γ then γ ` ω . refine(S, ω, γ).

Spill iteration should be a converging iteration but this cannot be guaranteed
in general; at any given step in the iteration a sheet can fail to evaluate to a grid.
This can happen because the sheet contains a cell cycle, spill cycle, or diverging
grid calculus term. Instead, we only expect that if the sheet is free from these
divergent scenarios then spill iteration must converge. To allow us to dissect
different forms of divergence and focus on spill iteration we only consider acyclic
sheets, defined below:

Definition 3 (Acyclic). A sheet S is acyclic if for all ω such that S ` ω wf,
there exists some γ such that S, ω ⇓ γ.

For instance, none of the following sheets are acyclic: [A1 7→ A1] has a
cell cycle, [A1 7→ B1 : C1] has a spill cycle, and [A1 7→ Ω] has a formula Ω
that diverges. Divergent terms are not encodable in the spill calculus but are
encodable in the grid calculus, as we show in Section 6.1. An alternative approach
would be to explicitly model divergence in our semantics of sheet evaluation and
show that iteration converges or the sheet diverges. We choose not to pursue
this approach to improve the clarity of our operational semantics, but note that
our semantics can be extended to model cycles.

For any acylic sheet, spill iteration will converge to a final spill oracle.

Theorem 1 (Convergence). For all acyclic S and ω such that S ` ω wf,
there exists an oracle ω′ such that ω −→∗S ω′ and S ` ω′ final.

Proof. (Sketch—see Appendix B of the extended version [21] for the full proof.)
The value of any address with a binding is a function of its dependencies and the
oracle prediction for that address. We inductively define an address as fixed if
the oracle prediction is consistent for the address, and every address in the spill-
dependency set (defined in [21]) is fixed. Lemma 3 states that correct predictions
are always preserved, therefore a fixed address remains fixed through iteration
and its value remains invariant. The dependency graph of the sheet is acyclic
therefore if there is a non-fixed address then there must be a non-fixed address
with no dependencies but an inconsistent oracle prediction—we call this a non-
fixed source. Lemma 2 states that every new oracle correctly predicts the size
with respect to the previous grid, therefore any non-fixed sources will be fixed
in the new oracle. We conclude by observing that the number of fixed addresses
in the sheet strictly increases at each step, and when every address is fixed the
oracle is final.

4.6 Limitations and Differences with Real Systems

Permit preservation requires that if the size of an array does not change then
the permit (which may be ×) is preserved—this property is crucial for our proof
of convergence.

Real spreadsheet systems such as Sheets and Excel do not guarantee permit
preservation. A root a that is prevented from spilling using a permit × can later
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be permitted to spill, even if the size of the associated array does not change.
This particular interaction arises when a root that was previously preventing a
from spilling changes dimension, freeing a previously occupied spill area. Per-
mitting roots to spill into newly freed regions of the grid is desirable from a user
perspective because it reflects the visual aspect of spreadsheet programming
where an array will spill into any unoccupied cells.

A limitation of our formalism, if implemented directly, is that there exist some
spreadsheets that when evaluated will prevent an array from spilling, despite the
potential spill area being blank. Consider the sheet:

[A3 7→ {1, 2, 3},C1 7→ IF(ISERROR(A3), 0, {4; 5; 6})]

When the total ordering used by oracle refinement orders A3 before C1 then
the behaviour is as expected: A3 spills to the right and C1 evaluates to an error
value. When the total ordering used by oracle refinement orders C1 before A3
then the behaviour appears peculiar: A3 evaluates to an error value and C1
evaluates to 0. The root A3 is prevented from spilling despite there appearing
room in the grid! The issue is that the array in A3 never changes size, therefore
the permit × assigned to the root is preserved, despite root C1 relinquishing the
spill area on subsequent spill iterations.

The fundamental problem is one of constraint satisfaction. We would like to
find a well-formed oracle that maximizes the number of roots that can spill in
a deterministic manner. The total order on addresses ensures determinism but
restricts the solution space. Our approach could be modified to deterministically
permute the ordering until an optimal solution is found, however such a method
would be prohibitively expensive.

Both Sheets and Excel find the best solution to our example sheet. We expect
their implementations do not permute a total order on addresses, but implement
a more efficient algorithm that runs for a bounded time. Finding a more efficient
algorithm that is guaranteed to terminate remains an open challenge.

The limitation we present in our formalism only arises when a spreadsheet
includes dynamic spill collisions and conditional spilling. We anticipate that this
is a rare use case for spilled arrays, and does not arise when using spilled arrays
to implement gridlets for live copy-paste-modify.

5 Grid Calculus: Spill Calculus with Sheets as Values

In this section we present the grid calculus: a higher-order spreadsheet calculus
with sheets as values. The grid calculus extends the spill calculus of Section 4.

5.1 Extending Spreadsheets with Gridlets

The gridlet concept [12] has been proposed but not implemented. Our observa-
tion is that spilling a range reference acts much like copy-paste, but lacks local
modification. We propose to implement gridlets using spilled arrays, by extend-
ing the spill calculus with primitives that implement first-class grid modification.
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A B C

1 “Edge” “Len.”

2 “a” 3 B2^2

3 “b” 4 B3^2

4 “c” SQRT(C4) C2 + C3
...

...
...

Source range A1:C4

A B C
...

...
...

6 G(A1:C4,B2, 7,B3, 24)

7

8

9

Gridlet invocation in A6

Revisiting the example from the introduction, there are four key interactions
happening in the invocation of a gridlet.

