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Figure 1: Our system performs live 2D wave simulation at interactive rates to capture variation in acoustic effects from arbitrary dynamic

changes in scene geometry. In the above scene, the moving wall shown in red moves from left to right, obstructing the source in the center of

the image. Our system renders the smooth variation in loudness, as seen in the waveform at bottom.

Abstract

We present a technique to model wave-based sound propagation to complement visual animation in fully dynamic scenes. We

employ 2D wave simulation that captures geometry-based diffraction effects such as obstruction, reverberation, and directiv-

ity of perceptually-salient initial sound at the source and listener. We show real-time performance on a single CPU core on

modestly-sized scenes that are nevertheless topologically complex. Our key ideas are to exploit reciprocity and use a perceptual

encoding and rendering framework. These allow the use of low-frequency finite-difference simulations on static scene snapshots.

Our results show plausible audio variation that remains robust to motion and geometry changes. We suggest that wave solvers

can be a practical approach to real-time dynamic acoustics. We share the complete C++ code of our “Planeverb” system.

CCS Concepts

• Computing methodologies → Physical simulation; Virtual reality; • Applied computing → Sound and music computing;

1. Introduction

Immersion in interactive experiences requires sound propagation
rendering that is consistent with visual animation. In game and VR
applications, a typical scene can consist of many sound sources.
Sources close to the listener should be heard clearly, while those
in adjacent rooms or other spaces should be faint, heard redirected
around obstructions or through portals, and with increased rever-
berance. Such effects are important for grounding the player by
conveying events in the world that persist beyond line of sight, sim-
ilar to everyday experience. Unlike visuals, audible sounds do not

cut off abruptly when obstructed, owing to their large wavelength,
instead diffracting (bending) around obstructions and portal edges.
In interactive applications, scenarios are commonplace where high-
order diffraction around numerous scene features is the dominant
mode of direct and indirect energy transport from source to listener.

Interactive sound propagation must thus model diffraction in or-
der to produce a plausible rendering: one that exhibits smooth spa-
tial variation in acoustic effects as many sources, listener, and scene
geometry move, and robustly avoids jarring loudness jumps on vi-
sual (dis-)occlusion. And it must do so in a single CPU core or
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less. These challenges are quite distinct from room acoustics re-
search where using all resources of one or a few machines for a
walk-through rendering is acceptable [Sch11]. Further, the scene
topology is simple: a single hall, with source and listener in line
of sight, or nearly so. Therefore, absence of diffraction does not
prohibit plausible rendering in room acoustics. Rather, it is desired
to boost accuracy [BAA∗19]. With these practical considerations,
ray-tracing methods that start with a diffraction-less geometric ap-
proximation are standard in room acoustics [Vor07]. Our concerns
are in sharp contrast: we require diffraction for plausibility in visu-
ally occluded cases, while trading off accuracy for performance.

Wave field (Eulerian) solvers are thus a natural starting point for
our problem: they model diffraction of all orders while remaining
robust and computationally insensitive to scene or path complexity.

But they are costly, scaling as Dην
η+1
m where D is the scene diame-

ter, η is the number of spatial dimensions, and νm is the maximum
simulated frequency. Precomputed techniques [RS14, RS18] move
expensive simulation to an offline stage (with νm ∼ 500−1000Hz)
which allows fraction-of-a-core CPU usage at runtime, enabling
adoption in games and VR [RTS17,GRSR18]. But dynamic scenes
are ruled out, which is our focus.

Dynamic wave simulation approaches in the past have treated
near-field propagation [WQLJ18], 2D wind instruments [AR15],
and mid-frequency room acoustics [Sav10]. These systems are ei-
ther not real-time or consume an entire GPU, far beyond our bud-
get. Importantly, they directly solve for the complete sound field,
including the signals emitted by sound sources. This requires ex-
pensive full-bandwidth simulations with νm = 22kHz, otherwise
rendered audio lacks high frequencies, sounding muffled. Further,
geometry must be smoothly updated at every solver step to avoid
audible clicks. The required careful numerical treatment increases
solver complexity and incurs large CPU overhead as typical solver
update rate is orders-of-magnitude larger than visual frame rate.

