
Symbolic Boolean Derivatives for Efficiently Solving
Extended Regular Expression Constraints

Caleb Stanford∗

University of Pennsylvania
Philadelphia, PA, USA
castan@cis.upenn.edu

Margus Veanes
Microsoft

Redmond, WA, USA
margus@microsoft.com

Nikolaj Bjùrner
Microsoft

Redmond, WA, USA
nbjorner@microsoft.com

Abstract

The manipulation of raw string data is ubiquitous in security-
critical software, and verification of such software relies on
efficiently solving string and regular expression constraints
via SMT. However, the typical case of Boolean combinations
of regular expression constraints exposes blowup in existing
techniques. To address solvability of such constraints, we
propose a new theory of derivatives of symbolic extended
regular expressions (extended meaning that complement and
intersection are incorporated), and show how to apply this
theory to obtain more efficient decision procedures. Our im-
plementation of these ideas, built on top of Z3, matches or
outperforms state-of-the-art solvers on standard and hand-
written benchmarks, showing particular benefits on exam-
ples with Boolean combinations.
Our work is the first formalization of derivatives of reg-

ular expressions which both handles intersection and com-
plement and works symbolically over an arbitrary character
theory. It unifies existing approaches involving derivatives
of extended regular expressions, alternating automata and
Boolean automata by lifting them to a common symbolic
platform. It relies on a parsimonious augmentation of reg-
ular expressions: a construct for symbolic conditionals is
shown to be sufficient to obtain relevant closure properties
for derivatives over extended regular expressions.

CCS Concepts: · Security and privacy→ Logic and ver-

ification; · Computing methodologies → Symbolic and

algebraic algorithms; · Theory of computation→ Regular

languages.

Keywords: regex, SMT, regular expression, derivative, au-
tomaton, string

∗Work done during an internship at MSR.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454066

ACM Reference Format:

Caleb Stanford, Margus Veanes, and Nikolaj Bjùrner. 2021. Sym-
bolic Boolean Derivatives for Efficiently Solving Extended Regular
Expression Constraints. In Proceedings of the 42nd ACM SIGPLAN In-

ternational Conference on Programming Language Design and Imple-

mentation (PLDI ’21), June 20ś25, 2021, Virtual, Canada. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3453483.3454066

1 Introduction

Regular expressions and finite automata play a fundamental
role in many areas, ranging from applications in natural sci-
ences [29] andNLP [48] to core problems in applied computer
science, such as matching [25, 51, 57], model-checking [30],
and solving of string constraints in SMT [31]. Recent years
have seen a resurgence of interest in solvers for quantifier-
free string and regular expression constraints, driven by
software verification and security applications [3, 8, 16, 44].
However, there remains a gap between the theory of regular
expressions (or regexes) and the constraints that arise in prac-
tice in such applications. We focus here on two aspects of
this gap: (1) in typical applications, regexes exist over a sym-
bolic potentially complex character theory rather than over a
finite alphabet; and (2) in typical applications, multiple regex
membership constraints may be combined using Boolean
connectives. Modern SMT solvers thus need to efficiently
solve Boolean combinations of regex constraints over a sym-
bolic alphabet, rather than solving individual constraints in
isolation over a finite one.
Although regexes are widely supported in most modern

SMT string solvers [1, 2, 4, 9, 11, 19ś21, 26, 32, 42, 50, 68ś71],
no current state-of-the-art tool provides a satisfactory solu-
tion to both of these challenges simultaneously. With respect
to (1), modern strings that arise in applications are generally
written in Unicode, but as of today, no SMT solver supports
even the Basic Multilingual Plane (BMP or also known as
Plane 0), while most widely used regex standards, e.g., the
.NET regex standard [46] are based on BMP. Additionally,
regexes that arise in practice employ character classes such
as \w which denotes a word character, i.e. the subset of the
character space (e.g. Unicode) which includes the Latin al-
phabet a-z and other alphabetic symbols. With respect to
(2), we follow existing work by defining extended regexes to
be those that allow intersection and complement. As we will
see shortly, an efficient treatment of extended regexes has

620

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/3453483.3454066

PLDI ’21, June 20ś25, 2021, Virtual, Canada Caleb Stanford, Margus Veanes, and Nikolaj Bjùrner

eluded existing techniques. One reason behind this is that
adding intersection and complement fundamentally affects
the difficulty of decision procedures of regexes. Recall that
emptiness of extended regexes (ERE) is non-elementary [62],
and (among other restricted fragments of ERE) ERE with-
out complement is already PSPACE-hard [33] and PSPACE-
complete when restricted further to intersections of classical
regexes [39]. See also the more recent studies [27, 28, 41].

We believe that Boolean combinations of constraints repre-
sent the norm, rather than the exception, in practice. To give
one illustrative application domain: cloud policy languages,
such as Amazon AWS policies [8] and Microsoft Azure re-
source manager policies [45] utilize regexes for lightweight
pattern matching. For example, Figure 1 shows a combina-
tion of constraints used to match a date format: a string
which appears like a date, such as 2020-Nov-25. The syntax
elements \d{4}, [a-zA-Z]{3}, and \d{2} denote a sequence
of four digits, a sequence of three letters, and a sequence of
two digits, respectively; the remaining constraints then en-
force that the first four digits should be either 2019 or 2020.
A sanity check here for SMT would be to make sure that the
constraint is indeed satisfiable Ð for example, if we made
a mistake and wrote .*2019 and .*2020 instead of 2019.*
and 2020.*, then it would be unsatisfiable because this acci-
dentally conflicts with the earlier constraint \d{4}-. . . which
enforces that the year is at the beginning of the string. This
would render this hypothetical audit policy useless (never
activated) and would not match the user’s intention. To com-
bine the date constraints into a single classical regex (i.e.,
without any use of complement or intersection), is theoret-
ically possible because regular languages are closed under
Boolean operations. However, this might lead to an at-least-
exponential blowup factor (due to the complexity results
referenced in the previous paragraph). In addition, we can-
not simply expect users not to write Boolean combinations.
In fact in practice, industrial policy languages encourage
and sometimes mandate the use of Boolean combinations
by restricting regex syntax in various ways. For example,
both the Amazon AWS and Microsoft Azure languages, as
of 2020, among other restrictions, allow Kleene star in .*

only (here .* is the regex matching any string). In particular,
the disjunction (anyOf) in Figure 1 cannot for example be
rewritten as (2019|2020).* using a single like or match
expression. This makes the use of top level conjunction and
complement, as in this date example, the native language for
complex regular constraints, and raises the need to deal with
Boolean combinations of regex constraints for analysis.

Existing Solutions. The way that current state-of-the-
art solvers deal with Boolean combinations (intersection and
complement) can be summarized by two main approaches:

1. Convert a regex r into an automaton Mr and then
propagate the logical connectives into corresponding
Boolean operations over automata: (s ∈ r1) ∧ (s ∈ r2)

{"if":{"allOf":[{"field":"date", "match":"####-???-##"},

{"anyOf":[{"field":"date", "like":"2019*" },

{"field":"date", "like":"2020*"}]}]}

"then":{"effect":"audit"}}

meaning :
date ∈ \d{4}-[a-zA-Z]{3}-\d{2} ∧

(date ∈ 2019.* ∨ date ∈ 2020.*).

Figure 1. Example Boolean combination of regex constraints
arising in practice: users of the Azure resource policy lan-
guage [45] write a restricted form of regexes to control when
a cloud resource should be audited. The semantics of the
policy (top) is a Boolean combination of regex membership
constraints (bottom), where # denotes a number (\d), ? de-
notes a letter ([a-zA-Z]), * denotes any sequence (.*), and
we write {n} for n-fold iteration of a regex. Large Boolean
combinations are either challenging or beyond reach for
existing SMT string solvers (see Section 6).

is converted into s ∈ L(Mr1 × Mr2) and ¬(s ∈ r) is

converted into s ∈ L(M∁r) [66].
2. Propagate the operations over regexes, by considering

extended regexes, such as (.*\d.*)&(.*[a-z].*),
where & is intersection. Then, algebraically manip-
ulate such extended regexes using derivatives [43].

While it is possible to extend classical automata algorithms
to work modulo a character theory [24], the first approach
has the following fundamental bottleneck. The construction
ofMr is typically eager (the entire state space is constructed),
and intersection and complement cause state space blowup
for most automata models that are used. This means that
constructing the state space for Mr is infeasible, such as
for r = ~(.*a.{100}) (where .* matches any string, {n}
is n-fold repetition, and ~ is complement). This is a limita-
tion because constructingMr eagerly might not be needed
in the first place: for example if checking satisfiability of
r , it may be that an accepting state of Mr can be reached
through exploration without constructing all states. On the
other hand, if checking unsatisfiability of r , in product and
complement constructions on automata, many more states
are constructed than may actually be reachable (these can
be eliminated through minimization of automata, but only
after the fact). This suggests that we may be able to avoid
constructing them in the first place.
On the other hand, the second approach addresses this

state space blowup by leveraging derivatives, a syntactic
way of exploring the state space of a regex without con-
verting it to automata, pioneered by Brzozowski [14] and
Antimirov [6]. The summary of the approach is that the
derivatives of a regex correspond to the states of Mr , but
they are constructed lazily. However, the second approach
has another fundamental drawback: the lack of an appropri-
ate formalism which both works symbolically and incorpo-
rates intersection and complement. As shown in [36], the
classical theory of derivatives does not directly extend to
the symbolic setting, because taking a symbolic derivative

621

Symbolic Boolean Derivatives for Efficiently Solving Extended Regular Expression Constraints PLDI ’21, June 20ś25, 2021, Virtual, Canada

(derivative with respect to a character predicate denoting a
set B of characters) of an extended symbolic regex r does not
in general lead to the desired semantics: it either results in
an over-approximation or an under-approximation of the ac-
tual language, depending on whether the positive derivative
∆B (r) or the negative derivative∇B (r) is taken [36, Lemma 3].
On the other hand, a classical generalization of Antimirov
derivatives to extended regexes is possible (over a finite al-
phabet Σ) although challenging [17]; however, leveraging
this work for the symbolic SMT setting would require ex-
plicitly enumerating (finitizing) the entire alphabet upfront
(also known as mintermization in the literature [23, 24]; see
Section 8.3). Local mintermization is also discussed in [36]
in form of the next literal computation that creates a finite
partition of the relevant predicates for computing a deriva-
tive precisely in the classical sense. For a general Boolean
combination with n relevant predicates, this computation
can in the worst case yield 2n next literals. These techniques
thus may be prohibitively expensive (e.g. for Unicode), and
they additionally require considering all regex constraints
in an SMT formula globally. Considering only intersection,
and not complement, avoids some of this complexity and
represents a state-of-the-art approach [43], but this loses the
full generality of the Boolean operations.

Kleene algebras with tests (KAT) [40] have been studied in
the context of derivative based automata constructions [53]
when applied to standard regexes, i.e., regular expressions
without intersection or complement. In KAT, character predi-
cates can be represented succinctly by tests, e.g., by encoding
predicates as BDDs [53]. However, Boolean operations over
regular languages, in particular complement, appear to be
incompatible with KAT because Boolean operations in KAT
are defined on the Boolean-algebra subset, not the entire
algebra. Recall that ¬1 = 0 and ¬0 = 1 in KAT where 1 is ε
and 0 is ⊥. However, [[~⊥]] = D∗ and [[~ε]] = D∗ \ {ε}. Thus,
identifying regular expression complement (~) with negation
(¬), in an extended regex such as ~((φ ·R1) | (¬ψ ·R2)), would
break the Kleene algebra laws and the intended semantics.