First, select the content in the grid that is to be modified.
Second, apply the selected modifications or updates.
Third, calculate the grid using the modified content.
Fourth and finally, project the calculated content into the grid.

Spreadsheets with spilled arrays support the final step but lack the capabilities
to support the first three. We add these capabilities using four new constructs.

First-class sheet values 〈S〉.
Operator GRID that evaluates to the current sheet.
Operator UPDATE that binds a formula in a sheet-value.
Operator VIEW that evaluates a given range in a sheet-value to an array.

Using these constructs we can implement gridlets, for example:

G(A1:C4,B2, 7,B3, 24)
def
=

VIEW(UPDATE(UPDATE(GRID,B2, 7),B3, 24),A1:C4)

Formatting is a core feature of Gridlets, but we omit formatting from the grid
calculus for clarity, on the basis that it would be a straightforward addition. We
now describe the details of the grid calculus.

5.2 Syntax and Operational Semantics

Figure 7 presents the syntax and operational semantics for the grid calculus. The
grid calculus does not require modification of existing rules; we only add formula
evaluation rules for the new constructs, and evaluation relations for views.

Syntax Let x range over formula identifiers. Let F range over formulas which
may additionally be identifiers x, LET(x, F1, F2) which binds the result of evalu-
ating F1 to x in F2, GRID which captures the current sheet, UPDATE(F1, a, F2)
which updates a formula binding in a sheet-value, and VIEW(F, r) which extracts
a dereferenced range from a sheet-value. Let V range over values which may ad-
ditionally be a sheet-value 〈S〉. Let V range over views; a view is a sheet with a
range, denoted (S, r). A view range r delimits the addresses to be computed in
sheet S.
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Identifier x ∈ Ident
Formula F ::= · · · | x | LET(x, F1, F2) | GRID | UPDATE(F1, a, F2) | VIEW(F, r)
Value V ::= · · · | 〈S〉
View V ::= (S, r)

Formula evaluation: S, ω ` F ⇓ V,D

S, ω ` F1 ⇓ V1,D1 S, ω ` F2[x := V1] ⇓ V2,D2

S, ω ` LET(x, F1, F2) ⇓ V2,D1 ∪ D2 S, ω ` GRID ⇓ 〈S〉,∅

S, ω ` F1 ⇓ 〈S1〉,D
S, ω ` UPDATE(F1, a, F2) ⇓ 〈S1[a 7→ F2]〉,D1

S, ω ` F ⇓ 〈S1〉,D (S1, r) ⇓ V
S, ω ` VIEW(F, r) ⇓ V,D

View evaluation: V, ω ⇓ γ

(S, r), ω ⇓ γ def
= ∀a ∈ dom(S) ∩ area(r). S, ω ` a ! γ(a)

Spill iteration: ω −→V ω′ Final oracle: V ` ω final

(S, r), ω ⇓ γ γ 6|= ω refine(S, ω, γ) = ω′

ω −→(S,r) ω
′

V, ω ⇓ γ γ |= ω

V ` ω final

Final view evaluation: V ⇓ V

(S, r) ⇓ V def
= [] −→∗(S,r) ω and (S, r) ` ω final and S, ω ` r ⇓ V,D

Fig. 7. Syntax and Operational Semantics for Grid Calculus (Extends Figures 3—6)

Formula evaluation: S, ω ` F ⇓ V,D A formula LET(x, F1, F2) evaluates in the
standard way. A formula GRID evaluates to a sheet-value that captures the cur-
rent sheet. A formula UPDATE(F1, a, F2) updates a formula binding in a sheet-
value. If evaluating formula F1 produces sheet-value 〈S1〉 then UPDATE(F1, a, F2)
evaluates to the sheet-value where a is bound to F2 in S1, denoted 〈S1[a 7→ F2]〉.
A formula VIEW(F, r) evaluates a sheet-value and extracts a range. If evaluat-
ing formula F produces sheet-value 〈S1〉 then VIEW(F, r) evaluates to the value
obtained by evaluating view (S1, r). View evaluation is defined in Figure 7 and
we describe the semantics at the end of the section. Here we address a subtle
property of VIEW; evaluating a view (S, r) adds no dependencies to the con-
taining formula. Dependency tracking in our semantics is used to prevent spill
cycles and captures dependence between values of addresses: the value of a spill
root should not depend on the value of an address in the spill area. In contrast,
sheet-values depend on the formula of an address in the containing sheet, but
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not the value of an address in the containing sheet. For example:

Let S def
= [A1 7→ VIEW(UPDATE(GRID,A1, 10),A2),A2 7→ A1]

Sheet S evaluates to grid [A1 7→ 10,A2 7→ 10]. What are the dependencies of
each address? The value of A2 in the grid depends on the value of A1 in the grid.
In contrast, the value of A1 in the grid does not depend on the value of A2 in the
grid. This is because evaluating the formula in A1 constructs a private grid from
which the value of A2 is obtained. However, A1 does depend on the formula
of A2 in the containing grid. Our semantics only considers value dependence,
therefore the dependency set of A1 is ∅—the address has no dependence on
values in the containing grid.

Formula dependence is vital for efficient recalculation, though we do not
model that in our semantics and only use dependency tracking to prevent spill
cycles. If an address depends on the value of another address bound in a sheet,
then it also depends on the formula of that address. The converse is not true in
the presence of sheet-values.