To address these computational challenges, we borrow ideas
from precomputed parametric systems [RS14, RS18, CRG∗20].
Rather than simulating wideband sound fields with immersed dy-
namic geometry, we take static snapshots of the scene config-
uration at interactive rates (10Hz). Each tick, we perform low-
frequency (νm = 275Hz) pulsed simulation using a second-order
finite-difference time-domain (FDTD) solver for the geometry
snapshot. This yields the impulse response for each source, which
is converted to a set of perceptual acoustic parameters that com-
pactly encode acoustic transport properties, independently from
source signals. These parameters are: propagation delay, directivity
of initial sound at source and listener, loudness of initial (direct)
and reflected (indirect) sound, and reverberation decay time.

The parameters for each source are then applied to its radi-
ated signal using a fast multi-source rendering pipeline borrowing
from [RS14, CRG∗20]. In particular, we incorporate source direc-
tivity and perform temporal interpolation of parameters that ensures
artifact-free output on geometry motion. Frequency extrapolation is
performed implicitly by taking parameters computed over limited
bandwidth and applying them over the full audible bandwidth. This
has the effect of applying transport behavior of low frequencies to
high frequencies. While this sacrifices accuracy, it retains fast com-
putation of plausible, smooth output as we show in our results. A

further practical benefit of our parametric approach is that sound
designers can modify the acoustic parameters on the fly to exert
artistic control on simulated output [GGR19].

To afford scalable rendering for many sound sources, we avoid
performing per-source simulation by exploiting acoustic reci-
procity. We show that a single monopole simulation from the lis-
tener location suffices. Extracting listener directivity in a reciprocal
framework requires additional dipole simulations [RS18], which
quadruples simulation cost. We avoid this cost by proposing a fast
technique that performs gradient descent on the simulated time-
delay field. While it cannot model directional reverberation ef-
fects of the dipole approach [RS18], we are able to extract the
perceptually-dominant [LCYG99] direction of initial sound.

Finally, we restrict to 2D, by taking a horizontal slice of the 3D
scene at the current height of the listener’s head. During render-
ing, we perform 2D-to-3D correction for distance attenuation. Al-
though our current system cannot model elevation effects such as
propagation between building floors, many practical scenarios such
as indoor floor-plans and outdoor scenes lend well to our approach.

Overall, we demonstrate the first technique to capture salient 2D
wave-diffraction effects like smooth obstruction and source/listener
directivity on dynamic scenes within a single-core CPU bud-
get. Our results show that wave-based methods, traditionally
thought too expensive for real-time dynamic acoustics, may
in fact be a promising avenue for robust immersive audio
cues in games and VR in the future. A complete C++ imple-
mentation of our system is available as “Project Planeverb”:
https://bit.ly/planeverb.

2. Related Work

We target fully dynamic scenes which places significant constraints
on auralization techniques [Sch11]. Precomputing data structures
such as beam trees [FCE∗98], edge-visibility graphs [SMM14],
or impulse response fields [RS14] accelerates runtime computa-
tion, allowing moving sources and listener, but cannot be applied
to fully dynamic geometry. The computational challenge has moti-
vated heuristic methods in games [NL16].

Room acoustics research extensively employs ray-based geomet-
ric approximation of acoustic transport for providing reverberation
cues. Recent approaches [PASV14] allow reverberation responsive
to dynamic room size. However, our emphasis on obstruction re-
quires diffraction modeling. Robust and fast diffraction modeling in
geometric methods is a challenging open problem [SS15]. A recent
approach to modeling diffraction within geometric acoustics with
some dynamics is presented in [RSR∗18]. Although generality is
suggested, the technique is limited to modeling dynamic but sepa-
rable objects, such as people or cars, whose individual diffraction
response (“kernel”) is pre-computed and composed in real-time via
ray-tracing. The approach requires dynamic objects to be in each
other’s far-field so their diffraction effects may be accounted sep-
arately. For instance, dynamic portals cannot be modeled. Our ap-
proach avoids both the constraint to separable objects and the re-
quirement for pre-computation, instead allowing arbitrary dynamic
changes to the global scene. But our generality comes with the cur-
rent computational limitation to two dimensional simulation.
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source/listener rotations

