
Gridlets: Reusing Spreadsheet Grids

Nima Joharizadeh
University of California, Davis

Advait Sarkar
Microsoft Research and
University of Cambridge

Andrew D. Gordon
Microsoft Research and
University of Edinburgh

Jack Williams
Microsoft Research

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’20 Extended Abstracts, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Copyright is held by the author/owner(s).
ACM ISBN 978-1-4503-6819-3/20/04.
http://dx.doi.org/10.1145/3334480.3382806

Abstract
Spreadsheets allow end users to blend calculations with
arbitrary layout and formatting. However, when it comes to
reusing groups of formulae along with layout and format-
ting, spreadsheets provide only limited support. Most users
rely on copy and paste, which is easy to learn and use, but
maintaining several copies can be tedious and error-prone.
We present the concept of Gridlets, an abstraction over cal-
culation and presentation applicable in common use case
scenarios. Using the Cognitive Dimensions of Notations
framework, we compare Gridlets to copy/paste and sheet-
defined functions. We find that Gridlets are consistent with
the spreadsheet paradigm, enable users to take advantage
of secondary notation, and make common edit operations
less viscous and less error-prone.

Author Keywords
Spreadsheets; Abstraction; End-User Programming

CCS Concepts
•Human-centered computing → Heuristic evaluations;
•Applied computing → Spreadsheets;

Introduction
Reuse in spreadsheets is overwhelmingly common. Users
routinely duplicate template files or copy and paste re-
gions of the grid. Despite the convenience, there is a cost.



Spreadsheet edits do not propagate to every copy, therefore
applying a change to a region and its copies—a uniform
edit—will suffer from two significant issues:

1. High effort : When the source is edited, cognitive and
physical effort is required to recall, locate, and edit every
copy. This inflexibility of spreadsheets in allowing refine-
ment of copied sources inhibits effective reuse.

2. High error-proneness: Since uniform edits are applied
manually to every copy, there is the potential for error: the
edit might be applied inconsistently, and not all copies might
be recalled and edited. This leads to an inconsistency be-
tween source and (intended) copies, and errors that are dif-
ficult to detect and fix. This is a major and common problem
for spreadsheets [6].

Figure 1: A spreadsheet for
comparing mortgages. The range
A3:B11 has been copied and
pasted 3 times, and the input
values modified for each copy.

Consider the spreadsheet in Figure 1, in which the user
is trying to compare four different mortgages. The user
has set up the spreadsheet so that she can enter the loan
amount, deposit, loan term, and interest rate as inputs (or-
ange), and read out the financed amount, monthly payment,
total repaid, and total interest as outputs (grey).

In this scenario, the user has created a portion of grid in the
range A3:B11 consisting of data, textual labels, formatting,
and labels. She has copied and pasted this range three
times, to reuse most of these assets, but overwrites the
input values for each different mortgage.

The problem of copy, paste, and uniform edit
Now suppose the user discovers an error in a formula or
label, or wishes to update some aspect of the formatting.
Having made the required edits, the user would once again
copy the range A3:B11, paste it into the subsequent lo-
cations, and then modify each copy to restore the input

values. This sequence of operations is effortful and error-
prone.

Gridlets
We designed Gridlets to ameliorate the problems with uni-
form edit. In general, a Gridlet is simply a copy of a range
including formatting, with local modifications applied to the
range, and a live link to the copied range. We can create
Gridlets through a graphical interface, or a formula. In this
paper we illustrate a formula function as an interface for
Gridlets. Implementing Gridlets as a formula requires no
novel extensions to the spreadsheet user interface. With
Gridlets, instead of making multiple manual copies of the
source, for each intended copy, the user writes a formula
such as =GRIDLET(A3:B11, B4, 300000, B5, 40000,
B6, 40, B7, 0.027), which reads:

“Take the source range A3:B11, replace B4 with 300000,
B5 with 40000, B6 with 40, and B7 with 0.027, and then
calculate the value of the range as an array.”

Thus, the formula specifies a portion of the grid to copy,
and a list of substitutions to make within that copy. For-
mulas can also be substituted. While the GRIDLET for-
mula itself sits in a single cell, the value it returns is an
array that “spills” into the grid. The idea of an array value
“spilling” or “spreading” itself into adjacent cells is sup-
ported in some commercial spreadsheet applications,1 and
has been formalised [11]. A clearer illustration of how a call
to the GRIDLET function would “spill” is given in Figure 2.