View evaluation: V, ω ⇓ γ Evaluation of view (S, r) with oracle ω is defined in
a similar manner as evaluation of sheets, however the induced grid γ is limited
to the sheet bindings that intersect the range r. There are two key consequences
that arise from limiting the induced grid. First, we only evaluate the bindings
in S required to evaluate the bindings in r. Second, only roots that are within
range r are permitted to spill; any root that is outside r remains as an address
containing a collapsed array. There is a difference between an address that holds
a collapsed array and a root that is prevented from spilling an array by permit
×. The former has a pre-spill and post-spill value that is an array; the latter has
a pre-spill value that is an array and a post-spill value that is an error.

Spill iteration: ω −→V ω′ The definition of spill iteration for views is the same
as spill iteration for sheets, except that we use view evaluation rather than sheet
evaluation.

Final oracle: V ` ω final The definition of a final oracle for views is the same as
a final oracle for sheets, except that we use view evaluation rather than sheet
evaluation.

Final view evaluation: V ⇓ V Evaluating a view (S, r) computes a final oracle
for the view and then evaluates range r in the context of sheet S. Final view
evaluation will evaluate range r, rather than extracting values from an induced
grid, because viewing a range should sample all values in the range—including
blank cells. If we extract values from the induced grid we can only obtain the
values for addresses with a binding in r.
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5.3 Formulas for Gridlets

We can encode the G operator using primitives from the grid calculus.

[[G(r, a1, V1, . . . , an, Vn)]] = VIEW([[(a1, V1, . . . , an, Vn)]], r)

[[(a1, V1)]] = UPDATE(GRID, a1, V1)

[[(a1, V1, . . . , an+1, Vn+1)]] = UPDATE([[(a1, V1, . . . , an, Vn)]], an+1, Vn+1)

The G operator translates to the VIEW operator, and any bindings translate to
a sequence of UPDATE operations. The initial sheet-value is obtained from the
context using the GRID operator.

The translation illustrates that G is not higher-order because every applica-
tion returns the value obtained by evaluating a view on a sheet-value. A language
that only provides G does not permit sheet-values to escape and be manipulated
by formulas. This is acceptable when emulating copy-paste because a copy is
always taken with respect to the top-level sheet, however this does limit the
usefulness of G as an implementation construct. This limitation motivates the
design of the grid calculus; as we show in the next section, the grid calculus is
capable of encoding other language features.

6 Encoding Objects, Lambdas, and Functions

In this section we give three encodings that target the grid calculus: objects,
lambdas, and sheet-defined functions.

6.1 Encoding the Abadi and Cardelli Object Calculus

We introduce the grid calculus to implement gridlets and the concept of live
copy-paste. Perhaps surprisingly, the grid calculus can encode object-oriented
programming, in particular the untyped object calculus of Abadi and Cardelli [1].
Their calculus is a tiny object-based programming language, akin to a prototype-
based language such as Self [6], but capable of representing class-based object-
oriented programming via encodings.

We draw a precise analogy between spreadsheets and objects. A sheet is like
an object. A cell is like a method name. A formula in a cell is like a method
implementation. The GRID operator is like the this keyword. Formula update is
like method update.

We assume an isomorphism between method names ` and cell addresses a
and use ` in both the object calculus and grid calculus. We define the translation
of object calculus terms to grid calculus formulas, denoted [[b]], as follows:

[[x]] = x

[[[`i = ς(xi)bi
i∈0..n]]] = 〈[`i 7→ [[ς(xi)bi]]

i∈0..n]〉
[[b.`]] = VIEW([[b]], `)

[[b1.`⇐ ς(x)b2]] = UPDATE([[b1]], `, [[ς(x)b2]])

[[ς(x)b]] = LET(x,GRID, [[b]])
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The translation makes our analogy concrete. We use the LET formula to lexically
capture self identifiers. The grid calculus allows the construction of diverging
formulas, as discussed in Section 4.5. We demonstrate this using a diverging
object calculus term.

Ω = [[[A1 = ς(x)x.A1].A1]] = VIEW(〈[A1 7→ LET(x,GRID,VIEW(x,A1))]〉,A1)

The operational semantics are preserved by the translation. We assume a big-
step relation for object calculus terms, denoted b ⇓ o. The proof is in Appendix
C of the extended version [21].

Theorem 2. If b is a closed and b ⇓ o then [], [] ` [[b]] ⇓ [[o]],∅.

6.2 Encoding the Lambda Calculus

We give an encoding of the lambda calculus that is inspired by the object calculus
embedding of the lambda calculus. We use ARG1 to hold the argument and
VAL1 to hold the result of a lambda. In spreadsheet languages both ARG1 and
VAL1 are legal cell addresses; for example, address ARG1 denotes the cell at
column 1151 and row 1.