rasterization parametric encodingSimulation thread (10Hz) scene configuration

Game thread (60Hz) scene geometry source locations listener location

per-source audio multi-source rendereracoustic parametersAudio thread (44100 Hz)

wave simulation

Figure 2: System architecture. Execution flow is shown with blue lines. Acoustic simulation updates at 10Hz, taking scene configuration from

game thread, performing wave simulation to compute acoustic parameters, that are interpolated and rendered in the audio thread. Dashed

lines indicate data sent directly from game thread to audio thread, namely, source and listener locations and rotations.

Real-time wave based approaches in 3D have been proposed but
require significant system resources. [Sav10] demonstrated a wave-
based auralization in 3D that made full use of a GPU, and [SCM18]
demonstrated a wave simulation in 3D that relied on distributed
computing. We assume that only a single core is available for
acoustic simulation. This is representative of a typical game or VR
experience; system resources must be shared with other compute.

In contrast to these approaches, our system meets the real-
time threshold through two optimizations: impulse response
parametrization, and constraining the simulation to 2D. Two-
dimensional wave simulations have been used as proxy for 3D sim-
ulations to reduce computational cost [KVS06, OM14], but for of-
fline room acoustic analysis rather than real-time dynamic acous-
tics we consider. Real-time 2D simulations have been applied to
synthesis of wind instrument sounds [AR15] and speech [ZVA∗16]
but require full-bandwidth simulations consuming a full GPU.

3. System Architecture

Our system architecture is sketched in Fig. 2. The acoustics system
(middle row) runs in a background thread allocated to a single core
that is constantly looping. In each iteration, it accesses the game
thread to collect the scene configuration: current scene geometry,
source locations, and listener head location. In our implementation,
geometry is represented with axis-aligned bounding boxes. This is
done as a practical expedient rather than being a fundamental limi-
tation of our technique. For instance, one could in principle use the
object collision volumes, or even visual meshes if the copying from
game to simulation thread does not get prohibitive.

The geometry is then rasterized onto a 2D slice of the scene
whose height is at the listener’s head. Each occupied cell is filled
with the corresponding material’s wide-band pressure reflectivity.
The grid resolution is determined by the solver, as described later.
The grid dimensions are fixed at 25x25m in our tests as that spans
our test scenes and allows the simulation thread to update at a mean
update rate of 10Hz on a single core. For handling larger scenes,
our implementation could be easily changed to move the simulation
domain horizontally as well to keep the listener at its center. This
would come at negligible additional cost. We note that although we
restrict to one core for the intended application, we have observed
close to linear scaling up to 8 cores.

The next steps are described in the following sections. As de-
tailed in Section 4, acoustic simulation is performed from the lis-

tener on the grid. Then, perceptual acoustic parameters are ex-
tracted from the wave field at each source location, discussed in
Section 5. The updated parameters are sent to the audio thread for
rendering which additionally incorporates the current source and
listener rotations, detailed in Section 6.

Latency Note that our architecture ensures that the audio system
latency is unaffected by acoustic simulation, as the audio thread
operates as usual without blocking on the simulation. For exam-
ple, audio-visual lip synchronization of a speaking character will
be maintained. Rather, the response of propagation effects, such as
loudness variation from moving geometry, will have a latency of
about 100ms as that is how long it takes us to update each source’s
acoustic parameters. This is quite close to the perceptual threshold
of 70ms for noticing latency in acoustic effects [BSM∗04].

4. Wave simulation

We solve the wave equation as a coupled first-order system relating
pressure p(x, t) and normalized particle velocity v(x, t):

∂p

∂t
+ c∇·~v = 0 (1)

∂~v

∂t
+ c∇p = 0, (2)

where c = 343m/s is the speed of sound. We normalize so that~v =
ρc~u where~u is the physical particle velocity, and ρ= 1.2041Kg/m3

is the mean density of air. This brings ~v into the same scale-space
as p: for a plane wave |p|= |~v|.