This Work. We fill these gaps by proposing the first the-
ory of derivatives of symbolic regexes which incorporates
intersection and complement. Unlike previous work, our
approach can be used to avoid the state-space blowup of
automata-based solvers without assuming a finite alphabet
and without under- and over-approximation. The key new

insight that enables us to define derivatives of regexes di-
rectly, while allowing Boolean operations, is that we aug-
ment regexes with conditionals (if-then-else), and define the
derivative of a regex to be a regex with conditionals, called
a transition regex. We show that transition regexes allow
for efficient algebraic manipulation rules for complementa-
tion and intersection: for example, given a regex which is a
Boolean combination of classical regexes, we show that the
number of derivatives is strictly linear (Theorem 7.3). We

give a decision procedure based on our derivatives which in-
tegrates into a broader SMT context: a set of inference rules
that incrementally unfolds regex constraints into symbolic
constraints over the background character theory. Deriva-
tives enable this lazy unfolding; the symbolic conditionals
directly map to the underlying character theory; and the
succinct handling of Boolean combinations via extended
regexes avoids the blowup in existing techniques. We also
introduce an accompanying theory of symbolic Boolean fi-
nite automata (SBFAs): the derivatives of an extended regex
correspond to the states in the SBFA. This is used to prove
the succinctness theorem and to study the connection with
classical approaches and other techniques.
We have implemented symbolic Boolean derivatives in

a new regular expression solver, dZ3, which is built on top
of Z3 and fully replaces the existing solver. We show that
the lack of blowup shows the expected benefits in practice.
Compared to an array of state-of-the-art solvers, we show
that our decision procedure matches or outperforms other
solvers in terms of number of benchmarks solved and av-
erage time per benchmark. It shows particular benefits on
examples with Boolean combinations: although CVC4 and
Ostrich are competitive on subsets of the benchmarks, no
solver consistently shows good performance across bench-
mark sets involving Boolean combinations. For example, dZ3
is 1.54x faster than the next best solver (CVC4) on average for
existing benchmarks with Boolean combinations, and solves
88% of handwritten examples such as the date example in
Figure 1, compared to 57% for CVC4.

Contributions.

• We introduce a new theory of symbolic derivatives of
extended regexes, which avoids the blowup in exist-
ing techniques. It works via translation to transition

regexes which augment extended regexes with a con-
ditional construct. (Section 4)

• We propose a sound and conditionally complete deci-
sion procedure for solving extended regular expression
constraints in an SMT context. (Section 5)

• We provide a proof-of-concept open-source implemen-
tation on top of Z3, called dZ3.1 Using standard ex-
isting benchmark sets, existing benchmarks focused
on Boolean combinations, and additional handwritten
examples, we show that our solver matches or out-
performs state-of-the-art solvers for string constraints
and shows particular performance and solvability im-
provements on Boolean combinations. (Section 6)

• To formally study the benefits of our approach, we in-
troduce a theory of Symbolic Boolean Finite Automata

1 The solver is available with the latest release of Z3 at https://github.com/

Z3Prover/z3, with experimental scripts at https://github.com/cdstanford/

dz3-artifact. Benchmarks used for the paper can be found at https://github.
com/cdstanford/regex-smt-benchmarks and at https://clc-gitlab.cs.uiowa.
edu:2443/SMT-LIB-benchmarks.

622

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://github.com/cdstanford/dz3-artifact
https://github.com/cdstanford/dz3-artifact
https://github.com/cdstanford/regex-smt-benchmarks
https://github.com/cdstanford/regex-smt-benchmarks
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks

PLDI ’21, June 20ś25, 2021, Virtual, Canada Caleb Stanford, Margus Veanes, and Nikolaj Bjùrner

(SBFAs) that generalizes the classical approaches of
alternating and Boolean automata to the symbolic set-
ting. In particular, we use SBFAs to show that for a com-
mon subclass of extended regexes, the set of symbolic
derivatives has linear size (Theorem 7.3). (Section 7)

• We provide an in-depth comparison of our theory of
derivatives with the classical theory. (Section 8).

2 Motivating Running Example

We discuss here a motivating example that helps us high-
light some of the main ideas behind transition regexes, the
key to defining derivatives for symbolic extended regular
expressions. The example also serves as a running example
and is referenced in the later sections. It is similar in spirit
to the date example in Figure 1 and is typical to many of the
benchmarks used in Section 6.
Suppose we are given a membership constraint in(s,R),

where s is a string term over an alphabet type Σ, i.e., s has
type Σ

∗, and R is a concrete regex over Σ
∗. (The syntax

in(s,R), corresponding to SMT-LIB str.in_re, denotes that
s matches the regex R.) Our goal is to solve the satisfiability
problem for that membership constraint: does there exist
a concrete instance of s in Σ

∗ such that R accepts that in-
stance? Using the approach of derivatives, we plan to attack
the problem by calculating the derivatives of R, by deducing
the following case split: 2

(|s | = 0 ∧ nullable(R)) ∨ (|s | > 0 ∧ in(s1..,δ (R)(s0))),

where nullable(R) is true if R accepts the empty string, and
δ (R) is a function of R called its derivative: it takes a regex R
and a character s0, and returns a regex for the language of
suffixes w such that s0w ∈ L(R) holds.
However, the classical theory of derivatives does not di-

rectly apply here: the problem is that the string s may be

uninterpreted (we don’t know the first character s0), and clas-
sical derivatives are only defined for a given input character.
In other words, s is a variable of type string, which does
not have a value yet, as opposed to being a fixed string like
łcatž. We could naively enumerate all possible characters
∨

a∈Σ(s1..∈D
Brz
a (R) ∧ s0=a), where DBrz

a (R) is the classical Br-
zozowski derivative [14] (defined independently for each
character a), but this does not scale.
Our contribution is to address this by providing a closed

definition of δ (R) above: in particular, we want to be able
to evaluate δ (R) symbolically, before knowing s0. We call
this the symbolic derivative, and we call the resulting term a
transition regex: it denotes a function from Σ to regexes.

More concretely, take R to be a typical password constraint:

in(s, .*\d.*) ∧ ¬in(s, .*01.*)

This constraint states that s contains at least one digit but
not the subsequence 01. Regular expressions such as this

2Wewrite si for the i ’th element of s and si.. for the suffix from i . These can
be purely symbolic expressions; s itself may be a variable (uninterpreted).

one are used in the generation and validation of password
strings. In typical real-world cases, they may involve many
more similar simultaneous constraints (cf. [52]), which can
be encoded as large intersections (cf. [61]). The motivation
for derivative-based approaches is that such constraints Ð
in particular because they are also combined with bounded
loops such as .{8,128} Ð cause an explosion of the state
space when converted to automata [23]. By unfolding the
derivatives ofR, we will explore possible strings for s without
constructing the state space up front.
We now show how to solve the constraint in(s,R) for

this example, using our approach, and following our im-
plementation in dZ3. The negation is first converted into
a regex complement and then the conjunction into an in-
tersection: in(s, (.*\d.*) & ~(.*01.*)). Let R1 = .*\d.*,
R2 = ~(.*01.*) and R = R1 & R2. Since R is not nullable
(does not accept the empty string), the case split we started
from reduces to the assertion |s | > 0 ∧ in(s1..,δ (R)(s0)). To
calculate δ (R) as a transition regex, we need to deal with the
problem that we do not know s0. The solution is to augment

regexes with conditionals (if-then-else), and then allow condi-
tionals in transition regexes. When taking the derivative of
a regex such as 01, we let φ0 be the predicate λx .x = 0 and
we construct the term if(φ0, 1,⊥), read as: given input x , if
x = 0 then 1 else⊥. This idea allows for the derivative of R to
be computed using algebraic rules as follows. The ≡ relation
below indicates simplification steps using distributivity, De
Morgan’s laws, and other properties that are not part of the
derivation itself. Below, φd stands for the predicate for the
character class \d, i.e., digits. The conditional expression
if(φ,τ , ρ) formally abbreviates λx .if(φ(x),τ (x), ρ(x)).

δ (R) = δ (R1) & δ (R2)

δ (R1) = R1 | if(φd , .*,⊥) ≡ if(φd , .*,R1)

δ (R2) = ~(δ(.*01.*)) = ~(.*01.* | δ (01.*))

= ~(.*01.* | if(φ0, 1.*,⊥))

≡ ~(.*01.*) & ~(if(φ0, 1.*,⊥))

≡ R2 & if(φ0, ~(1.*), .∗)

≡ if(φ0,R2 & ~(1.*),R2)

δ (R) ≡ if(φd , .*,R1) & if(φ0,R2 & ~(1.*),R2)
(i)
≡ if(φ0,R2 & ~(1.*), if(φd , .*,R1) & R2)

≡ if(φ0,R2 & ~(1.*), if(φd ,R2,R))

Observe that all conditional predicates are extracted from
the regex itself: e.g. φ0 in a conditional arises from 0 in the
original regex. Step (i) uses (among other properties) that
¬φd ∧ φ0 is unsat. Note also that ~⊥≡.* and .*| . . .≡.*.

There is no direct classical counterpart to the above deriva-
tion sequence, because classical regexes do not have if-then-
else. In particular, there is no direct classical counterpart
which handles complement. For example, consider the regex
01.* above. Classically, we would take the derivative as
DBrz
0

(01.*) = 1.*. But what if we want to now take the de-
rivative of the complement of 01.*? Then we need to know

623

Symbolic Boolean Derivatives for Efficiently Solving Extended Regular Expression Constraints PLDI ’21, June 20ś25, 2021, Virtual, Canada

not just this derivative where the first character is 0 but also
the derivative if the first character is not 0, because while the
latter case was impossible before it becomes relevant when
considering the complement. Using conditionals solves this
problem: we write the derivative as if(φ0, 1.*,⊥), which
has the case where the first character is not 0 present. Then,
when complementing this, we get if(φ0, ~(1.*), .*). Thus,
viewing the derivative as a conditional (transition regex) is
what enables us to treat complement algebraically.

Having calculated δ (R) as above, we continue as follows.
Let R3 = R2 & ~(1.*). So in(s1..,δ (R)(s0)) reduces to

in(s1.., if(s0 = 0,R3, if(φd (s0),R2,R)))

Expanding the if-then-else creates the further case split:

(s0 = 0 ∧ in(s1..,R3)) ∨ (s0 , 0 ∧ in(s1.., if(φd (s0),R2,R)))

where in(s1..,R3) splits further into two subcases:

(|s1..| = 0 ∧ nullable(R3)) ∨ (|s1..| > 0 ∧ in(s2..,δ (R3)(s1)))

where (s1..)1.. = s2.. and (s1..)0 = s1, and the procedure repeats.
Here R3 is nullable so dZ3 can generate a model for |s | >
0 ∧ |s1..| = 0 ∧ s0 = 0 Ð provided that these constraints are
consistent with other constraints on s in the context. For
example if there was a constraint s0 > 0, this case would be
blocked and the search would backtrack to the other case.3

3 Preliminaries

Sequences. When working with sequences over a domain
Σwe make the standard simplifying assumption that Σ(1)

=

Σ, and let Σ(0)
= {ϵ}, Σ(k+1)

= Σ · Σ(k), for k ≥ 0, and
Σ
∗
=

⋃

k≥0 Σ
(k), Σ+ =

⋃

k≥1 Σ
(k). Moreover, for v ∈ Σ

(k),
the length of v is k , |v | = k . In contrast, when Σ

∗ is imple-
mented in an SMT solver the type Σ∗ is sequence over Σ that
is disjoint from Σ. For X ,Y ⊆ Σ

∗, define X · Y ⊆ Σ
∗ such

that X · Y = {x · y | x ∈ X ,y ∈ Y } where concatenation · is
associative and ϵ is the empty sequence. We write xy for x ·y
when it is clear from the context that juxtaposition stands
for concatenation. Also, X ∗ stands for the closure of X under
concatenation when it is clear from the context that X ⊆ Σ

∗.