[[x]] = x

[[λx.M ]] = UPDATE(GRID,VAL1, LET(x,VIEW(GRID,ARG1), [[M ]]))

[[M N ]] = VIEW(UPDATE([[M ]],ARG1, [[N ]]),VAL1)

6.3 Encoding Sheet-Defined Functions

A sheet-defined function [14, 17, 19, 20] is a mechanism for a user to author a
function using a region of a spreadsheet. We can model a sheet-defined function
f as a triple (S, (a0, . . . , an), r) that consists of the moat or sheet-bindings for
the function, the addresses from the moat that denote arguments, and the range
from the moat that denotes the result. The application f(V0, . . . , Vn) can be
encoded in the grid calculus as follows, where f = (S, (a0, . . . , an), r):

[[f(V0, . . . , Vn)]] = VIEW([[(V0, . . . , Vn)]], r)

[[()]] = 〈S〉
[[(V0, . . . , Vn′+1)]] = UPDATE([[(V0, . . . , Vn′)]], an′+1, Vn′+1)

7 Related Work

Formal Semantics of Spreadsheets. Our core calculus is similar to previous for-
malisms for spreadsheets, Several previous works [3, 7, 14, 19] offer formal se-
mantics for spreadsheet fragments. Mokhov et al. [16] capture the logic of re-
calculating dependent cells. Finally, Bock et al. [4] provide a cost semantics for
evaluation of spreadsheet formulas.
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Spilling. Major spreadsheet implementations like Sheets 6 and Excel 7 implement
spilled arrays [11], but do not document details of the implementation. In [17],
authors propose a spilling-like mechanism that allows matrix values in cells to
spread across a predefined range—this is closely related to “Ctrl+Shift+Enter”
formulas 8 in Excel. The proposal in [17] is significantly simpler than spilled
arrays because the dimension of the spilled area is fixed and declared ahead of
time. Sarkar et al. [18] note that spilled arrays violate Kay’s value principle [13]
because a user is unable to edit constituent cells, except for the spill root.

Extending the Spreadsheet Paradigm. Clack and Braine [8] propose a spreadsheet
based on a combination of functional and object-oriented programming. Their
integration is different from our analogy: in their system, a class is a collection
of parameterised worksheets, and a parameterised worksheet corresponds to a
method. In gridlets, the grid corresponds to an object and cells on the grid
correspond to methods of the object.

Similarity Inheritance in Forms/3. Forms/3 [5] is a visual programming lan-
guage that borrows the key concept of cell from spreadsheets. Instead of a tab-
ular sheet, cells in Forms/3 are arranged on a form: a canvas with no structure.
Forms/3 explored an abstraction model called “similarity inheritance” through
which a form may borrow cells from another form and optionally modify at-
tributes of certain cells. This resembles substitution in gridlets, however reusing
a portion of the tabular grid and spilling into adjacent cells are primary to
gridlets, whereas such notions are absent from Forms/3.

Sheet-defined Functions. Sheet-defined functions [17] (SDFs) allow the user to
reuse logic defined using formulas in the grid. The user nominates input cells, an
output cell, and gives the function a name. When the function is called, a virtual
copy of the workbook is instantiated. Arguments to the function are placed in
the input cells, the virtual workbook is calculated, and the result from the output
cell is returned.

Elastic SDFs [14] generalize SDFs to handle input arrays of arbitrary size.
In [4], the authors provide a precise semantics for SDFs, closures and array
formulas, but not for spilling. Gridlets are more general than SDFs as each
Gridlet invocation can have a unique set of local substitutions, whereas all calls
to an SDF share the same arguments, giving greater flexibility to the user.

Error prevention and Error detection. Abraham and Erwig propose type systems
for error detection [3] and automatic model inference [2]. Abraham and Erwig [3]
provide an operational semantics for sheets that is similar to the core calculus
in Section 3, but they do not give a semantics for spilled arrays.

Gencel [10] is a typed “template language” that describes the layout of a de-
sired worksheet along with a set of customized update operations that are specific

6 https://support.google.com/docs/answer/6208276?hl=en
7 https://aka.ms/excel-dynamic-arrays
8 https://aka.ms/excel-cse-formulas

https://support.google.com/docs/answer/6208276?hl=en
https://aka.ms/excel-dynamic-arrays
https://aka.ms/excel-cse-formulas


Higher-Order Spreadsheets with Spilled Arrays 25

to the particular template. The type system guarantees that the restricted set
of update operations keeps the desired worksheet free from omission, reference,
and type errors.

Cheng and Rival [7] use abstract interpretation to detect formula errors due
to mismatch in type. Their technique also incorporates analysis of associated
programs, such as VBA scripts, along with formulas on the grid.

8 Conclusion

Repetition is common in programming—spreadsheets are no different. The dis-
tinguishing property of spreadsheets is that reuse includes formatting and layout,
and is not limited to formula logic. Gridlets [12] are a high-level re-use abstrac-
tion for spreadsheets. In this work we give the first semantics of gridlets as a
formula. Our approach comes in two stages.

First, we make sense of spilled arrays, a feature that is available in major
spreadsheet implementations but not previously formalised. The concept is sim-
ple and belies the many subtleties involved in implementing spilled arrays. We
present the spill calculus as a concise description of spilling in spreadsheets.

Second, we extend the spill calculus with the tools to implement gridlets. The
grid calculus introduces the concept of first-class sheet values, and describes the
semantics of three higher-order operators that emulate copy-paste-modify. The
composition of these operators gives the semantics for gridlet operator G.

Spreadsheet programming bears a resemblance to object-oriented program-
ming, alluded to often in the literature. We show that the resemblance runs deep
by giving an encoding of the object calculus into the grid calculus, with a direct
parallel between objects and sheets.
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A Results about Core Calculus of Section 3

The following lemma asserts that the judgments of our structural operational
semantics amount to partial functions.

Lemma 4.

1. If S ` F ⇓ V and S ` F ⇓ V ′ then V = V ′.
2. If S ` a !V and S ` a !V ′ then V = V ′.
3. If S ⇓ γ and S ⇓ γ′ then γ = γ′.