We solve using a rectilinear finite-difference time-domain
(FDTD) scheme in two dimensions. At each solver invocation, the
simulation thread provides the solver with a 2D occupancy grid
at the listener’s head height on which the solver operates. Each
grid cell contains the tuple {p,~v,β,R}. Yee’s staggered grid is em-
ployed: p samples the cell’s center, vx its left edge (smaller X),
and vy its bottom edge (smaller Y). Only the pressure and velocity
update each time-step, as the world geometry is held static during
simulation. Following [AR15], β is an indicator function which is 1
if the cell is open and 0 if occupied. Lastly, R is the acoustic reflec-
tivity of the cell. It is 0 for air and at open boundaries at the edges
of the simulated domain.

4.1. Discretization and performance

The key free parameter in our approach to control accuracy-
performance trade-off is the maximum modeled frequency νm. The
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practical question is whether it can be made high enough for plausi-
ble results, while being low enough to allow real-time performance.
The minimum modeled wavelength is then λm = c/νm. The spatial
discretization cell size is then determined as: ∆x = λm/s where s is
the number of spatial samples per smallest wavelength, or, “points
per wavelength” with Nyquist limit at s = 2. In practice this value
needs to be larger. FDTD schemes exhibit dispersion as the primary
numerical error. The practical impact is that pulse responses con-
tain significant ringing, which can be conflated with reverberation.
Values of s = 4−8 are common for accurate simulation. We use a
slightly smaller value of s = 3.5 as it was found to produce similar
encoded output as larger values but at a significant acceleration.

Finally, being an explicit scheme, the time-step must be deter-
mined as ∆t = C∆x/c, where the CFL criterion: C < 1/

√
2 in two

dimensions provides an upper bound on ∆t to ensure stability. In
practice, including boundary handling, we found our solver imple-
mentation required only a slightly smaller value of C = 1/1.5. In all
our tests, we set νm = 275Hz, which results in cell size ∆x = 0.36m
and update rate 1/∆t = 1443.75Hz. The frequency was determined
as follows. We first fixed domain size as D = 25m, to ensure par-
ticipating geometry in a modestly sized region around the player
is represented. We then tuned νm so that computational time was
limited to ∼100ms. An important consideration was also that the
resulting cell size should be small enough to resolve typical scene
features like obstructions and portals. Reducing νm much further
resulted in unconvincing results due to cells becoming too large.

Simulation duration is determined based on the required dura-
tion of impulse response for extracting decay time as discussed
later. A duration of 0.25s was found sufficient in practice to give
converged estimates in our tests. Accounting for propagation de-
lay to the corners of the domain, we set the simulated duration as:
Tsim = 0.25+D/(

√
2c).

Source pulse To compute a band-limited impulse response field,
we introduce a Gaussian pulse at the grid cell occupied by the lis-
tener as a “soft” source by adding the following to the cell pressure
at each time-step:

Ps(t) = as exp[−(t −2σ)2/σ2], σ = 2/(πνm) (3)

This results in a wideband Gaussian magnitude spectrum with peak
at 0Hz, falling off smoothly to -35dB at νm. Smaller values of σ

were also tested, but resulted in stronger high-frequency content be-
yond νm which caused significant dispersion errors. The amplitude
as is fixed empirically to ensure initial wavefront energy EDS = 1
(defined in Section 5.2) at a distance of 1m in free field.