BooleanAlgebras. Given a nonempty universeD, Boolean
algebra overD is a tupleA = (D,Ψ, [[_]],⊥,⊤,∨,∧,¬)where
Ψ is a set of predicates closed under the Boolean connectives;
[[_]] : Ψ → 2D is a denotation function; ⊥,⊤ ∈ Ψ; [[⊥]] = ∅,
[[⊤]] = D, and for all φ,ψ ∈ Ψ, [[φ ∨ ψ]] = [[φ]] ∪ [[ψ]],
[[φ ∧ψ]] = [[φ]] ∩ [[ψ]], and [[¬φ]] = D \ [[φ]]. For φ,ψ ∈ Ψ

we write φ ≡ ψ (φ is equivalent toψ) to mean [[φ]] = [[ψ]]. In
particular, ifφ ≡ ⊥ thenφ is unsatisfiable and ifφ ≡ ⊤ thenφ
is valid. A is effective if all components of A are recursively
enumerable, and satisfiability of φ ∈ Ψ (φ . ⊥) is decidable.
A is extensional if φ ≡ ψ implies that φ = ψ .

3The condition s0 > 0 is possible because the underlying character theory
(for example bitvectors) is equipped with a total order.

Given a finite set S ⊆ Ψ of predicates, a minterm of S
is a satisfiable predicate

∧

ψ ∈S ψ
′ where ψ ′ ∈ {ψ ,¬ψ }. Let

Minterms(S) stand for a fixed set of all pairwise inequivalent
minterms of S . Observe that |Minterms(S)| ≤ 2 |S | and that
{[[α]] | α ∈ Minterms(S)} is a partition of D.

Boolean Combinations. If Q is a set of basic syntax ele-
ments then B(Q) denotes the Boolean closure over Q using |
for disjunction, & for conjunction, and ~ for complement: i.e.
the grammar generated by R ::= Q | R | R | R & R | ~R.
Similarly, B+(Q) denotes the positive Boolean closure of Q
(without use of ~). In the context of a particular Q where
syntactic rewrites are allowed, we will sometimes view & and
| as idempotent, associative and commutative operators, and
also rewrite ~~q to q. We also lift & and | to finite nonempty

subsets S ⊆ Q through AND(S) and OR(S), respectively.

Symbolic Regexes. Let A = (Σ, Ψ, [[_]], ⊥,., ∨, ∧, ¬) be
a fixed effective Boolean algebra called an alphabet theory.
Note that Σmay be infinite. We first recall the definitions of
the two standard subclasses of regexes and extended regexes,
where φ ∈ Ψ. We always work modulo A and we do not
mention this explicitly every time.

RE ::= φ | ε | ⊥ | RE1 · RE2 | RE∗ | RE1|RE2

ERE ::= φ | ε | ⊥ | ERE1 · ERE2 | ERE∗ | B(ERE)

The class RE corresponds to all standard regexes. The frag-
ment B(RE) ⊂ ERE comprises all Boolean combinations over
RE and covers all of our practical scenarios. The language
accepted by R, denoted L(R) ⊆ Σ

∗, is defined by:

L(φ) = [[φ]], L(ε) = {ϵ}, L(⊥) = ∅,

L(R1 · R2) = L(R1) · L(R2), L(R∗) = L(R)∗,

L(R1 | R2) = L(R1) ∪ L(R2), L(R1 & R2) = L(R1) ∩ L(R2),

L(~R) = Σ
∗ \ L(R)

A regex R is nullable (ν (R)) iff ϵ∈L(R). Nullability can
be computed inductively: ν (φ)=ν (⊥)=false; ν (ε)=ν (R∗)=true;
ν (R1·R2) ⇔ ν (R1) andν (R2); ν (R1&R2) ⇔ ν (R1) andν (R2);
ν (R1|R2) ⇔ ν (R1) orν (R2); ν (~R)⇔notν (R). Given R ∈ ERE

we let ΨR denote the set of all predicates φ that occur in R.

4 Symbolic Derivatives

Here we formally introduce the key concept of transition
regexes TR, in which regexes are augmented with condition-
als. We define symbolic derivatives for R ∈ ERE in terms TR,
and prove their correctness in Theorem 4.3. We also discuss
some algebraic laws that hold in TR Ð used as simplification
rules in dZ3 Ð as illustrated in Section 2.

Transition Regexes. The definition of TR depends on a
type parameter Q ; for the present section Q = ERE, but the
general case will be useful later in Section 7. Let ⋄ ∈ {|, &},
&̄ =| and |̄ =&. Then TR, or TRQ , is defined by the grammar

TR ::= Q | if(φ, TR1, TR2) | B(TR)

624

PLDI ’21, June 20ś25, 2021, Virtual, Canada Caleb Stanford, Margus Veanes, and Nikolaj Bjùrner

We call if(φ,τ1,τ2) a conditional regex. A transition regex τ
denotes the function τ : Σ→ B(Q) defined as follows.4

R(x) = R (for R ∈ Q)

if(φ,τ , ρ)(x) =

{

τ (x), if x ∈ [[φ]];
ρ(x), otherwise.

τ ⋄ ρ(x) = τ (x) ⋄ ρ(x)

~τ (x) = ~(τ (x))

Transition regexes τ and ρ are equivalent, denoted τ ≡ ρ,
when ∀x ∈ Σ, L(τ (x)) = L(ρ(x)). Concatenation of regexes
is lifted to transition regexes τ in τ · R for R ∈ ERE:

if(φ,τ , ρ) · R = if(φ,τ · R, ρ · R)

(τ | ρ) · R = (τ · R) | (ρ · R)

~τ · R = τ · R

(τ & ρ) · R = lift(τ & ρ) · R

The definition of lift(τ) is such that if τ ∈ Q then lift(τ) = τ

else τ is transformed into an equivalent conditional regex by
lifting the character predicates to the top while pushing con-
junction into the leaves. (The precise lift rules are discussed
in Section 4.1.) Finally, negation τ of τ is defined as follows.

R = ~R, ~τ = τ , τ ⋄ ρ = τ ⋄̄ ρ, if(φ,τ , ρ) = if(φ,τ , ρ)

The following lemmas represent key semantic properties
that are used in several contexts. Lemma 4.1 is used in the
proof of Theorem 4.3 and Lemma 4.2 is correctness of nega-
tion that is for example exploited in normal forms. Both
lemmas are proved by induction over τ using various alge-
braic laws of TR.

Lemma 4.1. L(τ · R(x)) = L(τ (x)) · L(R)

Lemma 4.2. ~τ ≡ τ

The symbolic derivative δ (R) of a regex R ∈ ERE is defined
as the following transition regex, where φ ∈ Ψ.

δ (ε) = δ (⊥) = ⊥

δ (φ) = if(φ, ε,⊥)

δ (R · R′) =

{

δ (R) · R′ | δ (R′); if R is nullable,
δ (R) · R′; otherwise.

δ (R∗) = δ (R) · R∗

δ (R ⋄ R′) = δ (R) ⋄ δ (R′) (for ⋄ ∈ {&, |})

δ (~R) = ~δ (R)

Theorem 4.3 is the correctness theorem of symbolic deriva-
tives. For L ⊆ Σ

∗ and a ∈ Σ, recall the classical definition of
the derivative of L w.r.t. a, Da(L) = {v | av ∈ L}, and for R ∈

ERE we use Brzozowski derivatives DBrz
a (R) ∈ ERE (modulo

A [36]), and the classical result L(DBrz
a (R)) = Da(L(R)) [14,

Theorem 3.1]. Let Da(R) = L(DBrz
a (R)). Let |̂ = ∪ and &̂ = ∩.

Theorem 4.3. L(δ (R)(a)) = L(DBrz
a (R)).

4Function application of (x) binds weakest, so τ ⋄ρ(x) stands for (τ ⋄ρ)(x).

a) .*01.*
0

1.* .*1

.
.

b)
.*01.* 0 1.* .*

.

1

⊥

.

|

.

c)
.*01.* 0 1.*

.*

.

1 ⊥

.

&

.

d)
r r&~(1.*) ⊥

.

10 0

Figure 2. Example symbolic derivations on extended
regexes, viewed as transitions between regexes.

Proof. By induction over R. The base cases⊥ and ε are trivial.
Base caseφ: δ (φ)= if(φ, ε,⊥). If a ∈ [[φ]] then if(φ, ε,⊥)(a)
becomes ε(a) = ε = DBrz

a (φ), else it becomes ⊥ = DBrz
a (φ).

Induction case R · R′: If R is nullable, then L(δ (R·R′)(a))

= L(δ (R)·R′ | δ (R′)(a)) = L(δ (R)·R′(a) | δ (R′)(a)). Now
this is L(δ (R)(a))·L(R′) ∪ L(δ (R′)(a)), which by IH equals
Da(R)·L(R

′) ∪ Da(R
′) = Da(R·R

′). If R is not nullable, then
L(δ (R·R′)(a)) = L(δ (R)·R′(a)) = L(δ (R)(a))·L(R′); applying
IH, Da(R)·L(R

′) = Da(R·R
′). Induction case R∗: We first

simplify L(δ (R∗)(a))= L(δ (R)·R∗(a))= L(δ (R)(a))·L(R∗). Ap-
plying IH again, = Da(R)·L(R∗) = Da(R∗). Induction case

R⋄R′ (where ⋄ ∈ {|, &}): here, L(δ (R⋄R′)(a)) = L(δ (R)(a)) ⋄̂

L(δ (R′)(a)), and by IH we get Da(R) ⋄̂ Da(R
′) = Da(R⋄R

′).
Induction case ~R: Finally, we have L(δ (~R)(a)) = Σ

∗ \

L(δ (R)(a)), which by IH becomes Σ∗ \ Da(R) = Da(~R). □

Corollary 4.4. If R ∈ B(RE) then δ (R)(a) ∈ B(RE).

Proof. If R ∈ B(RE) then lifting (see Section 4.1) is never
invoked, because concatenations never arise with a &-term
on the left. Inductively, this implies that ~ and & remain as
top-level operators, never nested inside · or ∗. □

Example 4.5. Consider the regex .∗01.∗ from above. We
write individual characters also for the corresponding single-
ton predicates when this is unambiguous, except that [[.]] = Σ.
We implicitly use the simplification rule that if(.,τ , _) ≡ τ .
Thus, e.g., δ (.) simplifies to ε (and so δ (.)r simplifies to r).

δ (.∗01.∗) = δ (.∗)·01.∗ | δ (01.∗)

= δ (.)·.∗01.∗ | δ (0)·1.∗ =.∗01.∗ | if(0, 1.∗,⊥)

δ (1.∗) = if(1,.∗,⊥)

The two transition regexes are shown as classical transitions
in Figure 2a where ⊥ is hidden. The equivalent complete

view of the transition regexes is shown in Figure 2b where
the dashed arrows represent the false branches of condi-
tional regexes. The negation of the complete form is seen
in Figure 2c as the dual of Figure 2b, where ⊥ = .∗, and

625

Symbolic Boolean Derivatives for Efficiently Solving Extended Regular Expression Constraints PLDI ’21, June 20ś25, 2021, Virtual, Canada

.∗ = ⊥. Finally, Figure 2d is the DNF form of Figure 2c,
where r = ~(.*01.*). Regexes which are nullable (or final)
are denoted with double boundary. □

Algebraic Properties. Transition regexes form a particu-
lar kind of effective Boolean algebra. 5 The regex.∗ is treated
as the absorbing element of | and the unit element of &.
Conversely, ⊥ is treated as the unit element of | and the
absorbing element of both & and ·. For example r & .∗ = r

and ⊥ · r = ⊥. We also treat |, &, · as associative operators
and |, & as commutative idempotent operators. This is im-
portant in reducing the number of different but equivalent
regexes from arising during search. However, the algebra
is only modulo these syntactic rules, and not all possible
simplifications: this means that the algebra is not extensional,
i.e., τ ≡ ρ does not in general imply τ = ρ.
We exploit this algebra for different algebraic simplifi-

cations and normal forms. The most important one is dis-
junctive normal form or DNF. Here we consider τ = δ (R) for
R ∈ B(RE) but DNF generalizes to all R ∈ ERE by using lift(τ)
(Section 4.1). We consider DNF with respect to the Boolean

structure of TR where any element of ERE is considered to
be atomic. Moreover, any nested conditional regex whose
leaves are all in ERE is already in DNF. Thus, a transition
regex is in DNF if it is a disjunction of conditional regexes
whose leaves are all in ERE.