Because the copies are calculated through the GRIDLET
function, the user needs to modify only the source range
to correct a formula or update formatting across all copies,
while preserving the substitutions local to each copy.

1E.g., https://aka.ms/excel-dynamic-arrays

https://aka.ms/excel-dynamic-arrays


In this manner Gridlets provide a mechanism to abstract
over the grid, carrying data, formatting, and formulas – ev-
erything the user would expect from copy/paste. However,
unlike copy/paste, Gridlets maintain a link between copies
and their sources. This reduces the complexity of uniform
edit by alleviating the need to manually recall, locate, and
update every copy.

Gridlets via UI
It should be possible to improve the usability of Gridlets
and make them accessible to a wider audience (especially
users without the inclination or expertise to write formulas)
through graphical interfaces. Two examples are as follows:

Figure 2: Constructing a copy
using a Gridlet formula. The Gridlet
formula returns an array that
“spills” into adjacent cells.
Changes in the source will
automatically propagate to this
copy, while preserving the local
substitutions.

Gridlet wizard and library A graphical wizard could lead
the user through the creation and use of Gridlets. For ex-
ample, the user could be prompted to select a portion of the
grid to “save” as a Gridlet in a library. Gridlets thus created
could be invoked by dragging and dropping onto the grid,
as in Figure 3. The user would be able to modify values
directly in the grid, but the functionality would be provided
through a call to GRIDLET which could optionally be hidden
from the user altogether.

Gridlet as a paste option Modern spreadsheet applica-
tions allow copied items to be pasted in many different
forms, such as paste values only, paste formatting only,
paste transposed values, etc. An option to “paste as Gri-
dlet” could be introduced, which pastes a portion of grid
that appears identical to a regular paste, except that since
the functionality is provided through a call to GRIDLET, up-
dates from the source would propagate to every copy, while
honouring local substitutions. This would introduce level 3
liveness [10] to copy/paste (in particular, to uniform edit).
Level 3 liveness is achieved when “any edit operation by
the user triggers [re-]computation”. Thus, “paste as Gridlet”

could alternatively be referred to as “live copy/paste”. This
option would make Gridlets much more competitive with
copy/paste along the consistency dimension.

Sheet-defined functions: an alternative solution
We have presented Gridlets as an alternative to copy/paste
in spreadsheets with a focus on improving uniform edit. An-
other proposed spreadsheet reuse mechanism, amenable
to some cases of uniform edit, is the Sheet-Defined Func-
tion [4, 8, 9] (SDF). An SDF is a function that the user can
define from an existing region of the grid. Users explicitly
select the input and output cells of the function at the defini-
tion site, which are then used at every call site.

SDFs are a straightforward importation of the idea of func-
tions or subroutines from traditional textual programming
languages. The priority is hiding implementation details;
the inner mechanisms of a subroutine add unnecessary
complexity to the activity of programming, and so SDFs are
appropriate for re-use when intermediate calculations, lay-
out, and formatting are unimportant, and a compact ‘black-
box’ calculation is required. SDFs are therefore envisioned
as a way for users to extend the library of built-in formula
functions by naming calculations defined in the grid. This is
more easily understood by looking at Figure 4.

Gridlets, on the other hand, carry layout, formatting, and in-
termediate computations, and every call site to a gridlet can
make substitutions in different locations. Rather than pro-
viding a ‘black-box’ abstraction, Gridlets provide a transpar-
ent abstraction for achieving the same effect as copy/paste,
but with benefits for uniform edit.

SDFs, Gridlets, and Copy/paste are not in competition with
each other as they provide different forms of abstraction.
SDFs are most useful when a black-box abstraction is re-



quired. Gridlets are most useful when uniform edit is com-
mon. Copy/paste is useful for all other cases.

Figure 3: Dragging and dropping a
Gridlet from a library to create a
new copy. An illustration of an
alternative graphical interface to
the GRIDLET function.

Related Work
Gradual structuring [5], the “Lish” data model [3], and Cal-
culation View [7] all enhance the two dimensional layout of
the grid by abstracting over a group of rows (or columns).
Like SDFs, they reduce the viscosity and error-proneness
of uniform edit, but at the cost of flexibility; they do not allow
variation in local substitutions.

