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Abstract

Deep generative models have led to significant advances

in cross-modal generation such as text-to-image synthesis.

Training these models typically requires paired data with

direct correspondence between modalities. We introduce

the novel problem of translating instances from one modal-

ity to another without paired data by leveraging an inter-

mediate modality shared by the two other modalities. To

demonstrate this, we take the problem of translating im-

ages to speech. In this case, one could leverage disjoint

datasets with one shared modality, e.g., image-text pairs

and text-speech pairs, with text as the shared modality.

We call this problem “skip-modal generation” because the

shared modality is skipped during the generation process.

We propose a multimodal information bottleneck approach

that learns the correspondence between modalities from un-

paired data (image and speech) by leveraging the shared

modality (text). We address fundamental challenges of skip-

modal generation: 1) learning multimodal representations

using a single model, 2) bridging the domain gap between

two unrelated datasets, and 3) learning the correspondence

between modalities from unpaired data. We show qualita-

tive results on image-to-speech synthesis; this is the first

time such results have been reported in the literature. We

also show that our approach improves performance on tra-

ditional cross-modal generation, suggesting that it improves

data efficiency in solving individual tasks.

1. Introduction

Recent advances in deep generative models have shown

impressive results across many cross-modal generation

tasks, including text-to-image [36], text-to-speech [27],

image-to-video [29], video-to-sound [56] synthesis. Train-

ing these models typically requires a large amount of paired

samples with direct correspondence between instances from

the different modalities, which limits their applicability to

new (“unseen”) modalities. Some attempts have been made

∗Code: https://github.com/yunyikristy/skipNet

Figure 1. Cross-modal generation typically requires paired data

with direct correspondence between modalities. However, this

data is not always available (e.g., image-to-speech), in which case

generation could be done by bridging two existing datasets via an

intermediate modality (text). We propose an approach that directly

generates outputs by learning multimodal correspondences from

unpaired data provided by multiple disjoint datasets.

to eliminate such constraint in the context of image-to-

image cross-domain translation, training a network on un-

paired examples with the cycle consistency constraint [58,

59, 9]. However, those methods generally assume that two

domains come from the same modality, e.g., images of

horses and zebras; as we show later, these methods tend

to fail in a cross-modal scenario (such as image-to-speech)

where the assumption no longer holds.

In this work, we aim to learn a mapping from one modal-

ity to another without using paired samples. Our main

idea is to leverage readily available datasets that do not

directly provide paired samples of the two modalities we

are interested in, but have “skip” correspondence between

the two desired modalities via a shared one. For example,

for image-to-speech synthesis we may leverage two exist-

ing datasets with image-text and text-speech pairs, where

text serves as the shared modality. A naive solution to this

would be training two networks separately, each solving ei-

ther of the tasks with the paired data, and running them se-

quentially, e.g., given an image, generate text, and use it to

generate speech. However, this approach is not trainable

end-to-end and suffers from several issues such as domain

discrepancy and information loss between the two models.

We introduce a new task skip-modal generation that aims

to translate one modality to another by “skipping” an inter-
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mediate modality shared by two different datasets. There

are several reasons why this is an interesting problem to

solve. From a practical standpoint, leveraging readily avail-

able datasets for solving new tasks allows for new applica-

tions. Also, training a single model with multiple datasets

could potentially improve data efficiency, improving perfor-

mance on the tasks each dataset was originally designed for;

later, we empirically show this is indeed the case with our

proposed model. From a theoretical standpoint, an ability

to translate across multiple modalities may suggest that the

model is one step closer to finding a unified abstract rep-

resentation of different sensory inputs [33, 12]. Achieving

this means information from one can be translated into any

of the other modalities. Our experiments show our proposed

approach can translate instances across different combina-

tions of image, text, and speech modalities.

We focus on addressing three key challenges in skip-

modal generation: learning to represent multimodal data in

a uniform manner, resolving multi-dataset domain discrep-

ancies, and learning the correspondence from unpaired data.

To this end, we propose a novel generative model trainable

on multiple disjoint datasets in an end-to-end fashion. Our

model consists of modality-specific encoders/decoders and

a multimodal information bottleneck (MIB) that learns how

to represent different modalities in a shared latent space.