Proof. The three items of the lemma are proved together by a simultaneous
induction on the height of the derivation of the first judgment in each item.

Similarly, judgments for the spill calculus and grid calculus are also partial
functions, but we omit the detailed statement of these properties. The determin-
ism of sheet evaluation is a consequence of Theorem 1.

B Technical Results

The results in this section concern the grid calculus of Section 5, and therefore
also apply directly to its subset the spill calculus of Section 4.

Definition 1 (Well-formed oracle). We write S ` ω wf if oracle ω is well-
formed for sheet S. An oracle ω is well-formed if for all addresses a the following
conditions are satisfied:

1. If a 6∈ dom(S) then a 6∈ dom(ω).
2. |owners(ω, a)| ≤ 1.
3. If (ar, i, j) ∈ owners(ω, a) and a 6= ar then a 6∈ dom(S).

Lemma 1. If S ` ω wf and S, ω ⇓ γ then S ` refine(S, ω, γ) wf.

Proof. Immediate from the definition of oracle refinement in Figure 6.

Lemma 2. If S ` ω wf and S, ω ⇓ γ then γ |= refine(S, ω, γ).

Proof. Immediate from the definition of oracle refinement in Figure 6.

Definition 2 (Permit preserving extension). We write γ ` ω . ω′ if oracle
ω′ is a permit preserving extension of ω in context γ. Defined as:

γ ` ω . ω′ def= ∀a,m, n, p. (γ |=a ω ∧ ω(a) = (m,n, p))⇒ ω′(a) = (m,n, p)

Lemma 3. If S ` ω wf and S, ω ⇓ γ then γ ` ω . refine(S, ω, γ).

Proof. Immediate from the definition of oracle refinement in Figure 6. In partic-
ular, the use of ωok ensures correct permits are preserved.
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Definition 3 (Acyclic). A sheet S is acyclic if for all ω such that S ` ω wf,
there exists some γ such that S, ω ⇓ γ.

Definition 4 (Spill potential). Let �(a) be the set of addresses above and to
the left of a. Examples:

– a 6∈ �(a)
– �(A1) = ∅

Definition 5 (Depends upon). An addresses a′ depends upon a, written γ `
a′ B a, if γ(a′) = (V #, V !,D) and a ∈ D. We write γ ` a′ 6B a for the negation.

Proposition 1 (Depends upon is a well-founded relation). The relation
γ ` a′ B a is well-founded.

Definition 6 (Spill sensitive to). An addresses a′ is spill sensitive to a, writ-
ten S, γ ` a′Bs a, if a′ 6∈ dom(S) and γ ` a 6B a′ and a ∈ �(a′) and a ∈ dom(S).

The definition spill depends upon, defined below and written S, γ ` a′ � a,
characterises when a is a spill dependency of a′. The intuition of a spill depen-
dency is an address a that can affect the value of address a′ during spill iteration.
Informally, address a can affect a′ if a′ contains a formula that depends on the
value of a, or a′ is a blank cell that is situated below and to the right of a (and
may be spilled into). If a′ is a blank cell that a depends upon, then a is not a
spill dependency of a′—this is valid because or semantics will prevent a spilling
into a′.

Definition 7 (Spill depends upon). An addresses a′ spill depends a, written
S, γ ` a′ � a, if γ ` a′ B a or S, γ ` a′ Bs a.

Proposition 2 (Spill depends upon is a well-founded relation). The re-
lation S, γ ` a′ � a is well-founded.

The definition spill− fixed, defined below and written S, ω ` a spill-fixed,
characterises when the value of a is fixed under later extensions to the spill oracle.
Informally, the value of an address may change if the oracle assignment for that
address changes, a dependency of a changes, or a is spilled into. Therefore, if the
oracle is fixed for the address, and all spill dependencies of a are spill− fixed, the
value of a will not change.

Definition 8 (Spill Fixed).

S, ω ` S ⇓ γ ∀a′. S, γ ` a � a′ ⇒ S, ω ` a′ spill-fixed γ |=a ω

S, ω ` a spill-fixed

The definition spill− volatile, defined below and written S, ω ` a spill-volatile,
characterises when the value of a could change, and is dual to spill− fixed. The
three cases are: a dependency of a changes, a is blank and there is a cell above
and to the left that can change and therefor spill into a, or the oracle assignment
for a changes.
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Definition 9 (Spill Volatile).

S, ω ` S ⇓ γ ∃a′. γ ` aB a′ ∧ S, ω ` a′ spill-volatile

S, ω ` a spill-volatile

S, ω ` S ⇓ γ
a 6∈ dom(S) ∃a′ ∈ �(a). a′ ∈ dom(S) ∧ γ ` a′ 6B a ∧ S, ω ` a′ spill-volatile

S, ω ` a spill-volatile

S, ω ` S ⇓ γ γ 6|=a ω

S, ω ` a spill-volatile

Proposition 3 (Fixed-volatile duality). S, ω ` a spill-fixed if and only if
¬(S, ω ` a spill-volatile).

Definition 10 (Conservative Oracle Extension). An oracle ω′ is a conser-
vative extension of an existing oracle, written S ` ω v ω′, and defined as:

S ` ω v ω′ def= (S, ω ` S ⇓ γ) ∧ (γ ` ω . ω′)

Lemma 5 (Extension preserves evaluation). If S, ω ` a spill-fixed and
S, ω ` a !V #, V !,D and S ` ω v ω′ then S, ω′ ` a !V #, V !,D.

