
TileCode: Creation of Video Games on Gaming Handhelds

Thomas Ball, Shannon Kao, Richard Knoll, Daryl Zuniga
Microsoft

Redmond, USA
{tball, shakao, riknoll, dazuniga}@microsoft.com

ABSTRACT
We present TileCode, a video game creation environment that
runs on battery-powered microcontroller-based gaming hand-
helds. Our work is motivated by the popularity of retro video
games, the availability of low-cost gaming handhelds loaded
with many such games, and the concomitant lack of a means
to create games on the same handhelds. With TileCode, we
seek to close the gap between the consumers and creators of
video games and to motivate more individuals to participate
in the design and creation of their own games. The TileCode
programming model is based on tile maps and provides a vi-
sual means for specifying the context around a sprite, how a
sprite should move based on that context, and what should
happen upon sprite collisions. We demonstrate that a variety
of popular video games can be programmed with TileCode us-
ing 10-15 visual rules and compare/contrast with block-based
versions of the same games implemented using MakeCode
Arcade.

Author Keywords
gaming handhelds, video games, visual programming, cellular
automata

CCS Concepts
•Software and its engineering → Visual languages;
•Human-centered computing → Human computer inter-
action (HCI);

INTRODUCTION
Most video game development environments require access
to a tablet, laptop or desktop machine, often with an Internet
connection, putting game development out of reach for those
who cannot afford such devices or don’t have Internet connec-
tivity. On the other hand, a search for “gaming handhelds” on
Amazon reveals a huge variety of low-cost gaming handhelds
that come loaded with hundreds of retro video games.

Furthermore, for those wishing to create their own games,
the conceptual gap between the idea for a video game and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’20, October 20–23, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7514-6/20/10 ...$15.00.
http://dx.doi.org/10.1145/3379337.3415839

Figure 1. Screen snapshot of “Boulder Dash” game (written using
TileCode) in the web-based MakeCode Arcade game machine simula-
tor; underneath the simulator are the backgrounds (Wall, Dirt, Space)
and sprites (Player, Boulder, Diamond, Enemy) in the game.

its realization via a computer is non-trivial. While game me-
chanics, the desired interactions among video game elements,
can be described informally and succinctly (“a boulder falls
if there is space below it”), encoding a game’s mechanics for
a computer to execute may require mastering various con-
cepts, ranging from coordinate systems and game sprites to
the syntax/semantics of a programming language. Web-based
programming environments such as Scratch [23] and Make-
Code Arcade [6] use block-based editors [9] to simplify game
programming, but still introduce a large number of concepts.
These environments also require a computer with a modern
web browser and Internet connectivity.

Our main goal is to enable the process of game creation to
take place on low-cost gaming handhelds themselves, rather
than tablets/laptops/desktops. A secondary goal is to reduce
the gap between game mechanics and game programming so
more people can participate in game creation.

(a)

(b)
Figure 2. (a) Screen snapshot of the TileCode game creation environ-
ment with a “When-Do” rule for a boulder at rest to start moving down;
(b) TC running on a MakeCode Arcade-compatible gaming handheld.

Towards this end, we have designed and developed a restricted
and visual game programming model with a supporting game
creation environment called TileCode (TW). TC games and
its game creation environment both are based on tile maps,
a foundation of many retro video games, and can run on a
variety of low-cost microcontroller-based game handhelds.

A TC game has a set of sprites (such as the player, boulder,
and diamond shown in Figure 1); each sprite is centered on
a tile and each tile displays a background image. A sprite
can move in one of four directions (left, right, up, down) to
an adjacent tile. The TC game creation environment itself is
implemented using tile maps as well: all editing takes place
via a cursor moved with the 4-way directional pad (dpad) of
the device.

A TC program is a set of rules, each of which is associated
with a sprite kind (such as player or boulder). A rule takes the
form of a “When-Do” pair, as illustrated in Figure 2(a). The
When section visually describes a pattern/predicate over the
3x3 local neighborhood around the central sprite (a boulder,
in this case) to be matched against the tile map. The top row
of the figure shows that the tile below the boulder should have
the grey-blob (space) background and not contain any sprite.
When this pattern matches on the tile map, then the boulder
is sent a move down command, as shown in the Do section.
This rule does not match on the tile map from Figure 1, but
will match once the player sprite moves out from under the
boulder. Other rules can specify what happens when buttons
of the game handheld are pressed, or when sprites collide.

As in cellular automata [25], TC rules operate in parallel on the
sprites on the tile map: the 3x3 predicate of the When section

determines whether or not a rule applies to a sprite (note that
multiple rules can apply to the same sprite). The result of
a rule execution is to send commands to the sprite/tiles at
the center of the 3x3 neighborhood or adjacent to the center
(unlike cellular automata, which only updates the center tile).
As multiple commands can be sent to a sprite/tile, conflicting
commands are resolved automatically, which may result in
non-deterministic/random behavior (for example, if one rule
commands a sprite to move left and another commands it to
move right).

TC is implemented on top of MakeCode Arcade, a web-based
game creation environment for retro arcade games (160x120
pixel screen with 16 colors) that can run in the web browser or
on a variety of microcontroller-based gaming handhelds [26].
Figure 2(b) shows such a handheld displaying TC’s load
screen. MakeCode Arcade supports both block-based and
TypeScript-based programming [2] (TC is implemented in
TypeScript). The code of TC and all the games described here
are open source (see https://github.com/microsoft/tilecode).

The main contributions of our work are:

• the design and implementation of TC, a game creation envi-
ronment that runs on battery-powered gaming handhelds;

• a restricted programming model with a mapping to a visual
editing experience that closely matches the domain of tile-
based games;

• implementations of a variety of well-known games (Boulder
Dash, Snake, Bejeweled) in TC, using just 10-15 rules each;

• a comparison with block-based versions of the games im-
plemented in MakeCode Arcade.

Our evaluation shows that the ability to pattern match against
multiple tiles/sprites and to refer to the direction of a sprite’s
last movement is key to enabling more games to be written in
a succinct fashion and without the explicit use of loops and
arrays.