The MIB transforms each modality-specific encoder output

into the shared modality space (e.g., text) and further pro-

cesses it through a memory network that serves as an in-

formation bottleneck [43]. This helps us obtain unified ab-

stract representations of multiple modalities, capturing “the

most meaningful and relevant information” [43] regardless

of modalities or datasets. We train our model by solving two

cross-modal generation tasks through the shared modality,

enabling the model to learn multimodal correspondence.

We evaluate our approach on image-to-speech synthe-

sis using two existing datasets – the COCO [6] dataset that

provides image-text pairs, and an in-house text-to-speech

(TTS) dataset that provides text-speech pairs – and demon-

strate a superior performance over current baselines. To the

best of our knowledge, this is the first time image-to-speech

synthesis results have been reported. We also evaluate our

approach on each of the cross-modal generation tasks the

datasets were originally collected for, and show that we

outperform previous state-of-the-art methods on each task,

suggesting our method also improves data efficiency.

To summarize our contributions, we: (1) introduce skip-

modal generation as a new task in multimodal representa-

tion learning; (2) propose an approach that learns the corre-

spondence between modalities from unpaired data; (3) re-

port realistic image-to-speech synthesis results, which has

not been reported in the literature before; (4) show our

model improves data efficiency, outperforming previous re-

sults on cross-modal generation tasks.

2. Related Work

Cross-Modal Synthesis: There has been much progress

in cross-modal synthesis involving language, vision, and

sound. For vision and language, image-to-text synthesis

(image captioning) has been a popular task, where atten-

tion mechanisms have shown particularly strong results [48,

52, 54, 28, 32, 2]. In text-to-image synthesis, most exist-

ing methods are based on deep generative models [14, 23].

Reed et al. [36] and Zhang et al. [55] were some of the first

to show promising results. Further improvements have been

reported using attention mechanisms [53, 26]. For language

and sound, speech-to-text (ASR) is perhaps the most ma-

ture topic of research, and great advances have been made

with deep learning [17]. Text-to-speech synthesis using

deep neural networks has gained much attention recently,

with methods such as WaveNet [44], DeepVoice [4, 13, 34],

VoiceLoop [42, 30], Char2Wav [39], and Tacotron [49, 50].

Our work is distinct from all existing lines of research in

cross-modal synthesis in that we do not require paired sam-

ples to train a model. Instead, we leverage a shared modality

between different datasets to learn the skip-correspondence

between modalities where no paired data is available.

Cross-Domain Synthesis: Cross-domain within-

modality synthesis has also been a topic of extensive

study. Pix2pix [19] was the first attempt at translating

across different image domains by training on paired

data (e.g., sketches to photos). Since then, numerous

methods have tackled the problem from an unsupervised

learning perspective, eliminating the need for paired

data [58, 41, 26, 5, 21]. Methods based on cycle consis-

tency [58] have been particularly effective in this problem

space. Unfortunately, cross-domain synthesis methods

tend to fail on cross-modal scenarios because of the larger

domain gap between different modalities. We empirically

validate this in our experiments. Instead of using the

cycle consistency loss, Lior et al. [41] translate between

human faces and emojis. They leverage the fact that a

face has a rigid low-dimensional structure (e.g., facial

landmarks), and use a pretrained human face classifier to

obtain effective representations of both human faces and

emojis. Unlike their approach, in this work we make no

assumption about the types of data.

3. Approach

Given two cross-modal datasets with one shared modal-

ity – e.g., a text-image dataset A = {(xtxt
A,i,x

img
A,i )}

N
i=1

and a text-speech dataset B = {(xtxt
B,i,x

spch
B,i )}Mi=1

, with

text as a shared modality – our goal is to learn a network

that can model data from all three modalities. We design

our network with modality-specific encoders and decoders

E
j and D

j , respectively, with j = {text, image, speech}.

Note that the definition of our model is agnostic to modali-
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Figure 2. Our model consists of modality-specific encoders E(·) and decoders D(·), and a multimodal information bottleneck that learns

to represent different modalities in a shared embedding space. We train the model end-to-end using two disjoint datasets involving image,

text, and speech (A and B) by solving cross-modal reconstruction tasks. The modality classifier C is used only during training.

ties; the encoders/decoders can be swapped out for different

modalities depending on the dataset and application.