Similarity inheritance [1] is a model for inheritance in vi-
sual programming languages such as Forms/3. Similarity
inheritance is an abstract notion and concrete realizations
of it depend on the interaction model. In Forms/3, it is in-
troduced by overloading the conventional copy/paste op-
eration to establish inheritance relationships among cells
and forms. This mechanism is similar to using Gridlets as a
paste option. Furthermore, the semantics of similarity inher-
itance resemble substitution in Gridlets, albeit as applied to
forms and not rectangular grids.

Evaluating Gridlets: what are they good for?
How does the idea of Gridlets compare to other mecha-
nisms for reuse in spreadsheets, and what are its relative
strengths and weaknesses? The Cognitive Dimensions of
Notations [2] (CDN) is a widely-used framework that pro-
vides a vocabulary for discussing the usability properties of
programming language features or “notations”. In our analy-
sis, we focus on seven dimensions:

Consistency: When some of the language has been learnt,
how much of the rest can be inferred? We desire our reuse
mechanism to have high consistency with the spreadsheet
paradigm, requiring the user to learn fewer concepts.

Viscosity: How much effort is required to make a change
to a program expressed in the notation? The high manual
effort of uniform edit means that this operation typically has
high viscosity. We desire our reuse mechanism to have low
viscosity with respect to uniform edit.

Error-proneness: To what extent does the notation in-
fluence the likelihood of the user making a mistake? As
previously discussed, uniform edit typically has high error-
proneness. We desire our reuse mechanism to have low
error-proneness with respect to uniform edit.

Premature commitment: Are there constraints on the or-
der of doing things? Is the user forced to make decisions
before they might have all the available information for do-
ing so, thereby creating future work to correct such deci-
sions? We desire our reuse mechanism to have low prema-
ture commitment.

Hidden dependencies: Are dependencies between enti-
ties in the notation visible or hidden? Is every dependency
indicated in both directions? Does a change in one area of
the notation lead to unexpected consequences? We desire
our reuse mechanism to be low on hidden dependencies,
to minimise unexpected consequences.

Hard mental operations: Are there places where the user
needs to resort to pencilled annotation to keep track of what
is happening? As previously discussed, a successful uni-
form edit requires the user to recall, locate, and edit each
copy, which can incur high cognitive costs, i.e., it is high on
hard mental operations. We desire our reuse mechanism to
be low on hard mental operations.

Secondary notation: Can the notation carry extra informa-
tion by means not related to syntax, such as layout, color, or
other cues? Spreadsheet users make liberal and effective



use of secondary notation in the form of layout and format-
ting. We desire our reuse mechanism to have high support
for secondary notation.

We now compare Gridlets, sheet-defined functions and
copy/paste along the cognitive dimensions.

Figure 4: Sheet-defined functions
(Reproduced from Peyton Jones et
al. [4])

At the bottom we see a function
instance sheet. The sheet “F2C”
provides the definition of the F2C
function (hence the function is
sheet-defined), with cell B1
receiving input, cell B2 performing
an intermediate calculation, and
cell B3 providing the output.

At the top we see a function
invocation site. In sheet “Sheet1”,
cells C2 to C4 all make use of the
function F2C as a black-box
abstraction, supplying inputs as
arguments and receiving a single
output value.

Consistency
The original exposition of SDFs cites consistency as a core
motivation: “The implementation of a function must be de-
fined by a spreadsheet, because that is the only compu-
tational paradigm understood by our target audience.” [4]
The same benefit applies to Gridlets as they exploit famil-
iarity with ranges and formulas. Introducing a new notation
that resembles existing notation, yet elevates the level of
abstraction available to the user, has been shown to be a
successful strategy in spreadsheets. One example is the
range assignment notation of Calculation View [7].

Copy/paste, arguably, is the reuse mechanism having the
highest consistency with the spreadsheet paradigm (and is
consistent with reuse in much productivity software). SDFs
and Gridlets have similar (good) levels of consistency to
each other, requiring only an understanding of spreadsheet
formulas, but since Gridlets allow the transmission of sec-
ondary notation in a manner very similar to copy/paste, it
can be said to have higher consistency than SDFs.