RELATED WORK

Turtles, Automata, and Objects
The Kara programming environment [10] introduces students
to turtle-style programming (ala Papert [18] and Pattis [19])
in a tile-based world, one of many examples of the sort. Kara
is a programmable ladybug that can sense local conditions
and respond by executing primitive actions, like TC. Kara
allows the user to structure their program using finite-state
automata/machines with user-defined states; TC lacks such a
capability, so we instead encode needed states in the tile map
(see the TC encoding of the Bejeweled game), but has more
powerful pattern matching capability.

Moving beyond finite-state automata, environments such as
Playground [8] and Alice [4, 12] use object-oriented or agent-
based paradigms for novice programming of interactive anima-
tions. TC’s programming model is not object-oriented, though
a single TC rule can match and act upon multiple sprites, a
restrictive form of multiple dispatch [16].

https://github.com/microsoft/tilecode

Novice Game Programming
Our work is heavily inspired by the Kodu Game Lab [29], an
introductory game making environment situated inside a 3D
world of programmable objects that feature robot-like sensors
and actuators. As Kodu objects operate in an environment of
continuous motion, much like that of robotics, the language is
extremely high level and inherently ambiguous. TC shares the
“When-Do” programming paradigm of Kodu, but departs in a
number of ways: TC operates in a discrete 2D world of tiles,
sprites, four directions, and focuses on retro video games.

There are many systems, in addition to Kodu, to help novices
create their own games. Minecraft is a popular example where
“redstone” blocks in the world can be laid out to create logic
circuits (in fact, complete computers have been built inside
Minecraft worlds using redstone). [22] Super Mario Maker is
a side-scrolling platform game that allows the user to create
their own game levels within the application [13], but the game
mechanics are fixed.

The Scratch [23], Stencyl [14], and MakeCode Arcade [6]
environments use the Blockly [9] framework to build games
by programming with structured control-flow; while Blockly
helps to prevent syntax errors, there still is a large concep-
tual/visual gap between the block-based program and the game
world. TC is based instead on pattern matching against the
tile map, rather than control-flow, as the primary program
structuring mechanism.

The “program by demonstration” model of novice simula-
tion/game programming was introduced in AgentSheets [20,
21], and then championed by Cypher, Smith and colleagues
in their KidSim [5, 27] and StageCraft Creator [28] systems.
In these systems, the user demonstrates how a sprite should
move/change in a local context. A graphical rewrite rule is the
result of the demonstration, expressed in terms of “before” and
“after” pictures. BlockStudio [3] is a newer demonstration en-
vironment for children to create games and animations, in the
model of KidSim. TC rules are not graphical rewrite rules, but
a form of guarded command [7]; the When predicate (guard)
corresponds to the “before” picture of a graphical rewrite rule,
while the Do section is a set of explicit commands.

ToonTalk is based on concurrent constraint programming, a
fully general programming model [11]. While TC does permit
rules to fire concurrently, it has a domain-specific way to
resolve conflicts arising from concurrency.

Game Modeling Languages
The Video Game Description Language (VGDL) [24, 17] pro-
vides a high-level way to describe many common video arcade
games, for the purpose of conducting research on learning
and planning algorithms. VGDL contains a set of classes for
common types of sprite motion found in games, based on an
underlying ontology of video games. The user programs a
game by choosing among the motion classes and specifying
an action to execute when sprites collide with one another.

In contrast, TC is based on a set of lower-level primitives to
encourage exploration of new game mechanics. For example,
in TC it is possible to program the logic for a boulder tumbling
off of another boulder (as shown in Figure 4 and discussed

later); this behavior is not found in the VGDL implementation
of Boulder Dash. The user would have to extend the VGDL
runtime itself, written in Python, to provide a new primitive
for this behavior. The Snake and Bejeweled games, discussed
in the evaluation section, are not expressible in VGDL without
substantial coding in Python.

Mek [30] is a language and prototyping tool for 2D turn-
and tile-based deterministic games that also uses visual rules
as its primary structuring mechanism. Mek has no concept
of a sprite moving in a direction - rather all game state and
commands are based on changing a tile’s background color.
While the system can be used to prototype game mechanics, it
cannot produce playable games, as TC can.

Retro Game Creation Environments
PICO-8 [1] is a retro game engine supported by a virtual
machine that supports a 128x128 pixel screen with 16 colors,
much like MakeCode Arcade. PICO-8’s goal is to provide
a “fantasy console”, which is like a gaming handheld but
“without the inconvenience of actual hardware”. The PICO-8
programming environment is available for MacOS, Windows
and Linux and supports a text-based Lua code editor. The TC
programming environment is much more restricted than that
of the PICO-8, as it was designed to run on gaming handhelds
rather than desktops.

OVERVIEW OF TileCode APPLICATION
Bob purchases a gaming handheld for his daughter Alice.
To her surprise, in addition to the set of built-in games, the
handheld comes loaded with TC, which allows modification
of the built-in games, as well as creation of new games.

From the load screen of TC (Figure 3(a)), Alice can select a
game from one of eight slots. She moves the square-shaped
cursor between adjacent tiles using the dpad of the handheld,
selects a tile using the A button to perform an action, and
presses the B button to return to the menu of the current screen
or to the previous screen.

As shown in Figure 3(a), Alice has selected the game in slot 1
(Boulder Dash), which brings up the game’s home screen of
Figure 3(b). The home screen has a menu bar and displays the
four kinds of backgrounds and four kinds of sprites. Selecting
a background or sprite opens a gallery of images that Alice
may select from, not shown here. The green play button on the
menu bar allows Alice to play the game, as shown in Figure 1.

The first item on the menu bar is the red map icon—Alice
selects it to open the tile map editor, shown in Figure 3(c). She
selects the player sprite from the menu bar and moves to the
tile map (of reduced 8x8 tiles) to place the sprite. Alice returns
to the game home screen and selects the paint icon (to the right
of the map icon) to bring up the bitmap editor (Figure 3(d)),
which she uses to color the player sprite’s eyes green. Game
assets are saved automatically in the non-volatile flash of the
handheld on each transition between screens.