Our main technical contribution is the multimodal in-

formation bottleneck (MIB), which consists of a modality

transformer T and a memory fusion module M (see Fig-

ure 2); the modality classifier C is used only during train-

ing. The T transforms output from different encoders into

the shared modality space (text); the M acts as an infor-

mation bottleneck [43] and further processes the signals to

produce compact, unified abstract representations. We use

the output to generate an instance in different modalities.

3.1. ModalitySpecific Encoders

Image encoder: We feed images to a three-layer CNN

and perform max-pooling to obtain the output eimg ∈ R
512.

Text encoder: We process text into a sequence of 128-D

character-level embeddings via a 66-symbol trainable look-

up table. We then feed each of the embeddings into two

fully-connected (FC) layers. The output sequence is fed into

the CBHG [49] to obtain a sequence of 128-D embeddings;

we use the original parameter settings of [49]. Finally, we

apply average pooling over the sequence and feed it into one

FC layer with 512 units to obtain the output etxt ∈ R
512.

Speech encoder: We extract mel-spectrograms, a time-

frequency representation of sound, from audio waveforms

using 80 frequency bands. We treat this as a single-channel

image of dimension t-by-80, where t represents the time.

We feed it into a two-layer fully convolutional network and

further process it using a GRU [8] with 512 units, feeding

in a 5-by-80 chunk at a time. We take the last state of the

GRU as the output espch ∈ R
512.

3.2. Multimodal Information Bottleneck

Neuroscientists have developed theories that the brain

forms unified representations of multimodal signals [12,

33]. Modelling this computationally is very challenging be-

cause information contained in different modalities are of-

ten not directly comparable. The mapping of instances be-

tween modalities are not bijective, nor injective, nor surjec-

tive. This is especially true between text and image/speech;

a sentence “There is a little blue bird” can map to images

depicting different shapes and poses of a bird, or to speech

signals with different intonation, tone, stress, and rhythm.

Conversely, certain imagery and sounds are indescribable.

To tackle our problem of modeling multimodal data de-

spite these challenges, we focus on how structured and com-

pact textual representations are; image and audio contain

richer information with considerably higher degrees of vari-

ability than text. Thus, we use text as a conduit to learn

the correspondence between image and speech. This has an

effect of an information bottleneck [43], which limits the

flow of certain modality-specific information and helps the

model learn to align image and speech from unpaired data.

Modality transformer: We start by transforming in-

stances from image and speech modalities into a shared

latent space induced by the text modality. The modality

transformer T is a three-layer residual network that maps

embeddings of each modality e
j to z

j ∈ R
256.

To ensure the desired transformation is performed, we

use an adversarial objective that encourages zj to be indis-

tinguishable from each other with respect to the text modal-

ity. To this end, we design a modality classifier C with two

FC layers and a 3-way softmax classifier representing the

three modalities. We then define an adversarial loss as

Ladv = min
T

max
C

LT + LC (1)
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Figure 3. Architectures of the modality-specific encoders and decoders. We provide parameter settings in the supplementary material.

where the mini-max game is defined with two terms

LT =− E
[

logC(T(eimg
A ))txt

]

− E
[

logC(T(espchB ))txt
]

LC =− E
[

logC(zimg
A )img

]

− E
[

logC(zspchB )spch
]

− E
[

logC(ztxtA )txt
]

− E
[

logC(ztxtB )txt
]

where C(·)j means we take the value from the correspond-

ing category. To make an analogy to GAN training [14], C

acts as a modality discriminator and T tries to fool C into

believing that all zj are from the text modality. In practice,

we add the gradient reversal layer [11] to train our model

without having to alternative between min-max objectives.

Memory fusion module: Next, we extract the uniform

abstract representation u
j which has the most relevant in-

formation shared between paired modalities. A principled

way to achieve this is through the information bottleneck

(IB) approach [43], which seeks a coding mechanism that

maximally preserves information in the input signal when

represented using a set of external variables.

The design of our memory fusion module is partly

inspired by memory networks [51] and multi-head self-

attention [45]. In a nutshell, we define an external memory

M that stores basis vectors representing modality-agnostic

“abstract concepts,” which is shared by all the modalities

involved. The model reads from the memory during the for-

ward pass, and writes to it during back-propagation. We use

multi-head self-attention [45] as our coding mechanism, en-

coding z
j into u

j with respect to the shared M .