Viscosity and Error-proneness
In our context, the viscosity and error-proneness dimen-
sions are highly related. Copy/Paste increases the cost of
uniform edit because the user must manually recall, locate,
and edit every copy. This process is also error-prone. Gri-
dlets, by design, reduce the viscosity and error-proneness
of uniform edit in most cases. In the subset of Copy/paste
scenarios where a black-box abstraction is appropriate,
SDFs similarly reduce viscosity and error-proneness.

With Gridlets and SDFs, some uniform edit scenarios are
still viscous and error-prone. Consider what must happen
when a re-used calculation that notionally takes two argu-
ments is altered to take three. Copy/paste requires each
copy to be edited. SDFs require each call site to be edited
to introduce a new argument. Gridlets require each use
site to be edited to introduce a new argument. In general
this happens whenever there is a change to the location or
number of arguments, but this is no worse than Copy/paste.

One workaround to this problem is use of names instead
of cell addresses. Some commercial spreadsheets include
features that would enable this. For example, in Excel, the
Name Manager allows users to assign human-readable
names to cell and range addresses, and use these in for-
mulas. This provides the additional flexibility to change the
location of inputs or dimensions of the Gridlet while elimi-
nating the need to update each invocation of GRIDLET.

Premature commitment
SDFs require the highest levels of premature commitment.
When an SDF is created the user must nominate input and
output cells, as well as a single calculation. The choice ap-
plies to every invocation therefore the user must commit to
a particular usage pattern for that function. Gridlets require
less premature commitment as every Gridlet invocation can
have a unique set of substituted values and formulas that is
suitable for the particular instance.

Copy/paste requires the least premature commitment. Both
Gridlets and SDFs have a notion of precedence; a specific
source area of the grid must be modified for uniform edit to
take place. In copy/paste, the user can perform a uniform
edit starting with any copy; any copy can become the new
source. Copy/paste also allows certain kinds of edit that
are not achievable through the substitution mechanic of
Gridlets, such as such as inserting a row.



Hidden dependencies
Since Gridlet invocations blend seamlessly with the rest
of the grid, it is possible that a Gridlet invocation uses an
area on the grid that itself is the output of another Gridlet
invocation. This might introduce a chain of hidden depen-
dencies that is difficult to track. This same limitation applies
to SDFs. One mitigating strategy is to notify the end-user
programmer about forward and backward dependencies of
a cell as the user modifies the cell.

Superficially, it might appear that copy/paste, because it
does not maintain a link between source and copy, does not
introduce any hidden dependencies. That is true if the user
does not wish to maintain a link. However, if they do, the
dependency between source and copy still exists, but the
burden of maintaining it has been shifted to the user! For
this reason copy/paste can be worse than both Gridlets and
SDFs in terms of hidden dependencies.

Rank by desirability

C
op

y/
P

as
te

G
rid

le
t

S
D

F

Consistency 1 2 3

Viscosity 3 1 1

Error-
proneness 3 1 1

Premature
commitment 1 2 3

Hidden
dependencies 3 1 1

Hard mental
operations 3 1 1

Secondary
notation 1 2 3

Table 1: Summary of CDN
analysis. Note: systems are ranked
higher for having high Consistency
and Secondary Notation, but for
other dimensions, they are ranked
higher for being lower on those
dimensions.

Hard mental operations
For copy/paste, the operation of uniform edit requires the
user to manually recall, locate, and edit each copy. Each of
these is a hard mental operation. Recalling every instance
of reuse is especially challenging in large spreadsheets,
old spreadsheets, spreadsheets that have been authored
by other people, spreadsheets that have been poorly an-
notated, and so on. Locating an instance of reuse involves
navigating to the correct region of the correct sheet in the
correct workbook. Moreover, the user must keep track of
the intended edit and local modifications for each copy
while performing uniform edit; these might be tracked either
in the user’s own working memory, or the user might resort
to using temporary scratch space in the spreadsheet. Both
Gridlets and SDFs mitigate these hard mental operations.

However, it is far from clear whether Gridlets incur lower
cognitive costs overall than copy/paste. Both Gridlets and

SDFs depend on a more abstract mental model than copy/paste,
and require expertise in writing formulas. The acquisition
of these mental model incurs significant upfront cognitive
costs which are a high barrier for many users. However,
once the correct mental model is acquired, this is not a re-
curring hard mental operation. In future work, we also in-
tend to explore graphical interfaces for Gridlet creation and
use, that further lower the cognitive barriers.