For example if(φ,τ1,τ2) & ρ is not in DNF but expands
to if(φ,τ1 & ρ,τ2 & ρ) and is also subject to simplifications
discussed next that integrate satisfiability checks of A into
the rules.

1. If φ ∧ψ ≡ ⊥ then if(φ,τ ,⊥) & if(ψ , ρ,⊥) ≡ ⊥

else if(φ,τ ,⊥) & if(ψ , ρ,⊥) ≡ if(φ ∧ψ ,τ & ρ,⊥).
2. Cleaning of unsatisfiable branches of a nested condi-

tional regex. For example if τ = if(φ, if(ψ ,τ1,τ2), ρ)

and φ ∧ ψ ≡ ⊥ then τ simplifies to if(φ,τ2, ρ) or if
φ ∧ ¬ψ ≡ ⊥ then τ simplifies to if(φ,τ1, ρ).

3. It is useful to push complement into A when possible,
e.g., by using the rule ~if(φ,.∗,⊥) ≡ if(¬φ,.∗,⊥).

When working with the two algebras A and TR, it is
important to keep in mind that their Boolean operations
have different semantics.6 For example, the predicate ¬φ as a
singleton regex denotes the language L(¬φ) = Σ\ [[φ]], while
the regex ~φ denotes the language L(~φ) = Σ

∗ \ [[φ]].
We show in Theorem 7.3 that for R ∈ B(RE) the number

of individual regexes that are formed after computing the
fixpoint of all regexes through derivation is linear in R.

4.1 Lift Rules

The lifting rule lift(τ) propagates intersection into the leaves
and thus lifts conditionals to the top level. Here we also pass

5 In particular, TR is a Boolean algebra over Σ+ where τ : Σ → ERE has
denotation [[τ]] =

⋃

a∈Σ aL(τ (a)) ⊆ Σ
+, where aL = {av | v ∈ L }.

6This is also true in the context of SMT where they are distinct primitive
operators. Here we avoid ambiguities by not overloading the operators.

the branch condition ψ that is initially., that can be main-
tained to be satisfiable, so that dead branches are eliminated
on-the-fly and the resulting transition regex is clean Ð in all
conditional regexes all branches are satisfiable. Assume here
that τ is in NNF. The NNF rules are specified below.

lift(τ) = lift.(τ)

liftψ (τ) = ⊥ if ψ ≡ ⊥

In the remainderψ is assumed satisfiable (ψ . ⊥).

liftψ (R) = R if R ∈ ERE and ψ ≡.

liftψ (R) = if(ψ ,R,⊥) if R ∈ ERE and ψ . .

liftψ (if(φ, t , f)) = if(φ, liftψ∧φ (t), liftψ∧¬φ (f))

liftψ (if(φ, t , f) & ρ) = liftψ (if(φ, t & ρ, f & ρ))

liftψ ((τ1 | τ2) & ρ) = liftψ (τ1 & ρ) | liftψ (τ2 & ρ)

NNF. The negation normal form of a transition regex τ ,
NNF(τ), is defined as follows. The correctness of these rules
rests on Lemma 4.2.

NNF(if(φ,τ , ρ)) = if(φ,NNF(τ),NNF(ρ))

NNF(~if(φ,τ , ρ)) = if(φ,NNF(~τ),NNF(~ρ))

NNF(~~τ) = NNF(τ)

NNF(~R) = ~R if R ∈ ERE

The remaining cases are given by De Morgan’s laws.

5 Solving Extended Regular Expression
Constraints in SMT

Here we show that symbolic derivatives of extended regexes,
defined in Section 4, form the basis for a decision procedure
that can be integrated in the context of an SMT solver to solve
Boolean combinations of ERE constraints. A brief overview
was given in Section 2.

The regex solver for ERE constraints is part of the se-
quence theory solver in Z3. Regex solving works through
membership propagation rules that are triggered from the
main sequence solver when a membership constraint in(s, r)
is encountered. Here s is a term whose type (called its sort
in Z3) is sequence over Σ, or Σ∗, and r is an ERE over Σ∗. The
regex solver maintains a graph G whose nodes are regexes
seen so far, and edges from a node are all of its possible (par-
tial) derivatives ś G is introduced formally below. In other
words,G starts out as an empty graph, and whenever a prop-
agation on in(s, r) occurs, r is added to the graph if it is not
present. Propagation then triggers the rewrite rules in Fig-
ure 3a. In brief, if in(s, r) has already been determined to be
unsatisfiable, as recorded by the graphG , no additional work
is done and we rewrite it to false (the bot rule). Otherwise,
in(s, r) is expanded into two cases through the der rule: s is
empty or nonempty. In the latter case the constraint becomes
in_tr(s, t) (read in transition regex and analogous to in(s, r)),
where t is now the derivative of r and all the terminals of t
are added to G as being reachable from r .

626

PLDI ’21, June 20ś25, 2021, Virtual, Canada Caleb Stanford, Margus Veanes, and Nikolaj Bjùrner

As these rewrites are processed in the regex solver, con-
straints are accumulated to be handled by the sequence
solver. In particular, the der rule generates formulas about
the length of s: |s | = 0 and |s | > 0, and the ite rule gen-
erates character constraints through the predicate φ that is
extracted from a conditional regex. Membership constraints
exist in a broader context of formulas, including possibly
other string constraints on s , so we cannot in general prove
that our solver is complete with respect to any set of for-
mulas. However, what we show (Theorem 5.2) is that the
decision procedure is sound and complete for a single regex
constraint if the character theory (satisfiability of predicates
φ) is decidable. That is, focusing only on a single constraint
in(s, r), then the procedure proves false if and only if r is
empty. This result also extends to a Boolean combination of
constraints on the same string, e.g. in(s, r1) ∧ in(s, r2): this
is because, as described in Section 2, we can rewrite it to
in(s, r1 & r2). However, this last rule is done prior to apply-
ing the decision procedure, and we do not describe it in
this section. Instead, we focus on how to propagate a given
constraint in(s, r).

We also assume that regexes are concrete (i.e. there are no
variables of type regex or equations between regexes, only
membership constraints for concrete regexes). While this
restriction is standard, it can be partially relaxed without
additional work: for example, inequivalence constraints of
the form r . r ′ for regexes r , r ′ (this includes nonemptiness
constraints) can also be reduced to membership using the
Boolean operators. In particular r . ⊥ iff ∃x(x ∈ r), and
r1 . r2 iff (r1 & ~r2) | (r2 & ~r1) . ⊥.

The graph maintained by the regex solver has the form
G = (V ,E, F ,C), with additional derived components Dead
and Alive. The vertices V ⊆ ERE represent the set of all
encountered regexes so far, and E ⊆ V ×V is a set of directed
edges such that (v,w) ∈ E implies thatw ∈ Q(δdnf(v)), i.e.,
w is derived from v . In this context δdnf(v) is equivalent to
the abstract definition δ (v) (defined in Section 4) but in a
normal form; the required normal form is discussed further
below, with an example. Here, Q(δdnf(v)) denotes the set of
leaves of the DNF.We write E∗ for the reflexive and transitive
closure of E and we write E∗(v) for {w | (v,w) ∈ E∗}, i.e.,
E∗(v) is the set of all vertices in G that are reachable from v .

• F ⊆ V is a set of final vertices (nullable regexes).
• C ⊆ V is the set of all closed v: ∀w∈Q(δdnf(v)) :
(v,w)∈E. In other words, a closed vertex is a vertex all
of whose outgoing edges have been added to E.

• Alive ⊆ V is the set of all v s.t. E∗(v) ∩ F , ∅.
• Dead ⊆ V is the set of all v s.t. E∗(v) ⊆ (C \ Alive). In
other words, all vertices in Dead are dead-end regexes
whose status can never change because all of them are
closed (have been fully explored).

For modularity, G does not have knowledge of its ver-
tices being regexes, but they are treated as abstract elements.

in_tr(s, if(φ, t , f))

(φ(s0) ∧ in_tr(s, t)) ∨ (¬φ(s0) ∧ in_tr(s, f))
(ite)

in_tr(s, r)

in(s1.., r)
(ere)

in_tr(s, t1 | t2)

in_tr(s, t1) ∨ in_tr(s, t2)
(or)

in(s, r) r < G .Dead

(|s | = 0 ∧ ν (r))∨
(|s | > 0 ∧ in_tr(s,δdnf(r)) ∧ Upd[r→Q(δdnf(r))])

(der)

in(s, r) r ∈ G .Dead

⊥
(bot)

(a) Membership propagation rules for EREs and transition predi-
cates. Here r ∈ ERE, in(s, r) denotes a membership constraint (s
matches regex r), and in_tr(s, t) denotes analogous membership
in a transition regex t . Recall that ν (r) iff r is nullable. All rules
are equivalence preserving in their respective contexts. In partic-
ular in_tr(s, t) rules are applied only when |s | > 0. An implicit
assumption is that r ∈ G .V .

Upd[r→Q] G = (V ,E, F ,C)

G:=(V∪Q,E∪{(r ,q) | q∈Q}, F∪{q∈Q | ν (q)},C∪{r })
(upd)

(b) Graph update rule. An implicit assumption is that r ∈ G .V .
Observe that the rule has no effect if r ∈ G .C.

Figure 3. Decision procedure propagation rules.

Therefore, for the abstract description here, we consider the
sets F and C to be represented explicitly. The event that all
immediate (partial) derivatives from v have been added then
causes v to be added to the set C. On the other hand, we con-
sider Alive and Dead to be inferred from (V ,E, F ,C) rather
than being explicitly represented here.
The primary purpose of G is to enable dead-end detec-

tion, that is to block search and to infer unsatisfiability of
dead-end regexes, as indicated by the bot rule in Figure 3a.
Conveniently,G can be maintained globally and persistently
(a single graph for the entire solver and across different log-
ical scopes). In particular, G is independent of the current
logical scope because the property of a vertex in G being
dead is independent of other side constraints that may exist
on the input sequence s .
Initially G = (V0, ∅, {r ∈ V0 | r is nullable}, ∅) where V0 is

some initial set of regexes that occur in initial membership
constraints. When the regex solver is called on a constraint
in(s, r), we perform the following steps.

1. As shown in Figure 3a the der rule either allows the
solution s = ε if r is nullable, or it propagates the goal
in_tr(s,δdnf(r)) provided that r is not dead and s is
nonempty.

2. The propagation rules for in_tr(s,δdnf(r)) (ite and or)
rewrite the derivative into a disjunction of cases, where

627

Symbolic Boolean Derivatives for Efficiently Solving Extended Regular Expression Constraints PLDI ’21, June 20ś25, 2021, Virtual, Canada

the leaves are new membership subgoals for s1.. as
shown by the ere rule.