4.2. Update equations

The solver’s discrete update equations are:

p
+ = β

(

p−C∇̃ ·~v
)

v
+
x = ββ<(vx −C∇̃x p

+)+(β<−β)(βY<+β<Y )(βp
++β<p

+
<)

v
+
y = ββ∨(vy −C∇̃y p

+)+(β∨−β)(βY∨+β∨Y )(βp
++β∨p

+
∨)

(4)

where ∗+ denotes updated values for next time-step, the spatial po-
sition, ~x is suppressed, the subscripts {<,∨} denote accessing the
corresponding field at locations {(x − ∆x,y),(x,y − ∆y)} respec-
tively. Numerical gradient is denoted by ∇̃, using backward finite

difference so that ∇̃x(p+) = p+ − p+<. Numerical divergence us-
ing forward finite difference is denoted ‘∇̃·’. The indicator func-
tion β and relative acoustic admittance Y are sampled at cell cen-
ters providing all necessary geometric information. For an air cell,
β = 1,Y = 1. For a solid cell, β = 0, Y = (1−R)/(1+R) where R

is the pressure reflectivity of the material [Kut00]. We use R = 0.97
corresponding to rough concrete in all our test examples.

We simplify the fast, branch-free method of [AR15], observing
that β∈ {0,1} without intermediate values in our case, as geometry
is held fixed during every solver run. Equation 4 reduces to the
standard FDTD update equations for air cells and approximates the
impedance boundary condition~v =−Y pn̂ otherwise, where n̂ is the
(axis-aligned) surface normal pointing from surface into domain.
To see this, first observe that the pressure update reduces to the
usual FDTD update for air (β = 1) while inside solids it sets p+ = 0
(any value can be set without affecting results). Next, consider vx.
Velocities are sampled on cell edges so one must account for the
two cells sharing the edge, and consider all four combinations of
air and solid. If both are air, the first FDTD update term is in effect,
as desired. The second term handles all other cases. If both cells are
solid, we safely set vx = 0. That leaves the two boundary cases. The
first factor of (β< − β) accounts for normal direction, the second
selects the admittance of the solid cell, and the last factor selects
pressure in the air cell. Similar holds for vy.

5. Parametric Encoding

The simulation outputs a wave field {p(~x, t),~v(~x, t)} that we then
encode in terms of perceptual parameters. Due to our use of reci-
procity, the field represents the response at the listener at ~xl due
to any possible source location, ~x. The game thread provides a list
of current source locations {~xi} that are projected onto the sim-
ulation grid plane. The following describes the encoding process
for each of these source locations. Our current implementation per-
forms this encoding for the entire wave field. However, as will be
seen shortly, in principle only the propagation delay field is re-
quired for extracting listener directivity. The remaining parameters
could be extracted only at the source locations, {~xi}. For notational
convenience, we use continous time below, actual operations are
performed on band-limited signals sampled at the solver time-step
with integrals implemented with rectangular quadrature.

5.1. Propagation delay, τ

The propagation delay τ(~xi) is the time in seconds at which the
first wavefront arrives at the listener from source at ~xi. In the fol-
lowing, the source position ~xi is assumed unless noted otherwise.
Numerical noise in FDTD travels faster than sound, so propagation
delay estimation must discriminate between numerical noise and a
(possibly highly attenuated) first wavefront. Following [RS14], for
a measured pressure function p(t) at the source location (due to
reciprocity) we found a simple threshold detector sufficed:

τ = argmin
t

(

10log10 p
2(t)> Gτ

)

(5)

We use Gτ = −110 dB. More robust detectors can be easily substi-
tuted if required, such as in [RS18].

5.2. Direct sound energy, EDS

While we use the term ‘direct sound’ as it is common in room
acoustics, it is better understood as the first-arriving sound, which
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Figure 3: Run-time signal processing. We borrow the scalable multi-source rendering from [RS14] via “canonical filters” for reverberation,

and model source directivity on direct sound as in [CRG∗20].

may arrive attenuated by a diffracted path. We estimate in a fixed
window after first arrival:

EDS =
∫ τDS

τ
p

2(t) dt, (6)

with τDS = τ+10ms. This integration interval is based on the best-
case echo fusion threshold for human listening [LCYG99].

5.3. Reflections energy, ERS

As with EDS we use a fixed window:

ERS =
∫ τRS

τDS

p
2(t) dt, (7)

τRS = τDS +80ms, a typical value from room acoustics [Gad07].