From the game home screen, Alice now selects the coding
icon (to the right of the paint icon), which brings her to the rule
selector screen (Figure 3(e)). Alice selects the boulder sprite
to see what rules already exist for the boulder. The rules are

(a) (b) (c)

(d) (e) (f)
Figure 3. TileCode screens: (a) load screen; (b) game home screen; (c) tile map editor; (d) bitmap editor; (e) rule selector; (f) rule editor.

Figure 4. Rule for a boulder to fall off another boulder to the left, pro-
vided there is space available. The numbers show the correspondence
between the rows of the Do section and the tiles of the When section.

summarized in four quadrants: upper-left–there is a change
to a sprite’s 3x3 neighborhood; upper-right–button press
event (A, dpad-left, dpad-right, dpad-up, dpad-down); lower-
left–collision (smash) of sprite into a tile/sprite; lower-right:
miscellaneous events. The highlighted squares represent the
rules with code.

Alice sees that there are rules in the upper-left and lower-left
quadrants of the screen. She decides to investigate the rule for
a boulder at rest, and selects that tile (lower-left tile of upper-
left quadrant), which brings up the rule editor (Figure 3(f)).
The menu bar of the rule editor provides quick access to the
map editor and game play. The blue arrow on the far right of
the menu indicates there are other rules for the boulder.

Alice knows that the original version of Boulder Dash allows
boulders to tumble off of other boulders when there is space to
the side of the boulders, but finds no such rule for this behavior.

Using the rule editor, as shown in Figure 4, she creates a new
rule in which the “When” section has a resting boulder under
the central boulder and empty space to the left of both boulders;
the central boulder is sent a move left command.

PROGRAMMING MODEL
The TC programming model has a small set of concepts and
primitives, from which a host of different behaviors can be
described using a visual rule-based paradigm. This section
focuses on the core aspects of the programming model and its
visual representation. The next section describes the editing
experience.

Game State and Rounds
The basic atoms of TC are tiles and sprites that are located on
a grid coordinate system. A tile must contain a background im-
age and may contain any number of sprites. As we saw before,
there are four kinds of background images and four kinds of
sprites in TC (the implementation actually can accommodate
up to 16 kinds of backgrounds and 16 kinds of sprites). The
tile map and the set of sprites make up the entirety of the TC
game state. The game screen can only display a 10-by-7 area
of the tile map, so the tile map scrolls during game play to
follow the player’s avatar (by default, the first sprite kind).

A TC game proceeds in rounds: a round executes rules in
parallel on the current state to determine if the game should
proceed/end, the direction that each sprite should next take,
which sprites should be spawned/destroyed, and the actions
that should be taken upon a pending collision. After a round,
the movements/actions are executed by the underlying game
engine to update the state (all sprites move synchronously and

at the same speed). A sprite stores the direction (left, right, up,
down) it moved in the last round (or if it remained at rest), for
inspection by the rules in the next round.

Game Rules and Events
As already seen, a TC rule is formed by a pair of a When
predicate and Do commands. Rules fire in parallel on the
current game state and set of events (e.g., such as button
presses), which results in commands being sent to tiles and
sprites; each tile/sprite stores a local log of the commands
sent to it. A resolution step determines which of the (possibly
conflicting) commands in each log will be executed. A new
game state is produced by executing the commands.

Every rule is parameterized by an event. There are three main
types of events in TC, corresponding to the quadrants seen in
the rule selector screen of Figure 3(e): (1) change fires when
there is a change to the local neighborhood around a sprite;
(2) press fires for a button press of the dpad or the A button
(the B button is not available to the game writer as it is used
by TC to exit the game); (3) smash/collide fires when a sprite
is about to collide with another sprite. Section “Evaluation
I: Three Popular Games” presents examples of all the above
rules.

When, Tile and Direction Predicates
A When predicate is a predicate on the game state that exam-
ines the 3x3 local neighborhood around a tile/sprite. This pred-
icate can specify the presence or absence of background/sprite
kinds, as well as the direction that sprites last moved in.More
precisely, a When predicate is a conjunction of tile predicates,
one for each of the nine tiles in a sprite’s neighborhood, in-
cluding the center tile. Most of these predicates will simply
be “true”, corresponding to a black tile, which means that no
constraints are placed on that tile. A tile predicate is defined
by three non-intersecting sets (Include, Include’, and Exclude)
and a direction predicate:

• Include: the tile must contain at least one background/sprite
whose kind is in this set and whose direction (in the case of
a sprite) matches the direction predicate;

• Include’: the tile must contain at least one back-
ground/sprite whose kind is in this set;

• Exclude: the tile must not contain any of the back-
grounds/sprites from this set.

A black tile’s include and exclude sets all are empty. The
second row of Figure 3(f) shows the include and exclude
sets for the tile one space down from the center boulder: the
Include set is denoted by green check marks; the Exclude set
is denoted by red “no-entry” circle-slash signs; membership
in the Include’ set is denoted by a yellow dot. In this case,
the space background is included in the tile and the boulder
and diamond are excluded from the tile. Figure 5(a) shows
the seven icons corresponding to the seven possible direction
predicates (left, up, right, down, resting, moving, any). The
direction predicate icon is overlaid on the sprite, as shown in
the figure.

Sprite Witnesses
In all TC rules, the center tile predicate has a special form,
which is to have a non-empty Include set that contains only
sprites. This guarantees that if the predicate matches then
there will be a sprite witness to execute commands against.
The four tiles adjacent to the center tile also may have sprite
witnesses. This is the main form of variable binding in TC.
Sprite witnesses are displayed in the column to the right of
the Do keyword, as discussed further below. The Include’ set
does not bind a sprite witness.

Do Commands and Conflicting Commands
If a rule’s When predicate matches on the tile map, then the
associated commands in the rule’s Do section are sent to the
objects that they address. The commands can be addressed to
the center tile/sprite and to the four tiles/sprites adjacent to the
center tile. Thus, there are five rows in the Do section. As the
user moves the cursor over these rows, the corresponding tile is
highlighted in the When section. A sprite witness is displayed
at the beginning of a row. If there is no sprite witness, an empty
circle is shown instead. Figure 4 identifies two sprite witnesses,
the center boulder and the boulder beneath the center boulder.
The numbering of the five rows in the Do section and the five
tiles in the When section shows the correspondence.