3. In this process G is incrementally updated, triggered
by Upd[r→Q] where Q is the set Q(δdnf(r)) of all the
derivative regexes for r and r is consequently marked
closed, as shown by the upd rule in Figure 3b.

Transition Regex Normal Form. Ensuring that these
rules eventually prove unsatisfiability for regexes r denoting
the empty language requires care. Notice that Figure 3a does
not contain propagation rules for conjunction (intersection)
and negation (complement) of transition regexes. This is be-
cause such rules would result in incompleteness. For example,
consider the hypothetical rule that we reduce in_tr(s, r1&r2)
to in_tr(s, r1) ∧ in_tr(s, r2). Then, if we apply this to the con-
straint in_tr(s, (.*a)&(.*b)), we obtain two separate con-
straints which propagate separately, and we never arrive at
the required contradiction and conclude the original tran-
sition regex is unsatisfiable. More specifically, this would
occur after propagating rules der and then ite starting from
in(s, (a.*a)&(a.*b)), since δdnf(r) = if(a, (.*a)&(.*b),⊥).
To avoid such issues with intersection and complement

propagation is why we require that δdnf(r) is a normal form
of δ (r): specifically, we require a DNF form where union
and if-then-else are always pushed outwards over comple-
ment and intersection, and we enforce this when computing
derivatives. In particular this requires using the lift rules for
r ∈ ERE.7 The implication is that when simplifying in_tr(s, r),
after applying ite and or as necessary, we can directly apply
rule ere to the conjunctions, which are plain regexes not
involving if-then-else.

Recall the definition of a disjunctive normal form (DNF) of
transition regexes from Section 4. Observe that a conditional
regex whose terminals are all in ERE is already in DNF. The
following example illustrates computation of DNF.

Example 5.1. Recall the computation of δ (.∗01.∗) from Ex-
ample 4.5. Let r = ~(.∗01.∗). Let φ0 be λx .x = 0 and let φ1 be
λx .x = 1. In Section 2 we showed that δ (r) can be computed
initially as ~δ (.∗01.∗) = ~(.∗01.∗ | if(0, 1.∗,⊥)). Hence

δdnf(~(.∗01.∗)) = DNF(~(.∗01.∗ | if(φ0, 1.∗,⊥)))

= DNF(r & ~if(φ0, 1.∗,⊥))

= DNF(r & if(φ0, ~(1.∗), ~(⊥)))

= DNF(r & if(φ0, ~(1.∗),.∗))

= if(φ0, r & ~(1.∗), r)

It is also easy to compute that δdnf(~(1.∗)) = if(φ1,⊥,.∗).
We continue with the regex r & ~(1.∗) and get that

δdnf(r & ~(1.∗)) = DNF(δ (r) & δ (~(1.∗)))

= DNF(if(φ0, r & ~(1.∗), r) & if(φ1,⊥,.∗))

= DNF(if(φ0, r & ~(1.∗) & if(φ1,⊥,.∗),

r & if(φ1,⊥,.∗)))

= if(φ0, r & ~(1.∗), if(φ1,⊥, r))

7Lift rules are given in Section 4.1. The rules are not needed for r ∈ B(RE).

where the last equality uses, among other simplifications, the
fact that φ0 ∧ φ1 ≡ ⊥ to keep the resulting conditional regex
clean. The resulting transitions are shown in Figure 2(d). □

Finally, we can prove the following summary theorem
about the properties of the membership propagation rules.
Here ⊢ refers to inference with respect to the rules in Fig-
ure 3a and Figure 3b. Recall that r ≡ ⊥ means that L(r) = ∅.
The rewrite procedure (⊢) is necessarily terminating because
the total number of derivatives is finite; see complexity below,
and the later Theorem 7.1.

Theorem 5.2. If the character theory is decidable, r ∈ ERE,

and s is an uninterpreted constant then in(s, r) ⊢ ⊥ iff r ≡ ⊥.

Proof sketch. The proof relies on Symbolic Boolean Finite
Automata (SBFA), which we define in Section 7. In particular,
we show thatG represents an accurate reachability graph of
the underlying symbolic automaton, constructed incremen-
tally, where states that end up in G .Dead are equivalent to
⊥, and where states may be intersection regexes. □

Complexity. Theorem 5.2 states that the decision proce-
dure is sound and complete for regex emptiness, but does not
discuss its complexity. In the worst case, complexity relates
to the number of regexes in the space of all derivatives (re-
cursively) of a regex. Studying this is a primary motivation
for why we develop a theory of automata corresponding to
symbolic extended regexes in Section 7. In particular, we
give a complexity bound for the common case in practice
of regexes in B(RE) in Theorem 7.3: for this class, that the
number of states in an SBFA is linear. As leaves in the DNF
δdnf(r) correspond to conjunctions of states in B(RE), this
implies exponential worst-case complexity for the decision
procedure here, for B(RE). For extended regexes, nonempti-
ness is known to be non-elementary [62], so we can only
hope for concrete complexity bounds in practical subclasses.

Alive and Dead State Detection. In the implementation
the graph G incrementally maintains a DAG of strongly
connected components (SCCs) using the Union-Find data
structure [63] for implementing SCCs, and it implements ex-
plicit marking of SCCs corresponding to the Dead and Alive
subsets of V . The event of adding a new batch of edges to E
causes an incremental cycle detection algorithm to be exe-
cuted, in order to identify new SCCs, followed by recursively
marking new Dead and Alive vertices. For the incremental
cycle detection and SCC maintenance, we implemented a
simplified variant of known efficient graph algorithms, simi-
lar in spirit to what is described in [10].

6 Experiments

We have implemented symbolic Boolean derivatives as an
extension to Z3, together with the strategies for normalizing
derivatives and the sound decision procedure described in
Section 5. Our solver, dZ3, fully replaces the existing solver

628

PLDI ’21, June 20ś25, 2021, Virtual, Canada Caleb Stanford, Margus Veanes, and Nikolaj Bjùrner

Solver Solved Avg (s) Med (s)

NB B H NB B H NB B H

dz3 95.6% 88.1% 87.6% 0.47 1.28 1.85 0.016 0.06 0.08

cvc4 97.6% 86.4% 57.3% 0.31 1.92 4.82 0.019 0.30 3.18
z3str3 94.3% 60.9% ś 0.64 4.02 ś 0.018 0.03 ś
z3trau 89.6% 48.7% ś 1.22 6.56 ś 0.020 TO ś
ostrich 84.5% 42.3% 85.4% 2.59 6.41 2.34 1.091 TO 0.92
z3 81.8% 29.0% 41.6% 1.99 7.70 6.05 0.018 TO TO

(a) Summary of the experimental results on non-Boolean (NB), Boolean (B), and additional handcrafted benchmarks (H): percent of
benchmarks solved, average time to solve, and median time to solve. Best solver is in bold. For comparison, errors, wrong answers, and
crashes are treated as timeouts (10s). The average time in the table is plotted on the left.

(b) Cumulative plots on non-Boolean (left), Boolean (middle), and handcrafted (right) benchmarks. The x-axis is time on a log-scale, and the
y-axis shows number of benchmarks solved in that amount of time or less.

Benchmark Quantity Benchmark Quantity Benchmark Quantity

Kaluza 5452 Norn 147 Date 20
Slog 1976 SyGuS-qgen 343 Password 34
Norn 813 RegExLib Intersection 55 Boolean + Loops 21

RegExLib Subset 100 Determinization Blowup 14

Total Non-Boolean 8241 Total Boolean 645 Total Handwritten 89

(c) Benchmarks used for the evaluation. Existing benchmark suites (Kaluza, Slog, Norn, SyGuS, RegExLib) are classified as Boolean if they
contain multiple constraints on the same regex.

Figure 4. Results of the experimental evaluation (a-b), and benchmarks used (c).

in Z3 for regular expression constraints which is based on
symbolic automata. We carried out a series of experiments to
compare our solver with Z3 and other state-of-the-art string
solvers. Our interest is in evaluating the following questions:

Q1 Overall, does dZ3 match the performance of exist-
ing regular expression solvers on standard string con-
straint benchmarks?

Q2 How does dZ3 specifically fare on standard bench-
marks which contain Boolean combinations of regular
expression constraints on the same regex (which are
equivalent to Boolean operations on ERE), compared
to the state of the art?

Q3 Finally, how does dZ3 fare on handcrafted difficult
examples, designed to showcase the interaction of
Boolean operations with other regex operators, com-
pared to the state of the art?

To evaluate Q1, we assembled a collection of standard
benchmark suites from the literature: Kaluza, Norn, Slog,
and SyGuS-qgen, as collected by SMT-LIB [59, 60]. We add
to this an existing set of benchmarks provided in [12, 58],
which we call RegExLib: these ask for the answer to an inter-
section or containment problem between regular expressions
taken from regexlib.com, an online library of regular expres-
sions. From all of these sets, we removed benchmarks that
do not contain any regular expression constraints, and some
Norn benchmarks which contained existential quantifica-
tion, as this was not allowed by the stated logic. We note
that the Kaluza benchmarks represent the easiest cases of
these, dominated by constraints that can be simplified to
word equations, and serve as a baseline reference in this
regard.

629

regexlib.com

Symbolic Boolean Derivatives for Efficiently Solving Extended Regular Expression Constraints PLDI ’21, June 20ś25, 2021, Virtual, Canada

To evaluate Q2, the challenge arises of how to fairly com-
pare with solvers which do not support explicit intersec-
tion and complement. To address this issue, we observe that
although most standard benchmarks do not explicitly con-
tain intersection and complement, a large number of bench-
marks contain multiple regex membership constraints on
the same string, which is logically equivalent to (and can be
treated as) a Boolean combination. Therefore, we parsed the
benchmarks from Q1 to divide them into simple benchmarks,
which do not contain multiple regular expression constraints
on the same string variable, and Boolean benchmarks, which
contain at least one instance of multiple regular expression
constraints on the same string. Our hypothesis is that our
solver is particularly suited to the Boolean case, as it trans-
lates such constraints succinctly to EREs.

To evaluate Q3, we wrote four sets of examples. Unlike in
Q2, we incorporate explicit (rather than implicit) intersection
and complement. The first set contains problems involving
date constraints, where a string is constrained to look like
a date, as in Figure 1: the questions ask, e.g. whether one
such constraint implies another or whether an intersection
of such constraints is satisfiable. Such constraints naturally
incorporate Boolean combinations: for example, if the month
is February, then the day must not be 30 or 31. The second
set contains problems involving password constraints, e.g. a
password must contain at least one number and a letter, and
no more than 20 characters, like the example in Section 2.
Third, we have a set of regexes where Boolean operations
interact with concatenation and iteration, in particular to
create nontrivial unsatisfiable regexes. These also serve to
test the dead state elimination described in Section 5. Finally,
we include classical examples which have small nondeter-
ministic state spaces but blowup when determinized, to test
efficiency of derivatives in avoiding determinization: these
include variants of (.*a.{k})&(.*b.{k}) where k is con-
stant. Together with the benchmarks for Q1 and Q2, the
number of benchmarks from various sources is summarized
in Figure 4(c). The RegExLib benchmarks as well as the ad-
ditional handwritten examples have been made available
at https://github.com/cdstanford/regex-smt-benchmarks.