Formally, we define an external memory M ∈ R
nk×dk ,

where nk is the number of basis vectors and dk is the di-

mension of each basis vector. We also define an intermedi-

ate variable K ∈ R
nk×dk which we use with M to form the

“〈key, value〉 pairs” for the multi-head self-attention (K is

the key, M is the value). We compute K by convolving M
with 256 1D kernels of size one. Finally, we compute u

j

Figure 4. Architecture of multimodal information bottleneck.

as a linear combination of basis vectors in M with weights

given by the scaled dot-product attention [45],

u
j = softmax

(

z
jKT /

√

dk

)

M (2)

Intuitively, zj serves as a query to search the relevant keys to

determine where to read from the memory. The scaled dot-

product inside the softmax can be understood as a compati-

bility function between a query and the keys, which gives

us attention scores for attending to different parts of the

memory. We use multi-head self-attention with four par-

allel heads to make the module jointly attend to information

from different subspaces at different positions.

Training of the memory fusion module: Enabling the
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desired information bottleneck effect requires a careful de-

sign of the learning objective. One popular way is to impose

an autoencoder-type reconstruction loss for each modal-

ity. In our scenario, this corresponds to, e.g., uimg recon-

structing x
img . While this would help the network learn

to bottleneck superfluous information present within each

modality, it would miss out on the opportunity to learn

cross-modal correspondences. Most crucially, this will pre-

vent the network from learning modality-agnostic repre-

sentations, which are important for skip-modal generation,

and instead learn redundant concepts presented by different

modalities.

Therefore, we solve the cross-modal generation tasks as

provided by two paired datasets. Specifically, we aim to

reconstruct x
j
A from u

j
A and x

j
B from u

j
B in a cross-modal

fashion. We define our loss as

Lrecon = Limg
A + Lspch

B + Ltxt
A,B (3)

We use the l1 loss for both image and speech modalities:

Limg
A =

1

N

N
∑

i=1

‖ximg
A,i −D

img(utxt
A,i)‖1 (4)

Lspch
B =

1

M

M
∑

i=1

‖xspch
B,i −D

spch(utxt
B,i)‖1 (5)

For text modality we use the cross-entropy loss:

Ltxt
A,B =−

1

N

N
∑

i=1

CE
(

x
txt
A,i,D

txt(uimg
A,i )

)

−
1

M

M
∑

i=1

CE
(

x
txt
B,i,D

txt(uspch
B,i )

)

(6)

where we compare two sentences character-by-character ac-

cording to 66 symbol categories. Note that the computa-

tion of Ltxt
A,B depends on both A and B, and the text de-

coder must serve a dual-purpose as an image-to-text gener-

ator and a speech-to-text generator. This allows our network

to learn the skip-modal correspondence between image and

speech. It also maximizes the information bottleneck effect

in our memory fusion module because the external memory

is conditioned on all three combinations of the modalities.

Interpretation of the multimodal information bottle-

neck: The two components in the MIB compensate each

other with related yet different objectives. The modality

transformer “drags” any given modality-specific embedding

e
j into a shared latent subspace induced by the text modal-

ity. This helps us further process the signals in a more sta-

ble manner; otherwise the memory fusion module must deal

with signals coming from three different spaces, which may

have different statistical properties.

The memory fusion module then encourages uj to con-

tain the most relevant correspondence information between

modalities. We share the external memory to encode em-

beddings from different modalities. Trained with our cross-

modal reconstruction objectives, the use of a shared mem-

ory provides a strong “bottleneck” effect so that (1) it sup-

presses modality-specific information that does not con-

tribute to cross-modal generation, and (2) it focuses on find-

ing a highly-structured latent multimodal space. This allows

us to obtain compact representations of the multimodal data.

In Section 4, we show this improves not only the general-

ization ability for skip-modal generation, but also the data

efficiency for each individual cross-modal generation task.

3.3. ModalitySpecific Decoders

Image decoder: We feed u
j into one FC layer with 1024

units and reshape the output to be in R4×4×64. We then

upsample it with four deconvolutional layers to generate an

image of size 128 × 128 pixels. During training, we feed

u
txt to the decoder for cross-modal generation.