Proof. By induction on the on the definition of S, ω ` a spill-fixed. We start with
case analysis on the S, ω ` a spill-fixed.

Case S(a) = F . Using the IH for each address in F then the F evaluates to
the same pair V,D; every dereferenced address is spill-fixed and by the IH
returns the same value, therefore the formula returns the same value. We
must consider the spilling behavior of the address a.

Case size(V #) = (m,n). By assumption and the definition of spill-fixed, ω(a) =
(m,n, p). By assumption and definition of S ` ω v ω′, ω′(a) = (m,n, p).
As ω′ and ω coincide on a, and the formula for a evaluates to the same
value, it follows that a evaluates to the same triple under ω′.

Case size(V #) = ⊥. By assumption and the definition of spill-fixed, a 6∈
dom(ω). By assumption and definition of S ` ω v ω′, a 6∈ dom(ω′).
From here it follows that the only valid address evaluation case is the
first case, the case that uses the formula value for both V # and V !. By
the IH we know these are preserved, therefore it follows that a evaluates
to the same triple under ω′.

Case a 6∈ dom(S). The only detail for this case is ensuring that owners(ω, a) =
owners(ω′, a), from there it follows that the value of a is preserved using the
same reasoning as the previous case. Let ar be the owner of a in ω. We know
ar ∈�(a) and ar is spill-fixed. By the definition of spill-fixed γ |=ar

ω. By
assumption S ` ω v ω′, γ |=ar

ω′. As ω′ is well-formed it must be the case
that ar is the single owner of a in ω′. We conclude that a evaluates to the
same triple under ω′.
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Lemma 6 (Extension preserves fixation). If S, ω ` a spill-fixed and S `
ω v ω′ then S, ω′ ` a spill-fixed.

Proof. By induction on the on the definition of S, ω ` a spill-fixed. The only
additional work beyond application of the IH is to show that γ′ |=a ω

′ where
S, ω′ ` S ⇓ γ′. By assumptions S ` ω v ω′ and γ |=a ω we have γ |=a ω

′. We
perform case analysis on the definition of the address in S.

Case a 6∈ dom(S). γ′ |=a ω
′ holds as a 6∈ dom(γ′) and a 6∈ dom(ω′).

Case a ∈ dom(S). γ′ |=a ω
′ holds as γ(a) = γ′(a) by Lemma 5, and ω(a) = ω(a′)

holds by assumption.

Lemma 7 (Refine is monotonic). If S, ω ` S ⇓ γ and refine(S, ω, γ) = ω′

then S ` ω v ω′.

Proof. An immediate consequence of Lemma 3.

Lemma 8 (Spill-fixed preservation). If S, ω ` a spill-fixed and ω −→∗S ω′
then S, ω′ ` a spill-fixed.

Proof. By induction and Lemma 6 and Lemma 7.

Lemma 9 (Inconsistency implies volatility). If S, ω ` S ⇓ γ and γ 6|= ω
then ∃a ∈ dom(S). S, ω ` a spill-volatile.

Proof. Immediate from the definition of consistency and volatility. The address
a that validates γ 6|= ω also validates γ 6|=a ω, therefore a is spill-volatile.

Lemma 10 (Fixation). If ∃a ∈ dom(S). S, ω ` a spill-volatile then
∃a ∈ dom(S), ω′. S, ω′ ` a spill-fixed and S ` ω v ω′.

Proof. By induction on the derivation of spill-volatile. We need only consider the
final case, which is the only base case that applies under the assumption a ∈
dom(S). If a is spill-volatile and has no dependencies (is minimal under �) then
it must be the case that γ 6|=a ω, where S, ω ` S ⇓ γ. Let γ(a) = (V #, V !,D).
Consider the cases:

Case size(V #) = (m,n). Pick ω′ = ω[a 7→ (m,n, p)] for some p. The choice of p
depends on whether we can maintain the single-spill policy. Assuming the
single-spill policy is maintained, then both X and × are sufficient to yield
γ |=a ω. We have γ |=a ω as size(V #) = (m,n)⇔ ω′(a) = (m,n, p).

Case size(V #) = ⊥. Pick ω′ = ω\a. We have γ |=a ω as size(V #) 6= (m,n)⇔ a 6∈
dom(ω′) for any m and n.

In both cases γ |=a ω and S ` ω v ω′, therefore by the assumption that a is
minimal under �, we have S, ω′ ` a spill-fixed and S ` ω v ω′ as required.

Lemma 11 (Fixation found by refine). If S, ω ` S ⇓ γ and ∃a ∈ dom(S). S, ω `
a spill-volatile then ∃a ∈ dom(S), ω′. S, ω′ ` a spill-fixed and ω′ = refine(S, ω, γ).
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Proof. This is similar to Lemma 10, but rather than stating an oracle exists
we show that refine finds the oracle. We start by applying Lemma 10 and then
inversion on S ` ω v ω′ at address a. There are two cases.

Case a 6∈ dom(ω′). This case happens when the address does not evaluate to an
array. By inspection of refine we see that non-array addresses are excluded
from γr and therefore excluded from ω′. We conclude that a is spill-fixed
under the oracle returned by refine.

Case ω′(a) = (m,n, p). This case happens when the address is given a correctly
sized prediction in the oracle. By inspection of refine we see that only cor-
rectly sized predictions are included in the resulting oracle. We conclude that
a is spill-fixed under the oracle returned by refine.