For all experiments, we compared dZ3 with a representa-
tive list of state-of-the-art and actively maintained solvers:
Z3 [26, 68], Z3str3[11, 70], Z3-Trau [1, 69], CVC4 [9, 21, 42,
43], and Ostrich [20, 50]. Ostrich represents the most modern
tool in the line of solvers including Sloth [32] and Norn [4].
We exclude Z3str3 and Z3-Trau from the Q3 handwritten
examples, since explicit intersection and complement were
not supported at the time of evaluation. We ran each solver
with a 10s timeout, and compared the answer with the cor-
rect label (if provided with the benchmark); otherwise, we
compared with the answer provided by a baseline solver
that appears to be trained (and sound) for the benchmark set
in question: for this purpose we used Ostrich for the Norn
benchmarks and CVC4 for Kaluza, Slog, and SyGuS-qgen (all

others were labeled). If the baseline solver did not return a
result, we marked the answer as łuncheckedž and conser-
vatively considered it correct. An answer of łunknownž is
counted as an error (i.e. unsupported case). In summary, a
correct result can be either sat, unsat, or unchecked, while an
incorrect result can be either wrong, a timeout, or an error.
We further manually inspected solver errors and incorrect
answers to ensure fair classification: we checked to ensure
that these are unsupported cases, bugs, or crashes, and not a
result of a malformed input (we corrected instances of the
latter by replacing the input in question). We followed exist-
ing SMT community practices [13] in our methodology to
summarize and plot the resulting comparisons. The experi-
ments were run on a Dell XPS13 with an Intel Core i7 CPU
and 16GB of RAM.

Results. The results are summarized in Figure 4. dZ3
shows state-of-the-art performance and is consistently the
best or near the best solver Ð in terms of average time,
median time, or number of benchmarks solved, across our
three benchmark sets (Figure 4(a)). dZ3 shows particularly
good performance on Boolean and handwritten benchmarks,
where only CVC4 (on Boolean) and Ostrich (on handwritten)
compare. However, compared to CVC4, dZ3 solves 87% of
the handwritten benchmarks rather than 57.3%; and com-
pared to Ostrich, dZ3 solves 88% of the Boolean benchmarks
rather than 42.3%. No other solver does consistently well in
all three categories. Overall, the plots in Figure 4(b) demon-
strate that our implementation of symbolic Boolean deriva-
tives achieves state-of-the-art performance in practice.

7 Symbolic Boolean Finite Automata

In order to formally study the efficiency of our implementa-
tion, and in particular, the state space of the set of derivatives,
we explore a connection to automata. In particular, we for-
mally define symbolic Boolean finite automata or SBFAs, a
variant of alternating automata adapted to the symbolic set-
ting. We show that derivatives of symbolic extended regexes
correspond to states in a corresponding SBFA, and in the
case of R ∈ B(RE), we prove a theorem that the state space
size is linear in the size of R. This allows us to analyze the
worst-case complexity of our decision procedure. SBFAs will
also prove useful in comparing with alternative approaches
and existing extensions of automata in Section 8.

SBFA. A Symbolic Boolean Finite Automaton or SBFA is a
tupleM = (A,Q, ι, F ,q⊥,∆)whereA is the alphabet theory;
Q is a finite set of states; ι ∈ B(Q) is the initial state com-

bination; F ⊆ Q is the set of final states; q⊥ ∈ Q \ F is the
bottom state; ∆ : Q → TRQ is the transition function such
that ∆(q⊥) = q⊥, where TRQ is defined in Section 4.
We lift the final condition to q ∈ B(Q) denoted νF (q) as

follows: νF (q) iff q ∈ F , νF (p|q) iff νF (p) or νF (q), νF (p&q)

630

https://github.com/cdstanford/regex-smt-benchmarks

PLDI ’21, June 20ś25, 2021, Virtual, Canada Caleb Stanford, Margus Veanes, and Nikolaj Bjùrner

iff νF (p) and νF (q), and νF (~q) iff not νF (q). The definition
of ∆ is lifted similarly to B(Q) → TRQ .

Semantics. The language accepted byM is L(M) = M(ι),
where M : B(Q) → Σ

∗ is given by the following equations:

∀q ∈ B(Q) : M(q) = {ϵ | νF (q)} ∪
⋃

a∈Σ

a ·M(∆(q)(a))

Construction from Regexes. Construction of an SBFA
from a regexR ∈ ERE starts with the initial state combination
ι = R and computes the rest of the states inQ as the fixpoint
of all the states reachable as terminals of δ (q) for q ∈ Q ,
where what constitutes as a terminal depends on the state
granularity and/or normal form of the intended SBFA. In the
granularity that is used below, a terminal of if(φ,τ , ρ) is a
terminal of τ or ρ, a terminal of ~τ is a terminal of τ , and a
terminal of τ ⋄ ρ is a terminal of τ or ρ. If τ ∈ RE then τ is
a terminal. In this case, states (other than potentially ι and
~⊥ =.∗) are themselves not conjunctions or negations.

The regex ⊥, that is the bottom state q⊥, and the dual top
state regex.∗ (= ~⊥) are called trivial. Let Q(τ) denote the
set of all nontrivial terminals of a transition regex τ .
Given a regex R, let δ+(R) denote Q(δ (R)) unioned with

all states of derivatives that can be reached from Q(δ (R)).
Formally, δ+(R), is the least fixed point of the following equa-
tions, where S is a set of regexes,

δ+(R) = Q(δ (R)) ∪ δ+(Q(δ (R))), δ+(S) =
⋃

R∈S

δ+(R).

Observe that δ+(R) is the set of regexes reached after one or
more derivations, which may but need not include R itself,
e.g., δ+(b(ab)*) = {(ab)*, b(ab)*} includes the start regex
while δ+(ab) = {b, ε} does not.

Theorem 7.1. δ+(R) is finite.

Proof. Let Γ = Minterms(ΨR). For a ∈ Σ let â be the minterm
in Γ that contains a. It follows that if â = b̂ then δ (R)(a) =
δ (R)(b) because then if(φ, ε,⊥)(a) = if(φ, ε,⊥)(b), since
for all φ ∈ ΨR and γ ∈ Γ: [[γ]] ⊆ [[φ]] iff [[γ]] ∩ [[φ]] , ∅.
Thus, by Theorem 4.3, we can treat Γ as a finite alphabet
with δ (R)(a) = DBrz

â
(R) where each predicate φ ∈ ΨR in

DBrz
â

(R) is treated equivalently as a choice OR{â | a ∈ [[φ]]}.
The statement now follows from [14, Theorem 5.2] that the
number of dissimilar derivatives of R is finite, where R1 and
R2 are called similar when they are equal modulo & and |

being idempotent, associative, and commutative. □

SBFA(R). The SBFA of R ∈ ERE is defined as follows,
whereQ = δ+(R)∪{R,⊥,.∗} and F = {q ∈ Q | q is nullable}.8

SBFA(R) = (A,Q,R, F ,⊥,δ↾Q)

The following is the correctness theorem of SBFA(R).

8We write δ↾Q to denote δ restricted to the finite set Q Ð to follow the
SBFA definition strictly.

a)

rl

rd

.∗ .r

ϕd

ϕl

& b)
.

rl

rd

.∗

.

..

r

ϕd

ϕd ϕl

ϕl

Figure 5. Two Example Symbolic Boolean Finite Automata
(SBFA) derived from the same regex r .

Theorem 7.2. Let R ∈ ERE and M = SBFA(R). Then for all

q ∈ B(QM), M(q) = L(q). In particular L(M) = L(R).

Proof. The statement follows by proving that ∀q ∈ B(Q) :
v ∈ M(q) ⇔ v ∈ L(q) by induction over |v |. The base case
v = ϵ follows because νF (q) ⇔ ν (q). The induction case is:
av ∈ M(q) iff v ∈ Da(M(q)) iff v ∈ M(δ (q)(a)) iff (by the IH)
v ∈ L(δ (q)(a)) iff (by Theorem 4.3) v ∈ L(DBrz

a (q)) iff (by [14,
Theorem 3.1]) av ∈ L(q). □

Theorem 7.3 is another key result. Here a regex is normal-

ized when all concatenations are in right-associative form.
A regex is clean if it contains no ⊥ and no unsat predicates.
Let ♯(R) denote the number of predicate nodes in R.

Theorem 7.3. Let R ∈ B(RE). If R is clean and normalized

then |QSBFA(R) | ≤ ♯(R) + 3.

Proof sketch. The proof relies on the following lemma: if
X ,Z ∈ RE are clean and normalized, thenδ+(XZ) = δ+(X)Z∪
δ+(Z); and if X = S∗ then δ+(X) = δ+(S)X . The proof of the
lemma proceeds by induction over X . For the case X = S∗Y ,
we need to show the equationδ+(S∗W) = δ+(S)S∗W∪δ+(W).
The main result then proceeds by induction on R, where by
normalization we write R = R1·Z where R1 is not a concate-
nation and possibly Z = ε , and do casework on R1. □

In contrast, for a general R ∈ ERE we do not have a
linear bound on |QSBFA(R) | because the lifting in (τ&ρ)·R =

lift(τ&ρ)·R that first transforms τ&ρ into DNF may lead to
an exponential blowup.

Example 7.4. Recall rd = .∗\d.∗ from Section 2 and let
rl =.∗[a-z].∗ . So rl matches any string containing at least
one lower-case letter. Let φl = [a-z] and φd = \d. Let
r = rl & rd. Then

δ (rl) = rl | if(φl,.∗,⊥) ≡ if(φl,.∗, rl)

δ (rd) = rd | if(φd,.∗,⊥) ≡ if(φd,.∗, rd)

δ (r) = δ (rl) & δ (rd) = if(φl,.∗, rl) & if(φd,.∗, rd)

SBFA(r) is shown in Figure 5a. The DNF equivalent is shown
in Figure 5b where the default operation is disjunction. □

8 Related Work

Here we provide a formal study of the relationship between
symbolic derivatives and related formalisms that can be used

631

Symbolic Boolean Derivatives for Efficiently Solving Extended Regular Expression Constraints PLDI ’21, June 20ś25, 2021, Virtual, Canada

in the context of decision procedures for ERE. In particu-
lar, we first compare with classical derivatives of regular
expressions and existing extensions. Next, we compare with
existing extensions of classical finite automata and symbolic
automata. Then we discuss work related to string solvers and
implementation of the proposed techniques in the context
of SMT solvers. Finally, we compare to the use of deriva-
tives in matching, and to existing work on extended regular
expressions over a finite alphabet.

8.1 Relation to Classical Derivatives

The theory of derivatives of regular expressions has evolved
in parallel and largely independently of the mainstream au-
tomata research. One of the key features of derivatives is that
they provide a lazy and a more algebraic perspective on how
finite automata and their regular expression counterparts are
related; basic theoretical properties between various classical
automata and their derivatives are discussed in [5].
The connection between ERE (modulo A) and symbolic

derivatives was initially studied in-depth in [36], with the
main application of language containment in ERE. An impor-
tant side result [36, Section 5] is that classical derivatives do
not directly generalize to predicates, and a workaround is to
combine positive and negative derivatives. We have shown
here that a remedy is to use conditionals.

In the following we discuss the exact relationship to well-
established related classical notions, first Brzozowski deriva-
tives [14] and then Antimirov derivatives [6] and its gener-
alization to ERE [17]. We show how they relate to δ (R) for
R ∈ RE. Assume Σ is finite, let a ∈ Σ, and let Ra = δ (R)(a).

Brzozowski Derivatives. Ra is precisely the Brzozowski
derivative [14, Theorem 3.1] Da(R) of R w.r.t. a.9 If regexes
are viewed as DFA states, Da is the transition function for a.

Antimirov Derivatives. If Ra = ⊥ then ∂a(R) = ∅ else
Ra = |ni=1Ri and ∂a(R) = {Ri }

n
i=1 is the Antimirov deriva-

tive [6, Definition 2.8] of R w.r.t. a as a set of partial deriva-
tives Ri . When viewed as states, each Ri corresponds to a
separate target state of a transition (R, a,Ri) of an NFA.