Text decoder: We use a two-layer LSTM as our text de-

coder. After initializing it with u
j , we unroll it to generate

a sentence until we get the end-of-sentence token. During

training, we feed either uimg or uspch to the decoder.

Speech decoder: We use the attention-based decoder of

[47] that contains an attention RNN (a two-layer residual

GRU with 256 cells) and a decoder RNN (a single-layer

GRU with 256 cells). We initialize both RNNs with u
j and

unroll them to generate a series of t-by-80 mel-spectrogram

chunks. At each step, we predict multiple, non-overlapping

chunks, which has been shown to speed up the conver-

gence [49]. We convert the predicted mel-spectrogram into

an audio waveform using the Griffin-Lim algorithm [15].

During training, we feed u
txt to the decoder, while at infer-

ence time we feed u
img for skip-modal generation.

3.4. Learning Objective and Optimization

We train our model by minimizing a loss function

L = Lrecon + αLadv (7)

where we set α = 0.1 in our experiments. We train the

whole network end-to-end from scratch using the ADAM

optimizer [22] with an initial learning rate of 0.002. We

train our model for 100 epochs using a batch size of eight.

4. Experiments

We evaluate our proposed approach from two perspec-

tives: 1) image-to-speech synthesis; 2) the effectiveness

of multimodal modeling. We train our model on two

datasets: COCO [6] that contains image-text samples, and

an in-house dataset EMT-4 that contains 22,377 American-

English audio-text samples, with a total of 24 hours. All the

audio samples are read by a single female speaker.
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Figure 5. Image-to-speech synthesis results. For the purpose of presentation, we manually transcribed audio results. Red: incorrect word

predictions, green: correct/more fine-grained word predictions compared with the baseline, yellow: incorrect word pronunciation, and

blue: correct/better word pronunciation compared with the baseline. Audio samples are available at https://bit.ly/2U7741S

4.1. SkipModal Generation

We validate skip-modal generation on image-to-speech

synthesis both qualitatively and quantitatively, comparing

ours with two baselines: the piecewise approach and Cy-

cleGAN [58]. The piecewise approach uses two individ-

ual models [54] sequentially, e.g., image-to-text followed

by text-to-speech. CycleGAN [58] was originally proposed

for image-to-image translation from unpaired data. To see

how the model generalize to the cross-modal case, we train

it directly on images and audio samples from both datasets.

For a fair comparison, we design both baselines using the

same encoder-decoder architectures as ours, and train them

end-to-end from scratch using the same dataset.

Qualitative evaluation. We had seven human judges

evaluate the generated speech from our skip-generation

model and the two baselines. Twenty speech samples were

generated using the models, leading to 140 independent

evaluations. The judges were shown the source image and

listened to the speech. They were asked to select the au-

dio sample that had the most accurate content and the sam-

ple with speech that was closest to a human voice. They

also selected the sample they felt had the highest over-

all quality. Examples of the samples can be found here:

https://bit.ly/2U7741S

On average 78.6% (sd = 27.6%) of the subjects picked

ours for the highest quality content. Based on audio quality,

65.0% (sd = 35.7%) of the subjects picked ours as the high-

est quality. Based on overall quality, 74.3% (sd = 33.9%) of

the subjects picked ours. In summary, our subjects picked

ours three times more frequently than either of the other

baselines based on all three quality metrics.

Figure 5 shows some of the samples used in our user

study; we manually transcribed the synthesized audio re-

sults for the purposes of presentation. We analyze the re-

sults by focusing on two aspects: 1) does the speech sample

correctly describe the content as shown in the image? 2) is

the quality of pronunciation in the speech sample realistic?

The piecewise approach sometimes incorrectly predicted

words, e.g., in Fig. 5 (b) keyboards vs. remotes. We also see

that our approach produces results with more fine-grained

details, e.g., (g) flying vs. skiing, (h) motorcycle is missed

by the baseline. These suggest that our approach is superior

to the baseline in terms of modeling multimodal data.