5.4. Decay time, T60

We estimate the reverberation decay time, T60 using linear regres-
sion on the log-backward Schroeder integral [Sch65]:

l(t) = 10log10

∫ Tsim

t
p

2(t′) dt
′ (8)

In practice l(t) can be evaluated efficiently by accumulating back-
to-front in the pressure array sampling p(t). Linear regression is
performed on the restricted signal l(t), t ∈ (τDS,Tsim − 10ms). Re-
call that Tsim is the duration of the simulated impulse response. We
discard the last 10ms of the integral which dips towards −∞, and
also remove the direct peak.

5.5. Arrival direction, ~LA

Recall that using reciprocity, the pulse is emitted from the lis-
tener location, ~xl . Having first calculated the propagation delay
field τ(~x), we start at the source location ~xi and perform gradient
descent on propagation delay by following the eikonal, −∇τ(~x).
The descent terminates when the current cell, ~xe, has line-of-sight
to the listener: cτ(~xe)− dlos < 0.3λm, where the line-of-sight dis-
tance, dlos = |~xe −~xl |. Recall that λm is the shortest modeled wave-
length. The arrival direction at the listener is then calculated as:
~LA = (~xe − ~xl)/dlos. Terminating descent on line-of-sight saves
compute, especially for unoccluded sources. It also allows fast
descent that only hops to a cell’s immediate neighbors based on

largest component of the gradient rather than following the true
gradient direction which can go off-grid, requiring interpolation.
We employ the former, showing that it works well in practice.

5.6. Radiation direction, ~LR

The shortest path leaves the source in a radiation direction before
arriving at listener. We borrow the technique from [CRG∗20]. Due
to reciprocity, ~LR can be estimated as opposite to the direction from
which the first wavefront radiating from the listener during simula-
tion arrives at the source location, ~xi. The wavefront direction can
be estimated using energy flux density. Thus,

~LR =−
~IR

‖~IR‖
, ~IR =

∫ τR

τ
p~v, τR = τ+5ms. (9)

6. Rendering

Figure 3 shows the signal flow of our rendering system. Each sound
source’s processing is split into rendering its direct and reflected
sound which are summed at the end.

6.1. Parameter conversion

The dynamically computed acoustic parameters EDS, ERS, ~LR, ~LA,
and T60 capturing acoustic transfer from the source to listener are
first used to derive intermediate signal processing parameters g, f ,
s, and T as defined below.

Obstruction gain, g is computed from the direct sound energy
EDS as:

g = max
(

√

rEDS, Dg

)

(10)

where r is the Euclidean distance between source and listener and
Dg is a threshold to prevent totally occluded sources from being
unheard. We use a value of Dg = 0.0316 (−30dB). This compen-
sates for a deficiency of 2D wave simulation: in outdoor scenes,
paths going over walls aren’t captured at all. At the same time Dg

is conservatively small, so that the results remain reasonable in in-
door scenes. Multiplying by r removes the 1/r energy attenuation
of 2D propagation. As a result, this gain captures the energy atten-
uation due to presence of geometry, and g = 1 throughout space in
the absence of geometry.
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(a) (b) (c)

Figure 4: Top views of evaluation scenes with arrows marking sound source directions: (a) Static walls with portal (b) Four static walls with

dynamic segment (in red) (c) Game scene with dynamic door.

Reflections gain, f is computed from reflections energy ERS as:

f =
√

ERS. (11)

In some cases, especially with small spaces, f can be quite large
with our 2D simulation, with unrealistic reverberance: in two di-
mensions, reverberant energy is unable to travel vertically to reflect
from a high ceiling, or escape entirely to the sky in outdoor scenes.
Investigating accurate scene-dependent 2D-to-3D correction for re-
verberation, perhaps parameterized on the ceiling’s height and re-
flectivity (with 0 “ceiling” reflectivity outdoors) is an important av-
enue for future work.

The gains g and f are linearly interpolated over a 10.6 ms win-
dow (512 samples at a 48 kHz sampling rate) to scale the source’s
signal, yielding smooth renderings in our tests.