Partial Derivatives of ERE. The Antimirov construction
is extended to ERE in [17]. The formal construction ∂

∂a
(R)

in [17, Definition 2] inlines negation, inlines concatenation
propagation, and inlines conjunction distribution, in the defi-
nition of ∂

∂a
so that the result is essentially an |-set of &-sets.

Intuitively ∂

∂a
(R) = DNF(Ra).

8.2 Relation to Classical Automata

Parallel finite automata by Kozen [38], subsequently renamed
to alternating finite automata or AFAs in [18], and Boolean

finite automata or BFAs by Brzozowski and Leiss [15], were

9Da applies to the whole ERE class.

introduced independently (cf [15, p.25]) and use fairly dif-
ferent formalizations and application contexts in doing so.
While both work over a finite state space Q and are equiva-
lent classically, their differing notation becomes important
symbolically: BFAs use transitions to B(Q) while AFAs use

transitions to 22
Q

encoding DNF(B+(Q)). We provide a de-
scription of SBFAs over finite alphabets as BFAs next.

BFA. LetM = (A,Q, ι, F ,q⊥,∆) be a SBFA. The equivalent
BFA ofM is BFA(M) = (Σ,Q, λ(q,a).∆(q)(a), ι, F).

Proposition 8.1. L(M) = L(BFA(M)) with L as in [15, p.25].

8.3 Relation to Symbolic Extensions of Automata

Symbolic alternating finite automata (SAFAs) [22] and al-
ternating data automata (ADAs) [35] are two orthogonal
symbolic extensions of finite automata, in the former case
via SFAs and in the latter case via data automata [34].

Symbolic Alternating Finite Automata. An SAFA [22]
(modulo A) is a generalization of an SFA by allowing tran-
sition targets to be elements in B+(Q) where Q is a finite
set of states. There is an initial state combination ι ∈ B+(Q),
a set of final states F ⊆ Q , and a finite set of transitions
∆ ⊆ Q × Ψ × B+(Q). LetMsafa = (A,Q, ι, F ,∆)

The equivalent SBFA ofMsafa is defined as follows with a
bottom state q⊥ < Q , and where OR(∅) = q⊥.

SBFA(Msafa) = (A,Q ∪ {q⊥}, ι, F ,q⊥,

{q⊥ 7→q⊥} ∪
⋃

q∈Q {q 7→OR{if(ψ ,p,q⊥) | (q,ψ ,p) ∈ ∆}})

Proposition 8.2. L(SBFA(Msafa)) = L (Msafa)

Going from SBFAM = (A,Q, ι, F ,q⊥,∆) to SAFA is possi-
ble but not easy in general. This is also related to why ~ is not
supported in SAFA [22]. W.l.o.g., assume that ∆ does not con-
tain complement. This is achieved by adding negated states q̄
to Q and for each negated state q̄ letting ∆(q̄) = NNF(~∆(q))

whereNNF(τ) computes the negation normal form of τ mean-
ing that all negations are pushed down to states. In par-
ticular, NNF(~if(φ,τ , ρ)) = if(φ,NNF(~τ),NNF(~ρ)), and
NNF(~q) = q̄. The other cases are standard.
The equivalent SAFA of M is defined as follows where

τ (α) = τ (a) for some a ∈ [[α]] Ð which is well-defined
(independent of choice) due to the local mintermization.

SAFA(M) = (A,Q,NNF(ι), F ,

{(q,α ,∆(q)(α)) | q ∈ Q,α ∈ Minterms(Guards(∆(q)))})

Proposition 8.3. L(M) = L (SAFA(M))

The problem with this construction is that |Minterms(Γ)|

can be exponential in |Γ | so the construction of SAFA(M) is
exponential in the worst case. The same problem arises in
SAFA normalization [22] used for complementation.

AlternatingDataAutomata. The expressiveness of this
class of automata goes far beyond regular languages, be-
cause registers are allowed to carry information across state

632

PLDI ’21, June 20ś25, 2021, Virtual, Canada Caleb Stanford, Margus Veanes, and Nikolaj Bjùrner

boundaries, so that consecutive data elements in traces are
functionally related. Data automata, as defined in [34], use
registers and have the expressive power of general Turing
machines. In an alternating data automaton [35], arbitrary
Boolean combinations of predicates can be used to relate
before and after values of registers. It is stated in [34] that
complement of alternating data automata is linear unlike
in [22]. We are not aware of work relating ERE with ADAs.

Conditional Branching. Conditional transitions (with-
out Boolean combinations of states) have been used before in
a special class of deterministic symbolic transducers called
Branching Symbolic Transducers or BSTs [55]. The main mo-
tivation behind BSTs is in the context of data processing
pipelines where they preserve condition evaluation order
and in this way support more direct and efficient serial code
generation. A BST has a finite state space Q , and when the
BST acts as a finite state automaton, its rules correspond to a
subset of TRQ without Boolean operations. Conditional tran-
sitions are also used in the implementation of MONA [37]
where transitions are multi-terminal BDDs whose terminals
are states. We apply similar principles in dZ3 to represent
transition regexes in a canonical way.

8.4 Related Work in SMT

String and regex constraints have been the focus of both SMT
and CP solving communities, with several tools being devel-
oped over the past decade. A theory of strings with regexes is
a standard part of the SMT-LIBv2 format [64]. String solvers
are integrated in the CDCL(T) architecture [42, 49]. From the
CP community, the MiniZinc format integrates membership
constraints over regular languages presented as either DFAs
or NFAs [47]. The solver presented in [43] is closely related
to ours in that it relies on Antimirov derivatives to reduce
positive regular expression membership constraints. It di-
verges from our approach as it handles intersection similar
to [17], instead of using symbolic derivatives. Consistent
with what the empirical evaluation suggests, complementa-
tion is not treated in depth and is essentially out of scope
of this work. Ostrich [20] is advertised as a symbolic solver
for string formulas that come from path constraints, and its
solver is based on solving for pre-images (see also the earlier
solvers Sloth [32] and Norn [4]). Our evaluation suggests
that Ostrich performs extremely well, restricted to certain
benchmark sets. While full handling of regexes seems out
of scope of Z3-Trau, flat automata were recently applied [1]
for solving symbolic constraints that include string-to-int
and int-to-string conversions. Z3str3 [11] and its predeces-
sor Z3str2 [71] integrate several innovations around string
equality solving. Many of the advances previously devel-
oped in S3 [65] are now integrated within Z3’s default string
solver, and hence dZ3 benefits from these results. ZELKOVA
is a tool used internally by Amazon to check AWS policy

configurations, it uses a custom NFA engine based extension
of Z3 to handle regex constraints [8].

8.5 Related Use of Derivatives in Matching

Regular expression matchers over symbolic alphabets, such
as SRM [67], use Brzozowski derivatives. There is a stark
contrast between the problems of matching and analysis
(SMT solving). In matching, the next concrete character is
always known, whereas in solving, the next character in
the string may be unknown. This is why transition regexes
(conditionals) are necessary in our case, whereas they are
not necessary in matching. It is crucial to not assume that the
next character is known in SMT, because the regex engine
is part of a broader solver loop where different constraints
exist on various characters. Moreover, SRM builds minterms

upfront for a given regex R Ð which is one of the main
problems we want to avoid using conditionals.

8.6 Related Work on Extended Regular Expressions

Regular expressions over a finite alphabet extended with in-
tersection and complement (ERE) have previously been stud-
ied from a complexity standpoint and for practical use cases.
From a complexity viewpoint, emptiness is shown to be non-
elementary [62] for general ERE and PSPACE-hard [33, 39]
for the subclass with intersection only. Succinctness of ERE
over classical regular expressions is also non-elementary [62]
(see Theorem 25 in [27]), and is studied in more detail in [28].
More efficient solutions can be given focused on the ERE

membership problem [41], or in a separate vein, focused on
algebraic rewrites rather than complexity [7]. Finally, ERE
membership specifications have been fruitfully applied to
the problems of testing and monitoring [54, 56].

9 Conclusion

In this paper, we generalized the finite-alphabet based work
of derivatives to work over a symbolic alphabet and to incor-
porate Boolean combinations, and showed how to use such
symbolic Boolean derivatives to solve regular expression
membership constraints in SMT. Our solver, dZ3, achieves
state-of-the-art performance on standard benchmark sets,
and significant speedup on constraints involving intersection
and complement, where no existing solver does consistently
well across benchmark sets. While we have experimentally
validated the main ideas, many further promising directions
remain to be explored: for example, generalizing concrete
regex constraints to constraints over regex and string vari-
ables, and designing heuristics that capture common usage
patterns and that can be exploited by CDCL-based solvers.

Acknowledgments

We would like to thank our shepherd, Viktor Kunčak, and
all of the anonymous reviewers for their valuable help in
improving the paper.

633

https://github.com/Z3Prover/z3

Symbolic Boolean Derivatives for Efficiently Solving Extended Regular Expression Constraints PLDI ’21, June 20ś25, 2021, Virtual, Canada

References
[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi

Diep, Julian Dolby, Petr Janku, Hsin-Hung Lin, Lukás Holík, and Wei-
Cheng Wu. 2020. Efficient handling of string-number conversion.
In Proceedings of the 41st ACM SIGPLAN International Conference on

Programming Language Design and Implementation, PLDI 2020, London,

UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.).
ACM, 943ś957. https://doi.org/10.1145/3385412.3386034

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi
Diep, Lukáš Holík, Ahmed Rezine, and Philipp Rümmer. 2018. Trau:
SMT solver for string constraints. In 2018 Formal Methods in Computer

Aided Design (FMCAD). IEEE, 1ś5.
[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukáš

Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman. 2014. String
constraints for verification. In International Conference on Computer

Aided Verification. Springer, 150ś166.
[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukáš

Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman. 2015. Norn:
An SMT solver for string constraints. In International Conference on

Computer Aided Verification. Springer, 462ś469.
[5] Cyril Allauzen and Mehryar Mohri. 2006. A unified construction

of the Glushkov, Follow, and Antimirov automata. In International

Symposium onMathematical Foundations of Computer Science. Springer,
110ś121.

[6] Valentin Antimirov. 1995. Partial Derivatives of Regular Expressions
and Finite Automata Constructions. Theoretical Computer Science 155
(1995), 291ś319.

[7] Valentin M Antimirov and Peter D Mosses. 1995. Rewriting extended
regular expressions. Theoretical Computer Science 143, 1 (1995), 51ś72.

[8] John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, An-
drew Gacek, Kasper Sùe Luckow, Neha Rungta, Oksana Tkachuk, and
Carsten Varming. 2018. Semantic-based Automated Reasoning for
AWS Access Policies using SMT. In 2018 Formal Methods in Com-

puter Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - No-

vember 2, 2018, Nikolaj Bjùrner and Arie Gurfinkel (Eds.). IEEE, 1ś9.
https://doi.org/10.23919/FMCAD.2018.8602994

[9] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli.
2011. Cvc4. In International Conference on Computer Aided Verification.
Springer, 171ś177.

[10] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert Endre
Tarjan. 2011. A New Approach to Incremental Cycle Detection and
Related Problems. CoRR abs/1112.0784 (2011). http://arxiv.org/abs/

1112.0784

[11] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3: A
string solver with theory-aware heuristics. In 2017 Formal Methods in

Computer Aided Design (FMCAD). IEEE, 55ś59.
[12] Nikolaj Bjùrner, Vijay Ganesh, Raphael Michel, and Margus Veanes.

2012. An SMT-LIB Format for Sequences and Regular Expressions. In
SMT’12, P. Fontaine and A. Goel (Eds.). 76ś86.

[13] Martin Brain, James H Davenport, and Alberto Griggio. 2017. Bench-
marking Solvers, SAT-style.. In SC2 ISSAC.