One limitation of the piecewise approach is the inability

to deal with the domain gap between datasets, e.g., certain

concepts appear in one dataset but not in the other. This

is indeed our case: the vocabularies of the two datasets

overlap by only 26% (COCO has 15,200 words and EMT-

4 has 17,946 words; 6,874 words overlap). This domain

gap issue is reflected in our results: (e) the pronunciation

of ’berries’ and ’grapes’ are incorrect in the baseline re-

sult, and similarly for (c) and (f). These words (berries,
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B@1 B@2 B@3 B@4 WER

CycleGAN [52] 26.2 20.1 11.3 9.2 12.1

Piecewise [54] 68.2 51.9 39.2 30.1 4.1

Ours 69.2 52.1 40.8 29.9 3.9

Table 1. Skip-modal generation results. B@k are BLEU scores.

B@1 B@2 B@3 B@4 CIDEr SPICE

ATT [54] 70.9 53.7 40.2 30.4 – –

SAT [52] 71.8 50.4 35.7 25.0 – –

RFNet [3] 76.4 60.4 46.6 35.8 112.5 20.5

UD [20] 77.2 – – 36.2 113.5 20.3

Ours 74.1 55.2 41.1 30.6 – –

w/ [20] 78.9 63.2 48.1 37.0 116.2 22.4

w/ [3] 79.8 64.0 48.9 37.1 117.8 22.5

Table 2. Image-to-text generation results on COCO.

grapes, birthday, herb) do not appear in the EMT-4 dataset,

which means the text-to-speech model must perform zero-

shot synthesis. This is reflected in Fig. 5 (c, e, f) - see the

yellow words. Our results show superior quality on those

out-of-vocabulary words despite being trained on the same

datasets. To quantify the word expressivity of our model,

we analyzed the vocabulary size of the synthesized speech

using ASR [44]. Our model produced a vocabulary of 2,761

unique words, while the piecewise baseline produced 1,959

unique words; this is 802 more words, a 40% increase over

the baseline.

Finally, we show additional results in Figure 6 where we

synthesize both speech and text from the same image as

an input (speech results are manually transcribed). We see

that the text and speech results are semantically very sim-

ilar in that they describe the same content. This, together

with other results above, suggests the model has learned to

extract a unified abstract representation of multimodal data

because different decoders can reliably synthesize samples

that contain similar content – despite the speech decoder

having never seen the image embeddings during training.

Quantitative evaluation. To evaluate image-to-speech

synthesis results quantitatively, we use a pretrained ASR

model based on WaveNet [44] and compare the text output

with the ground-truth sentence corresponding to an input

image from COCO. We report the results using the BLEU

scores and the word error rate (WER). Table 1 shows our ap-

proach achieving the lowest WER with the highest BLEU

scores (except for BLEU-4).

4.2. CrossModal Generation

To evaluate our approach in an objective manner, we turn

to cross-modal generation where there exist state-of-the-art

approaches and widely used metrics for each task.

Image → Text: We compare with four recent image cap-

WER WER

Policy [57] 5.42 DeepVoice3 [35] 10.8

DeepSpeech2 [1] 5.15 Tacotron [49] 10.6

GateConv [25] 4.80 Tacotron2 [38] 10.5

Seq2Seq [7] 4.01 GST [50] 10.2

Ours 3.88 Ours 10.5

Table 3. Speech-to-text (left) and text-to-speech (right) results.

BLEU-1 / I2T WER / S2T

Ours w/o M 65.2 6.99

Ours M → FC 65.9 6.32

Ours w/o T 68.6 6.01

Ours w/o Ladv 69.8 5.87

Ours 74.1 3.88

Table 4. Ablation results on image-to-text (I2T) and speech-to-

text (S2T), evaluating contributions of different modules including

the memory fusion module (M), the modality transformer (T), the

adversarial loss (Ladv). M → FC means we replace M with two

FC layers to match the number of parameters.

tioning models: ATT [54], SAT [52], RFNet [20], and Up-

Down (UD) [3]. The results are shown in Table 2. Note

that our approach (Ours) uses a 3-layer CNN as the image

encoder while all four baselines use deeper CNNs with pre-

training/finetuning on extra datasets. Specifically, both ATT

and SAT use the GoogleNet [40] which pretrained on Ima-

geNet [10] as the image encoder. Our model, despite using

a much shallower CNN, outperforms ATT and SAT by a

large margin. The other two baselines use even more so-

phisticated image encoders: RFNet [20] combines ResNet-

101 [16], DenseNet [18], Inception-V3/V4/Resnet-V2 [40],

all pretrained on ImageNet [10]. UpDown (UD) [3] uses

a Faster R-CNN [37] with Resnet-101 [16] pretrained on

ImageNet [10] and finetuned on Visual Genome [24] and

COCO [6]. For fair comparisons, we replace the 3-layer

CNN with RFNet (Ours w/ [20]) and UD (Ours w/ [3]).