Source radiation direction, ~LR is then used to sample a source
radiation pattern to compute a broadband source radiation gain s. In
the general case this radiation pattern can be specified by a designer
or drawn from measurements or simulations of radiation objects;
for this work we use a cardioid pattern:

s =
1

2

(

1+ ~LR · ~LS

)

(12)

where LS is the forward pointing vector of the source provided by
the game thread. General frequency-dependent radiation patterns
could be straightforwardly included in our approach by a combina-
tion of lookup tables and fast equalization filters as in [CRG∗20].

Rendered decay time, T is computed from physical decay time,
T60 by clamping to the bounds of the reverberation bank described
in Section 6.3 as:

T = min(max(T60,T0),Tmax) (13)

with [T0,Tmax] spanning the bank’s decay times.

Design control could be exercised at this stage by performing
in-place transformations that modify g, f , and T , as described
in [GGR19]. Such aesthetic control can have significant importance
in practical applications like games and can also help mitigate some
of the issues with 2D simulation discussed above.

6.2. Direct sound rendering

As illustrated at the top of Fig. 3, having removed the effect of 2D
free-field decay in computing g, we now apply 3D free-field am-
plitude decay as gain gr = 1/r, then we apply source directivity
gain, s and obstruction gain, g. The resulting signal is then spatial-
ized with Vector Base Amplitude Panning (VBAP, [Pul01]) in the
world direction ~LA incorporating the current head rotation of the
player. HRTF (head-related transfer function) based binaural ren-
dering could also be easily employed instead. This processing is
repeated for each sound source.

6.3. Reflections rendering

To render reflections and reverberation, we borrow the scalable
multi-source rendering method from [RS14] which avoids expen-
sive per-source convolutions. In this method, a fixed bank of re-
verberation (“canonical”) filters is shared across sources, with in-
creasing decay times, {Ti}. Each filter is scaled such that the early
portion of the impulse response (of duration τRS − τDS = 80ms in
our case) has unit energy.

The source signal is scaled by two gains {α j,α j+1} and mixed
into the input of two of the filters whose decay times immediately
bracket the dynamic decay time for the source T , i.e., Tj ≤ T ≤
Tj+1. The filter mix gains are computed as [RS14]:

α j = f
10−3t∗/Tj+1 −10−3t∗/T

10−3t∗/Tj+1 −10−3t∗/Tj
(14)

α j+1 = f −α j (15)

with matching parameter t∗ = 100ms.

Final mix: The stereo output from all reverberation filters is
summed, which is then added to the per-source spatialized stereo
output from direct sound processing. This produces the final sig-
nals played over headphones.

7. Results

7.1. Performance

Our system was implemented in C++ with simulation running on a
single thread. For all evaluations we used a D = 25m simulation re-
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gion with maximum frequency νm = 275Hz and resulting cell size
∆x = 0.36m. The simulation and encoding time bench-marked on a
high end desktop CPU core was below 100ms. Simulation cost was
∼65% of the compute time, with the rest spent in parameter extrac-
tion. Geometry rasterization cost was negligible because of our use
of axis-aligned box representation of geometry - with triangulated
geometry or k-dop collision volumes, this can be expected to in-
crease. But simulation cost is insensitive to geometric complexity,
an important trait of the branch-free and uniform per-cell cost of
our FDTD update in (4).

7.2. Walk-throughs

We integrated our proposed system into the Unity game engine
(http://www.unity3d.com). We constructed three scenes in
Unity, shown in Figure 4, and recorded walk-throughs. Please con-
sult the supplementary video to view results that are discussed in
the following.

Static walls with portal. The first scene, shown in Figure 4(a),
comprises a single sound source and a wall with a portal. This
case shows two effects. Firstly, as the listener walks away from
the source past the portal, diffracted obstruction results in a smooth
change in loudness, with sound direction shifting towards the door.
A simple ray-based occlusion query would result in odd jumps in
loudness when the source became obstructed. Secondly, notice that
the loudness change on obstruction is plausibly synchronized in
time with listener motion, showing that the end-to-end latency of
our system is tolerable.