Definition 11 (Strict Oracle Extension). An oracle ω′ is a strict extension
of an existing oracle, written S ` ω @ ω′, if S ` ω v ω′ but not S ` ω′ v ω.

Definition 12 (Volatile Potential). Define the volatile potential of ω as the
number of addresses a ∈ dom(S) such that S, ω ` a spill-volatile. We write this
as #v(ω)

Definition 13 (Progress of fixation). Define the progress of fixation for ω
as the number of addresses a ∈ dom(S) such that S, ω ` a spill-fixed. We write
this as #f (ω).

Proposition 4 (Volatile/potential Complement). |dom(S)|−#f (ω) = #v(ω)

Lemma 12 (Conservative extension implies greater progress). If S `
ω v ω′ then #v(ω) ≥ #v(ω′).

Proof. Follows immediately from Lemma 6.

Lemma 13 (Refine makes progress). If S, ω ` S ⇓ γ and γ 6|= ω and
ω′ = refine(S, ω, γ) then #v(ω) > #v(ω′).

Proof. Lemma 12 gives at least equality. We must show that we make strict
progress by finding a new spill-fixed address in ω′. Application of Lemma 9 iden-
tifies a spill-volatile address, and application of Lemma 11 gives us the additional
spill-fixed address to prove the strict inequality.

Theorem 1 (Convergence). For all acyclic S and ω such that S ` ω wf, there
exists an oracle ω′ such that ω −→∗S ω′ and S ` ω′ final.

Proof. The relation #v(ω) > #v(ω′) is a well-founded ordering. If ω′ is mini-
mal then S ` ω′ final, this follows from the contraposition of Lemma 9. From
Lemma 13 we know that if ω −→S ω′ then #v(ω) > #v(ω′). By induction on
the derivation of ω −→∗S ω′ and examining the minimal element we conclude
that it must be final.
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C Object calculus & grid calculus

Definition 14 (Object calculus evaluation).

b ⇓ o1 o1 = [`i = ς(xi)bi
i∈0..n] bi[xi := o1] ⇓ o2

b.`i ⇓ o2

b ⇓ [`i = ς(xi)bi
i∈0..n]

b.`j ⇐ ς(xj)bj ⇓ [`j = ς(xj)bj , `i = ς(xi)bi
i∈0..n\{j}]

Definition 15 (Object formulas).

Identifier x ∈ Ident
Object formula Fo ::= xGRID | VIEW(Fo, a) | UPDATE(Fo, a, Fm) | 〈[a 7→ Fm]〉
Method formula Fm ::= LET(x,GRID, Fo)

Lemma 14 (Object terms are object formulas). For all b, [[b]] = Fo for
some Fo.

Proof. By induction on the structure of object calculus terms.

Lemma 15 (Strengthening). For all closed Fo and S, if S, [] ` Fo ⇓ V,D
then [], [] ` Fo ⇓ V,∅.

Proof. By induction on the evaluation derivation. We proceed with case analysis:

Case xGRID: Invalid by closed assumption.
Case VIEW(Fo, a):

S, [] ` VIEW(Fo, a) ⇓ V,D by assumption.
S, [] ` Fo ⇓ 〈S ′〉,D and (S ′, a) ⇓ V by inversion.

(1) [], [] ` Fo ⇓ 〈S ′〉,∅ by IH.
[], [] ` VIEW(Fo, a) ⇓ V,∅ by (1) determinism of view evaluation.

Case UPDATE(Fo, a, Fm):
S, [] ` UPDATE(Fo, a, Fm) ⇓ V,D by assumption.
S, [] ` Fo ⇓ 〈S ′〉,D and V = 〈[S ′[a 7→ Fm]〉 by inversion.

(1) [], [] ` Fo ⇓ 〈S ′〉,∅ by IH.
[], [] ` UPDATE(Fo, a, Fm) ⇓ 〈[S ′[a 7→ Fm]〉,∅ by (1).

Case 〈[a 7→ Fm]〉: Immediate—evaluation of values is the identity.

Lemma 16 (Substitution commutes with translation). For all b, x, o,
[[b]][x := [[o]]] = [[b[x := o]]]

Proof. By induction on the structure of object calculus terms.

Case y: If x = y we have [[x]][x := [[o]]] = [[x[x := o]]] = [[o]], otherwise we have the
identity on y.

Case [`i = ς(xi)bi
i∈0..n]: For all i, [[[`i = ς(xi)bi]]] = 〈[`i 7→ LET(xi,GRID, [[bi]])]〉 if

x = xi we have:



34 J. Williams et al.

1. 〈[`i 7→ LET(xi,GRID, [[bi]])]〉[x := [[o]]] = 〈[`i 7→ LET(xi,GRID, [[bi]])]〉
2. [[[`i = ς(xi)bi][x := o]]] = [[[`i = ς(xi)bi]]]
3. [[[`i = ς(xi)bi]]] = 〈[`i 7→ LET(xi,GRID, [[bi]])]〉 as required.

otherwise x 6= xi and:
1. 〈[`i 7→ LET(xi,GRID, [[bi]])]〉 = 〈[`i 7→ LET(xi,GRID, [[bi]][x := [[o]]])]〉
2. [[[`i = ς(xi)bi][x := o]]] = [[[`i = ς(xi)bi[x := o]]]]

[[[`i = ς(xi)bi[x := o]]]] = 〈[`i 7→ LET(xi,GRID, [[bi[x := o]]])]〉
3. 〈[`i 7→ LET(xi,GRID, [[bi]][x := [[o]]])]〉 = 〈[`i 7→ LET(xi,GRID, [[bi[x :=
o]]])]〉 by IH.