To reiterate, commands are not immediately executed but sent
to the addressed tile/sprite object, which maintains a com-
mand log. Conflicting commands are resolved automatically,
by removing commands from the log before execution. The
commands that can be sent to a sprite are: move–conflicts
with itself–resolve by choosing a move command at random;
destroy–no conflicts; stop–conflicts with move command–
overrides all move commands (can only be issued by collision
rules). The commands that can be sent to a tile are: paint
background–conflicts with itself–resolve by choosing one
paint command at random; spawn sprite–no conflicts; open
a portal to a random tile on the tile map that has the given
background and contains no sprite–no conflicts. Finally, there
is a command to disable (for one round) all the rules associated
with a sprite.

Collisions
Once all rules have fired and commands resolved, each sprite
has a unique direction to move in (or no direction at all, if it
received no move command in this round). This new set of
directions is used to determine pending sprite collisions. TC
gives the end-user the ability to determine what will happen
for each pair of sprites about to collide: destroy, stop motion.
The evaluation section presents examples of collision rules.

Progress/Termination Conditions
Many game progress/termination conditions are existence
rules, such as “the game ends when a boulder falls on the
player” and are easily specified using a When predicate. Other
such conditions require that a predicate holds for every mem-
ber of a set: “the player goes to the next level when every
diamond has been collected from the game board”. For these
cases, we can often use the negation of When predicate: “the
player goes to the next level when no diamond is on the

(a) (b) (c)

(d) (e) (f)
Figure 5. (a) Selecting the sprite witness in the Do section brings up the direction predicate menu; (b) A rule that applies to both diamond and boulder
sprites and shows the attribute menu for specifying a tile predicate; (c) Screen for generalizing a rule by flip and rotation operations; (d) selecting the
tile to the right of the sprite witness brings up the command menu; (e) selecting the move icon from the command menu; (f) selecting the move down
command. The command menu icons, from left to right, are: move, destroy sprite, paint tile, create sprite, block rule, portal, game win/over.

game board”. The evaluation section presents an example
of a negated When predicate.

RULE EDITOR DESIGN
Designing the TC game creation environment so that game
programming is possible on a 160 × 120 pixel screen with
only A, B and dpad buttons is an interesting challenge. The tile
map editor and paint editor are straightforward adaptations of
standard interfaces for creating tile maps and pixel art, so this
section focuses mainly on creating and editing of TC rules.

Our design was guided by the following two goals: (1) min-
imize the amount of hidden user-modifiable state as much
as possible (though the size and complexity of a program
will fight against this goal, as will be seen); (2) enable visual
programming via a painting metaphor that is similar to the cre-
ation of tile maps and sprites. To meet these goals, we severely
restricted the expressiveness of the programming model, as
detailed in the previous section. Here we focus on the user
interface to support the programming model.

Creating and Browsing Rules
Rules are identified by their event type and the kind of sprite
at the center tile of the When neighborhood. The rule selector
screen of Figure 3(e) was designed to give users an overview
of the space of rules. The user can choose among the four
sprite kinds on the left; the four quadrants update to display the
rules available for that sprite kind. Each quadrant summarizes
a related group of rules, parameterized by direction. As shown
in the figure, the boulder has been selected: we can see in the

lower-left quadrant that there is a collision rule for the case of
the boulder moving down, as this square is highlighted. If a
square is not highlighted, then there is no rule of that type for
the sprite. Clicking on a blank square will create a new rule of
that type and enter the rule editor so the user can edit the rule.
Clicking on a highlighted square will enter the rule editor on
the first instance of that rule type. Once in the rule editor, the
user can browse all the rules associated with the sprite kind
without returning to the rule selector screen.

Editing Rules
The rule editor (see Figure 3(f)) has three main active areas be-
sides the top menu bar: (1) the 3x3 neighborhood of the When
section allows the user to define the Include/Include’/Exclude
sets of the tile predicates; the column immediately to the
right of the Do keyword identifies the sprite witnesses and
allows the user to set the direction predicates for them; (3) the
squares to the right of that column allow the user to define the
commands associated with the central tile/sprite and its four
adjacent tiles/sprites.

Editing and Visualizing Tile Predicates
Selecting a tile in the 3x3 neighborhood brings up a menu that
allows the user to attribute each background/sprite kind with a
green check mark (Include set), yellow dot (Include’ set), or a
red-slash circle (Exclude set). Figure 5(b) shows the attribute
menu for the central tile (where both diamond and boulder
have been added to the Include set).

(a) (b) (c)

(d) (e) (f)

Figure 6. Boulder Dash game: rules for (a) moving the player avatar, (b-c) pushing boulders, (d-e) handling collisions, and (f) game win condition.

A main issue is how to summarize the multi-faceted attribution
for a tile predicate in the 16x16 pixels of the tile. Our choice
is to “accentuate the positive”, as seen in Figure 3(f). The
attribution for the tile below the central boulder includes the
“space” background and excludes the diamond and boulder.
This is summarized by showing just the space background
in the tile below the central boulder (that is we prioritize
visualizing non-empty Include sets over non-empty Exclude
sets). The user can move the cursor over the tile to see the
precise attribution, as shown just above the When section. If
a tile’s Include sets are empty but Exclude set is non-empty,
we will then display the exclusion, adding the red-slash circle
to make it clear (see Figure 6(a) for an example).

Direction Predicates
If a tile predicate has identified a sprite witness, then we may
wish to constrain the direction of that sprite. Selecting the
sprite in the column to the right of the Do label, brings up
the direction predicate menu, as shown in Figure 5(a). The
currently selected direction predicate (resting) is selected and
may be changed by navigating to the desired new predicate
and selecting it. Note that the direction predicate is reflected
in the tile predicate in the When section, as the predicate takes
part in the pattern matching, as described previously.