Moving obstruction. The second scene, shown in Figure 4(b),
adds complexity with a moving obstruction between the source and
listener. Live wave simulation affords the necessary diffraction ef-
fects to produce smooth results. Also note that when the source is
obstructed, reverberated sound is still heard from the surrounding
walls as expected. We then demonstrate source directivity with a
rotating source, with the initial sound loudness depending both on
the pose of the source relative to the listener, and the position of the
obstruction. Even though a simple scene, such real-time directional,
diffraction-based effects for dynamic general scenes have not been
possible before.

Game scene: multi-source, dynamic portal. The third scene,
shown in Figure 4(c), reflects part of a typical game scene, with
static and dynamic scene elements showing multiple sound sources:
torches, a boombox, and speech. As the boombox is rotated, its di-
rectivity is clearly audible. Next the player picks dynamic geome-
try (a box) and we show dynamic obstruction from it as the player
crouches and jumps on top of the box. This results from our use of
a horizontal slice through player head height. When the slice inter-
cepts the box, waves propagate in 2D around the box cross section,
rendering obstruction. When the player jumps onto the box, the
slice does not contain a box, and the source location as projected
onto the simulation plane has line of sight to the player’s head.
Near-hit or miss of geometry sliced by the listener plane can be a
practical issue but in our tests we didn’t note any perceptually jar-
ring difficulties. We believe 3D simulation in a few-meter vertical
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Figure 5: Direct sound energy EDS and reflections energy ERS for a

source and listener in the scene in Figure 4(c). A portal separating

the source and listener shrinks and enlarges. The corresponding

rendered gains {g, f} employ linear interpolation over audio sam-

ples to result in smooth renderings.

span around the player’s head could be a practical approach in the
future to avoid such issues if they arise.

We then show the effect of a dynamic portal that causes smooth
loudness changes. Figure 5 shows the direct sound energy EDS and
reflections energy ERS for the source in the upper left of Figure 4
and listener location at the circle, just on the opposite side of the
dynamic wall from the source. The energy levels are shown as a
function of time while the portal opens and closes according to
a scripted action. The energy curves show stair-stepping because
we simulate on static snapshots of geometry at 10Hz and also due
to the discrete simulation grid. Because the corresponding gains,
{g, f} are linearly interpolated over audio sample rates, the result-
ing rendering is smooth in our tests. This illustrates the essence of
our approach: rather than expensive modeling of geometry chang-
ing at audio rates within a live solver, we do fast simulations on
static geometry snapshots at visual rates with the resulting param-
eters interpolated at audio rates. Because the motion of geometry
is reasonably well-sampled at 10Hz, interpolating the resulting pa-
rameters yields natural results with audio-visual synchronization,
as can be heard in the supplementary video.

8. Conclusion

We have demonstrated the first technique to capture wave-
diffraction effects like smooth obstruction and source and listener
directivity on general dynamic scenes within a single-core CPU
budget. By leveraging reciprocity, using perceptual parametriza-
tion, and constraining the wave simulation to 2D, our method scales
to many sound sources while supporting integration into standard
audio DSP and designer tools. Our results show that wave-based
methods, traditionally thought too expensive for real-time dynamic
acoustics, can in fact be a promising avenue for robust immersive
audio cues in games and VR.

Much remains to be done. As discussed in Section 6.1, 2D-to-3D
correction for reflections and reverberation is an important area for
future improvement. Optimizations could provide computational
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headroom for progressing beyond 2D, such as 2.5D simulation in
a constrained height around the listener, or even a full 3D simula-
tion. By our estimate, code optimizations such as vectorization and
restricting encoding to source locations could significantly accel-
erate our current implementation by 5 times or more. Investigating
existing fast wave solvers [RNL09] or inventing new ones tailored
for dynamic scenes also offer an exciting avenue. Finally, although
we restricted to a single CPU core, using a small fraction of a GPU
is another possible approach to practicability.

As game engines move towards increasingly dynamic worlds,
we hope that our results and code motivate others to pursue wave
solvers for real-time dynamic acoustic simulation.
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