Case b.`:
1. [[b.`]][x := [[o]]] = [[b.`[x := o]]]
2. VIEW([[b]], `)[x := [[o]]] = [[(b[x := o]).`]]

By defn. translation (LHS). By defn. substitution (RHS).
3. VIEW([[b]][x := [[o]]], `) = VIEW([[(b[x := o])]], `)

By defn. substitution (LHS). By defn. translation (RHS).
4. [[b]][x := [[o]]] = [[b[x := o]]] By IH.

Case b1.`⇐ ς(x)b2:
Essentially the same as object expressions. IH is also required for b1.

Theorem 2. If b is a closed and b ⇓ o then [], [] ` [[b]] ⇓ [[o]],∅.

Proof. By induction on the evaluation relation.

Case x: Invalid by closed assumption.
Case [`i = ς(xi)bi

i∈0..n]:
1. [[[`i = ς(xi)bi

i∈0..n]]] = 〈[`i 7→ [[ς(xi)bi]]
i∈0..n]〉 By defn. translation.

2. [`i = ς(xi)bi
i∈0..n] ⇓ [`i = ς(xi)bi

i∈0..n] By o-eval.
3. [], [] ` 〈[`i 7→ [[ς(xi)bi]]

i∈0..n]〉 ⇓ 〈[`i 7→ [[ς(xi)bi]]
i∈0..n]〉,∅ By g-eval.

4. [], [] ` [[[`i = ς(xi)bi
i∈0..n]]] ⇓ [[[`i = ς(xi)bi

i∈0..n]]],∅ By 1 and 3.
Case b.`i:

1. b.`i ⇓ o By assumption.
2. [[b.`i]] = VIEW([[b]], `i) By defn. translation.
3. b ⇓ o1 where o1 = [`i = ς(xi)bi

i∈0..n] By inversion of o-eval.
4. bi[xi := o1] ⇓ o By inversion of o-eval.
5. [], [] ` VIEW([[b]], `i) ⇓ V,∅ as:

(a) [], [] ` [[b]] ⇓ [[o1]],∅ By IH applied to 2.
(b) [[o1]] = 〈[`i 7→ LET(xi,GRID, [[bi]])

i∈0..n]〉 By defn. translation.
(c) (〈[`i 7→ LET(xi,GRID, [[bi]])

i∈0..n]〉, `i) ⇓ R as:
Let V = (〈[`i 7→ LET(xi,GRID, [[bi]])

i∈0..n]〉, `i)
i. [] −→∗V ω and V ` ω final and 〈[`i 7→ LET(xi,GRID, [[bi]])

i∈0..n]〉, ω `
`i !V, V,D where ω = [] as dom(V) = {`i} and size(V ) = ⊥.

ii. 〈[`i 7→ LET(xi,GRID, [[bi]])
i∈0..n]〉, [] ` `i !V, V,D

by (i) and inversion of dereferencing.
iii. 〈[`i 7→ LET(xi,GRID, [[bi]])

i∈0..n]〉, [] ` LET(xi,GRID, [[bi]]) ⇓ V,D
by (ii) and inversion of address evaluation

iv. 〈[`i 7→ LET(xi,GRID, [[bi]])
i∈0..n]〉, [] ` [[bi]][xi := [[o1]]] ⇓ V,D

by (iii) and inversion of LET
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where 〈[`i 7→ LET(xi,GRID, [[bi]])
i∈0..n]〉 = [[o1]] by (b)

v. [], [] ` [[bi]][xi := [[o1]]] ⇓ V,∅ by (iv) and Lemma 15.
vi. [], [] ` [[bi[xi := o1]]] ⇓ V,∅ by (vi) Lemma 16
vii. R = [[o]] by IH applied to (4) and determinism with (vii).

viii. Conclude [], [] ` VIEW([[b]], `i) ⇓ [[o]],∅.
6. [], [] ` [[b.`i]] ⇓ [[o]],∅ by 1, 2 and (viii).

Case b1.`⇐ ς(x)b2:
1. [[b1.`⇐ ς(x)b2]] = UPDATE([[b1]], `, LET(x,GRID, [[b2]]))

By defn. translation.
2. b1 ⇓ [`i = ς(xi)bi

i∈0..n] By inversion of o-eval.
3. b1.`⇐ ς(x)b2 ⇓ [`i = ς(xi)bi

i∈0..n, ` = ς(x)b2] By o-eval.
4. [], [] ` [[b1]] ⇓ 〈[`i 7→ LET(xi,GRID, [[bi]])

i∈0..n]〉,∅ By IH applied to 2.
5. [], [] ` UPDATE([[b1]], `, LET(x,GRID, [[b2]])) ⇓ 〈[`i 7→ LET(xi,GRID, [[bi]])

i∈0..n, ` 7→
LET(x,GRID, [[b2]])]〉,∅
By 4 and g-eval.

6. 〈[`i 7→ LET(xi,GRID, [[bi]])
i∈0..n, ` 7→ LET(x,GRID, [[b2]])]〉 =

[[[`i = ς(xi)bi
i∈0..n, ` = ς(x)b2]]]

By defn. translation.
7. [], [] ` [[b1.`⇐ ς(x)b2]] ⇓ [[`i = ς(xi)bi

i∈0..n, ` = ς(x)b2]],∅
By 1, 5, and 6.
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