Commands
We finally come to the editing of commands in the five rows of
the Do section, corresponding to the center tile and its four ad-
jacent tiles in the When section. Figure 5(d)-(f) demonstrates
the steps needed to program the move down command (solid
blue arrow pointing down). As shown in Figure 5(d), we start
by selecting the tile to the right of the boulder (sprite witness)
in the Do section, which brings up the command menu at the
top of the screen. We then select the leftmost menu item (the
blue 4-way move icon), which brings up a sub-menu of four
move commands, as shown in Figure 5(e), selecting the move
left command. We move the cursor to select the move down
command (Figure 5(f)). Selecting an existing command from
the Do section allows one to change the command or delete it.

Base Derived Tile
Game Rules Rules Predicates Cmds.

Boulder Dash 14 15 29 16
Snake 9 24 15 15

Bejeweled 11 14 33 38
Table 1. Table summarizing the TileCode implementations of the three
games (see main text for details).

Generalizing Rules: Multiple Sprites and Directions
There are two main ways to generalize a rule in TC. The first is
to have a rule apply to multiple kinds of sprites. For example,
in Boulder Dash, diamonds fall just like boulders do (so far,
we have shown the falling rules for just boulders). Figure 5(b)
shows how we generalize a boulder falling rule to include the
diamond: this is done simply by adding the diamond sprite to
the Include set of the center tile. The center tile now shows
half of each sprite (more than two sprites can be added to the
Include set, but the visualization shows at most two).

The second way to generalize a rule is by direction. As we
have seen, sprite directions are stated explicitly by the user,
as shown in Figure 4. Often, when a user codes a behavior
for a sprite to move in one direction (boulder tumbling to the
left), they will also want to code a behavior for the opposite
direction (boulder tumbling to the right).

As shown in Figure 5(c), TC provides a feature for deriving
new rules from existing rules: flip vertically/horizontally and
rotate clockwise/counter-clockwise (by 90 degrees). In this
case, we have used the flip horizontal operation to create the
desired derived rule. The derived rules are represented as
views of the original rule, so if the user changes the original
rule, the changes are propagated to the derived rules. The
existence of derived rules is shown in the rule editor by a
yellow dot on the flip icon (to the left of the garbage can). The
parent-child relationships between rules created by this feature
cannot be broken, but they can be reverted.

(a) (b) (c)

(d) (e) (f)

Figure 7. (a) Screen snapshot of the Snake game and (b)-(f) some TC rules of the game.

EVALUATION I: THREE POPULAR GAMES
In this section, we show that three popular video games can
be expressed in TC with a modicum of rules. We informally
describe each game’s mechanics and show how it can be coded
in TC. Table 1 summarizes the total number of rules, derived
rules (via flip/rotate operations), tile predicates and commands
for each game. A number of other games, including Pac-Man,
have been coded in TC and can be found at the URL given in
the Introduction.

Boulder Dash
The Boulder Dash game mechanics are as follows: the user
guides the player’s avatar (red elflike figure) through the map.
The avatar (and all other sprites) cannot cross walls (blue tiles)
or boulders; the player turns “dirt” (orange tiles) into “space”
(dark tiles) upon moving onto them. The goal is to collect all
the diamonds in the map, while avoiding falling rocks (a rock
is a boulder or a diamond). Rocks fall when there is space
below and can also tumble off rocks (to the left or right), as
we have already seen. The player can push a boulder to the
left or right when there is space available on the other side of
the boulder.

We have already presented rules for expressing how boulders
fall. Figure 6 shows rules for moving the player avatar and its
interaction with boulders and diamonds: (a) on a right-dpad
button press, when there is no wall or boulder to the right of
the avatar, it is instructed to move right (rule generalized to
four directions by rotation); (b) on a right-dpad button press,
when there is a boulder to the right of the avatar, and no space
below the boulder, both the avatar and boulder are instructed
to move right (rule also flipped horizontally);1 (c) is similar
to (b) but has the boulder fall into the empty space below to
make room for the player to move to the right (rule also flipped

1This rule optimistically assumes that there is a space to the right
of the boulder; collision rules are used to determine if this is not the
case and to stop the movement of boulder and player.

horizontally); (d) is a collision rule for a player moving onto a
diamond at rest, which results in the diamond being consumed
(generalized to four directions by rotation); (e) is a collision
rule for a boulder falling onto a player, which results in the
game ending with a loss; (f) is a negation rule that checks for
the absence of diamonds on the board - in this case, the game
ends with a win.

The full implementation of the mechanics described above
takes a total of 14 rules, as show in Table 1.

Snake
The mechanics of the Snake game (see Figure 7(a)) are as
follows: the snake is always in motion; the user guides the
head of the snake using the direction pad and each segment of
the snake’s body follows the one in front of it (its predecessor).
If the head of the snake hits a wall or the snake’s body, then
the game ends. The effect of eating an apple is to increase the
length of the snake by one segment, as well as to spawn a new
apple at a random position.

Let’s first describe the motion of the snake. We must start the
snake moving with no input from the user, so we choose to
create the snake oriented from head at right to tail at left, as
shown in Figure 7(a), and start the head and segments moving
right from rest (this rule is simple and not shown). The dpad
controls the direction of the snake’s head (rule not shown).

Making a snake segment follow its predecessor is an inter-
esting challenge. Consider a segment that has just moved
right into the center tile and the question: which tiles can its
predecessor occupy and which direction must the predecessor
have moved to now be in that tile? As shown in Figure 7(b)-
(d), there are three basic cases and the move command for
the center (following) segment must be in the direction that
its predecessor last moved (all these rules are generalized to
4-way by rotation).

(a) (b) (c)

(d) (e) (f)

Figure 8. (a) Screen snapshot of Bejeweled game and (b)-(f) some TC rules of the game.

Growing the snake is done using two rules. As shown in
Figure 7(e), when the head of the snake collides with the apple,
the apple sprite is destroyed (via the pac-man “eat” command)
and an apple core sprite is spawned in its place. This rule
also invokes the at-sign “portal” command: this command
randomly picks a tile location on the map with the given
background that has no sprite on it; the command following
the at-sign command (a spawn of an apple) is executed at
that location.2 As seen in Figure 7(f), when the apple core
immediately follows the end of the snake, the apple core sprite
is destroyed and a new snake segment is spawned, moving in
the same direction as the end of the snake.