This improves performance compared to the baselines and

shows the data efficiency of our approach: Because our

model can handle multimodal data effectively, it can lever-

age external data sources even if the modalities do not

match. This helps our model learn more powerful multi-

modal representations from a large variety of data, which is

not possible with the conventional bi-modal models.

Speech → Text: We compare our method with four

ASR models, DeepSpeech2 [1], Seq2Seq [7], Policy Learn-

ing [57], and Gated Convnets [25]. All the models are

trained end-to-end on the LibriSpeech corpus [31]. Par-

ticularly, similar to ours, the Seq2Seq model incorporates

multi-head attention [46] to attend to multiple locations of

the encoded features. For a fair comparison, we fine-tune

our model on the LibriSpeech corpus.

Table 3 shows that our model outperforms the baselines
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Figure 6. Image-to-speech (I2S) and image-to-text (I2T) synthesis results. I2S results are manually transcribed for presentation.

on speech-to-text tasks. Our multimodal information bot-

tleneck is trained on a larger variety of data, which helps

them learn more powerful representations. Also, as the

text modality comes from two unrelated datasets, the cross-

modal reconstruction loss (Eqn. (3)) enforces the model to

solve more challenging optimization problems, which leads

to improved results as seen in our experiments.

Text → Speech: We compare with four text-to-speech

(TTS) models: Tacotron [49], Tacotron 2 [38], Deep-

Voice3 [35], and GST [50]. Tacotron [49] is an RNN-CNN

auto-regressive model trained only on reconstruction loss,

while GST extends it by incorporating information bottle-

neck layers (which they call global style tokens). For both

baselines we used the same Griffin-Lim algorithm [15] as a

vocoder. To evaluate the quality of the synthesized results

quantitatively, we again use a pretrained ASR model based

on WaveNet [44] to compute the Word Error Rate (WER)

for the samples synthesized by each model. Table 3 shows

that all three methods perform similarly. We believe one

limiting factor is in the vocoder and expect to get better re-

sults with deep vocoders such as WaveNet [44].

Ablation Study. We investigate the contribution of the

modality transformer T and the memory fusion module M,

evaluating on image-to-text and speech-to-text tasks.

Table 4 reports BLEU-1 scores for the image-to-text ex-

periments and WER for the speech-to-text experiments. In

both cross-modal generation tasks, the performance drops

significantly when we remove the memory fusion module

M (ours w/o M). This suggests that the M plays the most

significant role in modeling multimodal data. We also re-

place M with two FC layers that have a similar number

of parameters as M. This marginally improved the perfor-

mance (B@1/I2T 65.2 vs. 65.9, WER/S2T 6.99 vs. 6.32).

Our model still outperforms this baseline by a large margin

(74.1 and 3.88). When we remove the modality transformer

T, we also see the performance drop significantly. This

shows the importance of pushing modality-specific embed-

dings into a shared latent space; without this component,

the M must deal with signals coming from three different

modalities, which is a considerably more difficult task. We

also test the contribution of the adversarial loss (Eqn. (1))

that we use to train T. Without this loss term, the per-

formance is similar to that in the setting without T, which

shows the adversarial loss plays a crucial role in training T.

5. Conclusion

We propose a novel generative model for skip-modality

generation. We demonstrate our approach on a challeng-

ing image-to-speech synthesis task where no paired data

is available. Unlike conventional cross-modal generation,

which relies on the availability of paired data, our model

learns the correspondence between image and speech di-

rectly from two unrelated datasets, image-to-text and text-

to-speech, using text as a shared modality. We show promis-

ing results on image-to-speech synthesis, as well as vari-

ous cross-modal generation tasks, suggesting the model also

benefits from increased data efficiency.
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