Secondary notation
Layout and formatting are an important and frequently used
form of secondary notation. Copy/paste and Gridlets both
carry this form of secondary notation, while SDFs do not.

In summary, we anticipate that Gridlets improve on copy/paste
in terms of viscosity, error-proneness, hidden dependencies
and hard mental operations, at the cost of slightly lower
consistency and support for secondary notation. However,
Gridlets are still an improvement over SDFs in terms of con-
sistency, premature commitment, and secondary notation.
An illustrated summary is given in Table 1. It is important to
note that our analysis is a form of heuristic evaluation that
gives us a preliminary indication of the potential tradeoffs,
but which should be further substantiated with an empirical
user study, that we intend to do in the future.

Conclusion
We present the design and preliminary evaluation of Gri-
dlets, an abstraction for uniformly propagating edits to copied
regions of a spreadsheet. The Cognitive Dimensions of No-
tations framework anticipates that using Gridlets can reduce
the labor and error-proneness associated with copy and
paste. In future work, we intend to evaluate these predic-
tions with an empirical study, and also explore Gridlets as a
paste option to further lower their cognitive costs.



REFERENCES
[1] Rebecca Walpole Djang and Margaret M Burnett.

1998. Similarity inheritance: a new model of
inheritance for spreadsheet VPLs. In Proceedings.
1998 IEEE Symposium on Visual Languages (Cat. No.
98TB100254). IEEE, 134–141.

[2] T. R. G. Green. 1989. Cognitive Dimensions of
Notations. In Proceedings of the Fifth Conference of
the British Computer Society, Human-Computer
Interaction Specialist Group on People and Computers
V. Cambridge University Press, New York, NY, USA,
443–460.
http://dl.acm.org/citation.cfm?id=92968.93015

[3] Alan Hall, Michel Wermelinger, Tony Hirst, and Santi
Phithakkitnukoon. 2018. Structuring Spreadsheets with
the "Lish" Data Model. arXiv preprint arXiv:1801.08603
(2018).

[4] Simon Peyton Jones, Alan Blackwell, and Margaret
Burnett. 2003. A user-centred approach to functions in
Excel. ACM SIGPLAN Notices 38, 9 (2003), 165–176.

[5] Gary Miller, Felienne Hermans, and Robin Braun.
2016. Gradual structuring: Evolving the spreadsheet
paradigm for expressiveness and learnability. In 2016
15th International Conference on Information
Technology Based Higher Education and Training
(ITHET). IEEE, 1–8.

[6] Ray Panko. 2016. What we don’t know about
spreadsheet errors today: The facts, why we don’t

believe them, and what we need to do. arXiv preprint
arXiv:1602.02601 (2016).

[7] Advait Sarkar, Andrew D. Gordon, Simon Peyton
Jones, and Neil Toronto. 2018. Calculation View:
multiple-representation editing in spreadsheets. In
2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). 85–93. DOI:
http://dx.doi.org/10.1109/VLHCC.2018.8506584

[8] Peter Sestoft. 2008. Implementing function
spreadsheets. In Proceedings of the 4th international
workshop on End-user software engineering. ACM,
91–94.

[9] Peter Sestoft and Jens Zeilund Sørensen. 2013.
Sheet-Defined Functions: Implementation and Initial
Evaluation. In End-User Development, Yvonne Dittrich,
Margaret Burnett, Anders Mørch, and David Redmiles
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
88–103.

[10] Steven L Tanimoto. 1990. VIVA: A visual language for
image processing. Journal of Visual Languages &
Computing 1, 2 (1990), 127–139.

[11] Jack Williams, Nima Joharizadeh, Andrew D. Gordon,
and Advait Sarkar. 2020. Higher-Order Spreadsheets
with Spilled Arrays. (2020). To appear in Proceedings
of 29th European Symposium on Programming
(ESOP).

http://dl.acm.org/citation.cfm?id=92968.93015
http://dx.doi.org/10.1109/VLHCC.2018.8506584

	Introduction
	The problem of copy, paste, and uniform edit
	Gridlets

	Gridlets via UI
	Sheet-defined functions: an alternative solution
	Related Work
	Evaluating Gridlets: what are they good for?
	Consistency
	Viscosity and Error-proneness
	Premature commitment
	Hidden dependencies
	Hard mental operations
	Secondary notation


	Conclusion
	REFERENCES 