Bejeweled
Bejeweled has the following mechanics: the user navigates
a cursor around a field of jewels arranged in a matrix (see
Figure 8(a)); the user selects a jewel (with the A button) and
then moves the cursor to an adjacent tile and presses the A
button again to swap the previously selected jewel with the
current jewel. If the swap operation creates a sequence of
three or more jewels of the same kind then that sequence
is eliminated, leaving empty space; otherwise, the swap is
undone. Jewels fall into empty space. When jewels come to
rest, they may create new three-jewel sequences to eliminate.
Once all jewels stop moving, the user may again select a pair
of jewels to swap. We do not consider the mechanic of filling
empty space with new jewels here, due to lack of space.

Figure 8(b) shows the basic rule for removing sprites: if there
are three diamonds at rest in a row, they are all removed and
the backgrounds painted with the empty space (there is a new
command shown in the top row - more on this later). The
parallel semantics of rule matching means that this single
rule can eliminate a row of diamonds of any length. The

2The portal command has many other uses: when there are just two
tiles of a given background B in the tile map, the portal command
can be used to send a sprite from one of the B tiles to the other B tile.

rule is generalized to a column via rotation. Rules to remove
sequences of apples and boulders must be coded separately.
Making sprites fall into empty space is straightforward and
has been covered already.

The main challenge of Bejeweled is the implementation of
cursor motion, the swap operation, and its potential interaction
with the removal/falling of jewels. We use the orange-dirt
background (dirt, for short) to mark the tile where the user first
presses the A button (rule not shown). Pressing the A button
when the cursor is on a dirt tile will mark the tile empty (also
not shown), to permit the user to abort the swap and move
freely again. The cursor motion rules of Figure 8(c) and (d)
will limit the cursor motion to the dirt tile and its four adjacent
tiles.

Now, when the user moves the cursor to a tile adjacent to
the dirt tile and presses the A button, another dirt tile will
be set, denoting the pair of sprites to be swapped. The rule
of Figure 8(e) checks for a pair of sprites that both have dirt
backgrounds behind them (note the use of both the Include
and Include2 sets here). The sprites are swapped and their
backgrounds are changed to blue (so rule (e) will not fire
again). The rule of Figure 8(f) matches on blue backgrounds
behind two resting sprites and swaps the sprites back while
resetting the background to empty space.

Once the sprites have been swapped the first time, the sprite
removal rules will fire. Recall that the removal rules, if suc-
cessful, reset the backgrounds of the removed sprites to empty
space. Thus, if no sprites are removed then the blue back-
grounds will remain and the second swap rule will fire. On
the other hand, if a removal rule does fire then two interest-
ing things happen: at least one blue background and perhaps
both will be set to the empty space. We use an extra rule (not
presented here) to deal with the case when exactly one blue
background is left. The second aspect of the removal rule
(Figure 8(b)) is that it disables all the rules associated with the

Game Blocks Globals Arrays Loops
Boulder Dash 107 2 1 2

Snake 52 2 1 1
Bejeweled 111 5 1 9

Table 2. Table summarizing MakeCode Arcade implementations.

yellow cursor for the next round. That is, as long as jewels are
being removed, the cursor will remain stationary. Once this
removal rule stops firing, then the cursor will be able to move
again.

Summary
We see from Table 1 that two to three handfuls of base rules
suffice to encode the basic mechanics of all three games. How
complex are these rules and how much reuse of the base rules
do we get through generalization? The ratio of tile predicates
to base rules and of commands to base rules gives us a mea-
sure of rule complexity, while the ratio of derived rules to
base rules gives us a measure of rule reuse: Boulder Dash
has, on average, 2.2 tile predicates, 1.2 commands and 1.1
derived rules per base rule; Snake has 1.7 tile predicates, 1.7
commands and 2.7 derived rules per base rule; Bejeweled has
3 tile predicates, 3.5 commands and 1.3 derived rules per base
rule. From this basic analysis, we can see that the Snake game
has the simplest rules and most reuse of the three games.

EVALUATION II: BLOCKS-BASED VERSIONS OF GAMES
The paper’s last three authors, professional software develop-
ers on the MakeCode Arcade team, each wrote a version of
one of the three games (Boulder Dash, Snake, Bejeweled) us-
ing the Blocky editor of MakeCode Arcade. The input to this
process was the informal game mechanics description created
by the first author, though all games were already well-known
by all; the TC versions of the games also were available to
play. The goal was to implement the same basic mechanics of
these games using the standard blocks and APIs available in
MakeCode Arcade. Each co-author implemented his/her game
in isolation (not difficult in these times). Table 2 contains
basic metrics about the games. For each block-based game,
we discuss how it implements the basic game mechanics and
compare to the approach taken in TC. Links to the games’
code can be found from the URL given in the Introduction.

Boulder Dash
Unsurprisingly, the movement of boulders in Boulder Dash
is the central mechanic of the game. The blocks-based ver-
sion uses a recursive algorithm to compute the next state for
each rock, with user-defined functions to determine if rocks
should fall or tumble. In this game especially, the TC concepts
of a round and internal command conflict resolution allows
the state to synchronize separately from the game engine,
which helps to resolve inherent conflicts between different
rules before rendering the next frame. That is, there is a strict
separation of model-view-controller (MVC) enforced in TC.
In MakeCode Arcade, once a sprite is rendered to the screen,
it’s visible to the engine and treated as a valid state, which puts
the onus on the programmer to maintain the MVC abstraction.

Snake
As discussed before, the main complication of the Snake game
is to have the snake’s body segments follow their predecessors.
The block-based implementation represents the snake as an
array, stored in a global variable, and loops over the array to
change the direction of each segment to that of its predecessor.
In TC, we used the direction each segment last moved to
identify predecessor segments using three rules and pattern
matching. The looping over the segments happens implicitly
in TC and there is no need for a separate array.