[14] Janusz A. Brzozowski. 1964. Derivatives of regular expressions. JACM
11 (1964), 481ś494.

[15] J. A. Brzozowski and E. Leiss. 1980. On equations for regular languages,
finite automata, and sequential networks. Theoretical Computer Science

10 (1980), 19ś35.
[16] Tevfik Bultan, Fang Yu, Muath Alkhalaf, and Abdulbaki Aydin. 2017.

String Analysis for Software Verification and Security. Springer.
[17] Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. 2011.

Partial Derivatives of an Extended Regular Expression. In Language

and Automata Theory and Applications, LATA 2011 (LNCS, Vol. 6638).
Springer, 179ś191.

[18] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. 1981.
Alternation. JACM 28, 1 (1981), 114ś133.

[19] Taolue Chen, Matthew Hague, Jinlong He, Denghang Hu, An-
thony Widjaja Lin, Philipp Rümmer, and Zhilin Wu. 2020. A Decision
Procedure for Path Feasibility of String Manipulating Programs with
Integer Data Type. In International Symposium on Automated Technol-

ogy for Verification and Analysis. Springer, 325ś342.
[20] Taolue Chen, Matthew Hague, Anthony W Lin, Philipp Rümmer, and

Zhilin Wu. 2019. Decision procedures for path feasibility of string-
manipulating programs with complex operations. Proceedings of the
ACM on Programming Languages 3, POPL (2019), 1ś30.

[21] CVC4. 2020. https://github.com/CVC4/CVC4.
[22] Loris D’Antoni, Zachary Kincaid, and Fang Wang. 2018. A Symbolic

Decision Procedure for Symbolic Alternating Finite Automata. Elec-
tronic Notes in Theoretical Computer Science 336 (2018), 79ś99.

[23] Loris D’Antoni and Margus Veanes. 2014. Minimization of Symbolic
Automata. ACM SIGPLAN Notices ś POPL’14 49, 1 (2014), 541ś553.
https://doi.org/10.1145/2535838.2535849

[24] Loris D’Antoni and Margus Veanes. 2020. Automata Modulo Theories.
Commun. ACM (2020).

[25] James C Davis. 2019. Rethinking Regex engines to address ReDoS. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering. 1256ś1258.
[26] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT

Solver. In TACAS’08 (LNCS). Springer, 337ś340.
[27] Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-Wei Wang. 2005.

Regular expressions: New results and open problems. J. Autom. Lang.

Comb. 10, 4 (2005), 407ś437.
[28] Wouter Gelade and Frank Neven. 2008. Succinctness of the com-

plement and intersection of regular expressions. arXiv preprint

arXiv:0802.2869 (2008).
[29] Dan Gusfield. 1997. Algorithms on stings, trees, and sequences: Com-

puter science and computational biology. Acm Sigact News 28, 4 (1997),
41ś60.

[30] J.G. Henriksen, J. Jensen, M. Jùrgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. 1995. Mona: Monadic Second-order logic in practice.
In TACAS ’95 (LNCS, Vol. 1019). Springer.

[31] Hossein Hojjat, Philipp Rümmer, and Ali Shamakhi. 2019. On Strings
in Software Model Checking. In APLAS (LNCS, Vol. 11893), A. Lin (Ed.).
Springer.

[32] Lukáš Holík, Petr Janků, Anthony W Lin, Philipp Rümmer, and Tomáš
Vojnar. 2017. String constraints with concatenation and transducers
solved efficiently. Proceedings of the ACM on Programming Languages

2, POPL (2017), 1ś32.
[33] H. B. Hunt III. 1973. The equivalence problem for regular expressions

with intersections is not polynomial in tape. TR 73-161. Department of
Computer Science, Cornell University, Ithaca, New York.

[34] R. Iosif, A. Rogalewicz, and T. Vojnar. 2016. Abstraction refinement and
antichains for trace inclusion of infinite state systems. In TACAS’16

(LNCS, Vol. 9636). Springer, 71ś89.
[35] Radu Iosif and Xiao Xu. 2018. Abstraction Refinement for Emptiness

Checking of Alternating Data Automata. In TACAS’18, Dirk Beyer and
Marieke Huisman (Eds.). Springer, 93ś111.

[36] Matthias Keil and Peter Thiemann. 2014. Symbolic Solving of Extended
Regular Expression Inequalities. In FSTTCS’14 (LIPIcs). 175ś186.

[37] Nils Klarlund, Anders Mùller, and Michael I. Schwartzbach. 2002.
MONA Implementation Secrets. International Journal of Foundations
of Computer Science 13, 4 (2002), 571ś586.

[38] Dexter Kozen. 1976. On parallelism in Turing machines. In 17th Annual
Symposium on Foundations of Computer Science, FOCS’76. IEEE Xplore,
89ś97.

[39] Dexter Kozen. 1977. Lower bounds for natural proof systems. In 18th

Annual Symposium on Foundations of Computer Science (SFCS 1977).
254ś266. https://doi.org/10.1109/SFCS.1977.16

634

https://doi.org/10.1145/3385412.3386034
https://doi.org/10.23919/FMCAD.2018.8602994
http://arxiv.org/abs/1112.0784
http://arxiv.org/abs/1112.0784
https://doi.org/10.1145/2535838.2535849
https://doi.org/10.1109/SFCS.1977.16

PLDI ’21, June 20ś25, 2021, Virtual, Canada Caleb Stanford, Margus Veanes, and Nikolaj Bjùrner

[40] Dexter Kozen. 1997. Kleene algebra with tests. Transactions on Pro-

gramming Languages and Systems 19 (1997), 427ś443.
[41] Orna Kupferman and Sharon Zuhovitzky. 2002. An improved algo-

rithm for the membership problem for extended regular expressions.
In International Symposium on Mathematical Foundations of Computer

Science. Springer, 446ś458.
[42] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and

Morgan Deters. 2014. A DPLL (T) theory solver for a theory of strings
and regular expressions. In International Conference on Computer Aided

Verification. Springer, 646ś662.
[43] Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli,

and Clark Barrett. 2015. A Decision Procedure for Regular Membership
and Length Constraints over Unbounded Strings?. In FroCoS 2015:

Frontiers of Combining Systems (LNCS, Vol. 9322). Springer, 135ś150.
[44] Blake Loring, DuncanMitchell, and Johannes Kinder. 2019. Sound regu-

lar expression semantics for dynamic symbolic execution of JavaScript.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation. 425ś438.
[45] Microsoft. 2020. Azure Resource Manager documentation.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/.
[46] Microsoft. 2020. .NET regular expressions.

https://docs.microsoft.com/en-us/dotnet/standard/base-
types/regular-expressions.

[47] MiniZinc. 2020. https://www.minizinc.org.
[48] Mehryar Mohri. 1996. On some applications of finite-state automata

theory to natural language processing. Natural Language Engineering
2, 1 (1996), 61ś80.

[49] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. 2006. Solving
SAT and SAT Modulo Theories: From an abstract DavisśPutnamś
LogemannśLoveland procedure to DPLL(T). J. ACM 53, 6 (2006),
937ś977. https://doi.org/10.1145/1217856.1217859

[50] Ostrich. 2020. https://github.com/uuverifiers/ostrich/.
[51] Scott Owens, John Reppy, and Aaron Turon. 2009. Regular-expression

derivatives re-examined. Journal of Functional Programming 19, 2
(2009), 173ś190.

[52] passwords generator.org. 2020. https://passwords-generator.org/.
[53] Damien Pous. 2015. Symbolic Algorithms for Language Equivalence

and Kleene Algebra with Tests. ACM SIGPLAN Notices ś POPL’15 50,
1 (2015), 357âĂŞ368. https://doi.org/10.1145/2775051.2677007

[54] Grigore Roşu and Mahesh Viswanathan. 2003. Testing extended regu-
lar language membership incrementally by rewriting. In International

Conference on Rewriting Techniques and Applications. Springer, 499ś
514.

[55] Olli Saarikivi, Margus Veanes, ToddMytkowicz, andMadanMusuvathi.
2017. Fusing Effectful Comprehensions. In ACM SIGPLAN Notices ś

PLDI’17. ACM.

[56] Koushik Sen and Grigore Roşu. 2003. Generating optimal monitors for
extended regular expressions. Electronic Notes in Theoretical Computer

Science 89, 2 (2003), 226ś245.
[57] Reetinder Sidhu and Viktor K Prasanna. 2001. Fast regular expression

matching using FPGAs. In The 9th Annual IEEE Symposium on Field-

Programmable Custom ComputingMachines (FCCM’01). IEEE, 227ś238.
[58] SMT. 2012. https://www.microsoft.com/en-

us/research/wp-content/uploads/2016/02/nbjorner-
microsoft.automata.smtbenchmarks.zip.

[59] SMTLib. 2020. https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-
benchmarks/QF_S.

[60] SMTLib. 2020. https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-
benchmarks/QF_SLIA.

[61] stackoverflow.com. 2020. Regex for password must con-
tain at least eight characters, at least one number and
both lower and uppercase letters and special characters.
https://stackoverflow.com/questions/19605150/regex-for-password-
must-contain-at-least-eight-characters-at-least-one-number-a.

[62] L. J. Stockmeyer and A. R. Meyer. 1973. Word Problems Requiring
Exponential Time(Preliminary Report). In Proceedings of the Fifth An-

nual ACM Symposium on Theory of Computing, STOC’73. ACM, 1âĂŞ9.
https://doi.org/10.1145/800125.804029

[63] Robert E. Tarjan. 1975. Efficiency of a good but not linear set union
algorithm. JACM 22 (1975), 215ś225.

[64] Cesare Tinelli, Clark Barrett, and Pascal Fontaine. 2020.
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml.

[65] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A Sym-
bolic String Solver for Vulnerability Detection in Web Applications.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security (Scottsdale, Arizona, USA) (CCS ’14). Asso-
ciation for Computing Machinery, New York, NY, USA, 1232ś1243.
https://doi.org/10.1145/2660267.2660372

[66] Margus Veanes, Nikolaj Bjùrner, and Leonardo de Moura. 2010. Sym-
bolic Automata Constraint Solving. In Logic for Programming, Artificial

Intelligence, and Reasoning. LPAR 2010 (LNCS, Vol. 6397), C.G. Fermüller
and A. Voronkov (Eds.). Springer, 640ś654.

[67] Margus Veanes, Olli Saarikivi, Tiki Wan, and Eric Xu. 2019. Symbolic
Regex Matcher. In TACAS’19 (LNCS). Springer.

[68] Z3. 2020. https://github.com/z3prover/z3.
[69] Z3-Trau. 2020. https://github.com/diepbp/z3-trau.
[70] Z3str3. 2020. https://sites.google.com/site/z3strsolver/.
[71] Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Murphy

Berzish, Julian Dolby, and Xiangyu Zhang. 2017. Z3str2: an efficient
solver for strings, regular expressions, and length constraints. Formal

Methods in System Design 50, 2-3 (2017), 249ś288.

635

https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/2775051.2677007
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/2660267.2660372

	Abstract
	1 Introduction
	2 Motivating Running Example
	3 Preliminaries
	4 Symbolic Derivatives
	4.1 Lift Rules

	5 Solving Extended Regular Expression Constraints in SMT
	6 Experiments
	7 Symbolic Boolean Finite Automata
	8 Related Work
	8.1 Relation to Classical Derivatives
	8.2 Relation to Classical Automata
	8.3 Relation to Symbolic Extensions of Automata
	8.4 Related Work in SMT
	8.5 Related Use of Derivatives in Matching
	8.6 Related Work on Extended Regular Expressions

	9 Conclusion
	Acknowledgments
	References