It is worth noting that without TC’s direction predicate, it
would be impossible to identify the predecessor of each sprite
body segment; since the snake can double back on itself, a
given sprite can have more than one adjacent tile containing
another body segment—in such situations, the direction is
needed to distinguish which of the adjacent tiles contains the
predecessor segment. In an imperative language with arrays,
this problem does not arise, as the ordering of sprites in the
array establishes the predecessor relation.

Bejeweled
In the TC implementation of Bejeweled, there is one rule to
say “if three consecutive items match, eliminate them”, about
the most declarative statement of the mechanic possible. In
the MakeCode Arcade version, this mechanic is implemented
by using a sliding three-wide window that traverses every row
and column of sprites and checks each triple of jewels for
sameness. This is done using nested loops over a 2D array of
sprites, with three local variables indexing into the array to
track the current triple.

The TC has a runtime optimization that keeps track of which
tiles/sprites changed in the previous round and only checks a
rule on a sprite when its neighborhood has changed in the last
round. This means that not every sprite has to be examined, as
in the MakeCode Arcade version.

Summary
In all three games, we see that the pattern matching capability
in TC eliminates the need for explicit use of loops and arrays,
compared to the block-based implementations. While TC
generally has less code, some of the TC rules take quite a bit
of thinking to come up with (for example, changing the tile
backgrounds to keep track of swap state in Bejeweled). On the
other hand, such state seems to be required to implement the
mechanics correctly, regardless of the programming paradigm
chosen.

LIMITATIONS
The TC programming model was designed so that: (1) games
could be created on a gaming handheld with a small screen
and limited input affordances; (2) a variety of popular games
could be created. This section describes the major limitations
of the programming model and how this affects the kinds of
games that can be created with the model.

Local State/Compute/Behavior
By design, the only state values in TC are the tile background
and anonymous sprite objects (with a kind and direction), each

having a visual representation. Furthermore, as in cellular
automata, predicates/commands may only access a finite 3x3
neighborhood relative to the center sprite of a rule, so that
instantaneous state access at an arbitrary distance (as enabled
by random access memory) is not possible.

This restriction makes certain mechanics impossible to achieve.
For example, in Pac-Man, when the pac-man avatar eats a
power-up all the ghosts immediately turn dark blue and run
away from the pac-man, reverting to their original form after
some period of time. This mechanic is not possible in TC cur-
rently. One realization would set a global countdown counter
to a non-zero value upon a power-up and count down to zero.
When the counter is non-zero, the ghosts would exhibit the
fleeing behavior [15]. This would require an extension to TC
to support global counters.

It is also difficult to program ghosts to move towards (or away
from) pac-man, as there is no mechanism for comparing the
locations of different sprites in TC.

No Hidden Computation
In TC, every command has a visible effect, whereas in general
programming many commands have no visible effect. For
certain game mechanics, it would be useful to perform an
(invisible/hidden) computation over the tile map to decide
whether or not to perform some visible action. A good exam-
ple is the mechanic of clearing a complete row/line in Tetris: if
the insertion of a Tetris piece completes a line then that line is
removed. From the user’s view, the determination of whether
a line is complete happens instantaneously (though the actual
removal of a complete line may take some time). Such an
(apparently) instananeous and invisible computation currently
is not possible in TC.

Synchronous Grid-based Motion
In TC, sprites may only move in one of four directions; further-
more, all sprites move synchronously and at the same velocity.
This severely limits the kinds of mechanics possible, such as
missiles that move faster than the player/enemy sprites and
parabolic motion, such as found in Angry Birds.

CONCLUSION
We have designed and developed a novel game programming
model, TileCode, for low-cost gaming handhelds that enables
visual programming on small screens, yet is expressive enough
to program a number of different popular video games. Its
ability to pattern match on tiles, sprites, and sprite directions
allows for a surprising amount of expressivity. TileCode’s
programming constructs are made available via an editing
paradigm that is also tiled-based.

Users studies are clearly needed to evaluate TileCode. We
will begin by seeing if users can successfully make small
modifications to existing games, after a brief demonstration
and walkthrough. We will follow-up with a set of interesting
challenge problems and evaluate the solutions that novices
produce.

ACKNOWLEDGEMENTS
Thanks to the MakeCode team, Peli de Halleux, Stefania
Druga, Teddy Seyed, and Kimberly Ying for their input.

REFERENCES
[1] PICO-8 Fantasy Console. In

https://www.lexaloffle.com/pico-8.php. Accessed July
2, 2020.

[2] Thomas Ball, Peli de Halleux, and Michal Moskal. 2019.
Static TypeScript: an implementation of a static
compiler for the TypeScript language. In 16th ACM
SIGPLAN International Conference on Managed
Programming Languages and Runtimes. ACM,
105–116.

[3] Rahul Banerjee, Jason Yip, Kung Jin Lee, and Zoran
Popović. 2016. Empowering Children To Rapidly
Author Games and Animations Without Writing Code.
In 15th International Conference on Interaction Design
and Children (IDC ’16). 230–237.

[4] Stephen Cooper, Wanda Dann, and Randy Pausch. 2003.
Teaching objects-first in introductory computer science.
In 34th SIGCSE Technical Symposium on Computer
Science Education. ACM, 191–195.

[5] Allen Cypher and David Canfield Smith. 1995. KidSim:
End User Programming of Simulations. In Human
Factors in Computing Systems, CHI.
ACM/Addison-Wesley, 27–34.

[6] James Devine, Joe Finney, Peli de Halleux, Michal
Moskal, Thomas Ball, and Steve Hodges. 2019.
MakeCode and CODAL: Intuitive and efficient
embedded systems programming for education. Journal
of Systems Architecture 98 (2019), 468–483.

[7] Edsger W. Dijkstra. 1975. Guarded Commands,
Nondeterminacy and Formal Derivation of Programs.
Commun. ACM 18, 8 (1975), 453–457.

[8] Jay Fenton and Kent L. Beck. 1989. Playground: An
Object-Oriented Simulation System With Agent Rules
for Children of All Ages. In Conference on
Object-Oriented Programming: Systems, Languages,
and Applications. ACM, 123–137.

[9] Neil Fraser. 2015. Ten Things We’ve Learned from
Blockly. In 2015 IEEE Blocks and Beyond Workshop
(Blocks and Beyond). 49–50.

[10] Werner Hartmann, Jürg Nievergelt, and Raimond
Reichert. 2001. Kara, finite state machines, and the case
for programming as part of general education. In IEEE
CS International Symposium on Human-Centric
Computing Languages and Environments. IEEE
Computer Society, 135–141.

[11] Kenneth M. Kahn. 1995. ToonTalk - Concurrent
Constraint Programming for Kids. In Twelfth
International Conference on Logic Programming. MIT
Press.

[12] Caitlin Kelleher, Randy F. Pausch, and Sara B. Kiesler.
2007. Storytelling Alice motivates middle school girls to
learn computer programming. In Conference on Human
Factors in Computing Systems, CHI. ACM, 1455–1464.

https://www.lexaloffle.com/pico-8.php

[13] Isabelle Lefebvre. 2017. Creating with (Un)Limited
Possibilities: Normative Interfaces and Discourses in
Super Mario Maker. The Journal of Canadian Game
Studies Association 16 (2017), 196 – 213.

[14] Jiangjiang Liu, Cheng-Hsien Lin, Joshua Wilson, David
Hemmenway, Ethan Philip Hasson, Zebulun David
Barnett, and Yingbo Xu. 2014. Making games a "snap"
with Stencyl: a summer computing workshop for K-12
teachers. In The 45th ACM Technical Symposium on
Computer Science Education, (SIGCSE). ACM,
169–174.

[15] Richard G. McDaniel and Brad A. Myers. 1999. Getting
More Out of Programming-by-Demonstration. In
Conference on Human Factors in Computing Systems,
CHI. ACM, 442–449.

[16] Radu Muschevici, Alex Potanin, Ewan D. Tempero, and
James Noble. 2008. Multiple dispatch in practice. In
23rd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications. ACM, 563–582.

[17] Thorbjørn S. Nielsen, Gabriella A. B. Barros, Julian
Togelius, and Mark J. Nelson. 2015. Towards generating
arcade game rules with VGDL. In IEEE Conference on
Computational Intelligence and Games. IEEE, 185–192.

[18] Seymour Papert. 1980. Mindstorms. Children,
Computers, and Powerful Ideas. Basic Books, NY.

[19] Richard E. Pattis. 1981. Karel the Robot – A gentle
introduction to the art of programming. Wiley, New
York.

[20] Alexander Repenning and Tamara Sumner. 1992. Using
Agentsheets to create a voice dialog design environment.
In ACM/SIGAPP Symposium on Applied Computing.
ACM, 1199–1207.

[21] Alexander Repenning and Tamara Sumner. 1995.
Agentsheets: A Medium for Creating Domain-Oriented
Languages. IEEE Computer 3 (1995), 17–25.

[22] Alexander Repenning, David C. Webb, Catharine Brand,
Fred Gluck, Ryan Grover, Susan B. Miller, Hilarie

Nickerson, and Muyang Song. 2014. Beyond Minecraft:
Facilitating Computational Thinking through Modeling
and Programming in 3D. IEEE Computer Graphics and
Applications 34, 3 (2014), 68–71.

[23] Mitchel Resnick, John Maloney, Andrés
Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay S.
Silver, Brian Silverman, and Yasmin B. Kafai. 2009.
Scratch: programming for all. Commun. ACM 52, 11
(2009), 60–67.

[24] Tom Schaul. 2013. A video game description language
for model-based or interactive learning. In IEEE
Conference on Computational Inteligence in Games.
IEEE, 1–8.

[25] Joel L. Schiff. 2008. Cellular Automata: A Discrete
View of the World. Wiley-Interscience.

[26] Teddy Seyed, Peli de Halleux, Michal Moskal, James
Devine, Joe Finney, Steve Hodges, and Thomas Ball.
2019. MakerArcade: Using Gaming and Physical
Computing for Playful Making, Learning, and Creativity.
In Extended Abstracts of the Conference on Human
Factors in Computing Systems, CHI. ACM.

[27] David Canfield Smith, Allen Cypher, and James C.
Spohrer. 1994. KidSim: Programming Agents Without a
Programming Language. Commun. ACM 37, 7 (1994),
54–67.

[28] David Canfield Smith, Allen Cypher, and Lawrence G.
Tesler. 2000. Novice Programming Comes of Age.
Commun. ACM 43, 3 (2000), 75–81.

[29] Kathryn T. Stolee and Teale Fristoe. 2011. Expressing
computer science concepts through Kodu game lab. In
42nd ACM Technical Symposium on Computer science
Education (SIGCSE). 99–104.

[30] Rokas Volkovas, Michael Fairbank, John R. Woodward,
and Simon M. Lucas. 2019. Mek: Mechanics
Prototyping Tool for 2D Tile-Based Turn-Based
Deterministic Games. In IEEE Conference on Games.
IEEE, 1–8.

	Introduction
	Related Work
	Turtles, Automata, and Objects
	Novice Game Programming
	Game Modeling Languages
	Retro Game Creation Environments

	Overview of TileCode Application
	Programming Model
	Game State and Rounds
	Game Rules and Events
	When, Tile and Direction Predicates
	Sprite Witnesses
	Do Commands and Conflicting Commands
	Collisions
	Progress/Termination Conditions

	Rule Editor Design
	Creating and Browsing Rules
	Editing Rules
	Editing and Visualizing Tile Predicates
	Direction Predicates
	Commands

	Generalizing Rules: Multiple Sprites and Directions

	Evaluation I: Three Popular Games
	Boulder Dash
	Snake
	Bejeweled
	Summary

	Evaluation II: Blocks-based Versions of Games
	Boulder Dash
	Snake
	Bejeweled
	Summary

	Limitations
	Local State/Compute/Behavior
	No Hidden Computation
	Synchronous Grid-based Motion

	Conclusion
	Acknowledgements
	References

