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The goal of text generation is to make machines express in human language. It is one of the most important
yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder
models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output
text. However, the input text alone often provides limited knowledge to generate the desired output, so the
performance of text generation is still far from satisfaction in many real-world scenarios. To address this
issue, researchers have considered incorporating various forms of knowledge beyond the input text into the
generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we
present a comprehensive review of the research on knowledge enhanced text generation over the past five
years. The main content includes two parts: (i) general methods and architectures for integrating knowledge
into text generation; (ii) specific techniques and applications according to different forms of knowledge data.
This survey can have broad audiences, researchers and practitioners, in academia and industry.
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1 INTRODUCTION
Text generation, which is often formally referred as natural language generation (NLG), is one of
the most important yet challenging tasks in natural language processing (NLP) [49]. NLG aims
at producing understandable text in human language from linguistic or non-linguistic data in a
variety of forms such as textual data, numerical data, image data, structured knowledge bases, and
knowledge graphs. Among these, text-to-text generation is one of the most important applications
and thus often referred as “text generation”. Researchers have developed numerous technologies
and a wide range of applications for this task [50, 66, 142, 168]. Text generation takes text (e.g., a
sequence, keywords) as input, processes the input text into semantic representations, and generates
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desired output text. For example, machine translation generates text in a different language based
on the source text; summarization generates an abridged version of the source text to include
salient information; question answering (QA) generates textual answers to given questions; dialogue
system supports chatbots to communicate with humans with generated responses.
With the recent resurgence of deep learning technologies [78], deep neural NLG models have

achieved remarkable performance in enabling machines to understand and generate natural lan-
guage. A basic definition of the text generation task is to generate an expected output sequence from
a given input sequence, called sequence-to-sequence (Seq2Seq). The Seq2Seq task and model were
first introduced in 2014 [29, 135]. It maps an input text to an output text under encoder-decoder
schemes. The encoder maps the input sequence to a fixed-sized vector, and the decoder maps the
vector to the target sequence. Since then, developing NLG systems has rapidly become a hot topic.
Various text generation models have been proposed under deep neural encoder-decoder architec-
tures. Popular architectures include recurrent neural network (RNN) encoder-decoder [29, 135],
convolutional neural network (CNN) encoder-decoder [51], and Transformer [139]. The attention
mechanism [4] and copy/pointing mechanism [54, 123] are two widely used mechanisms to improve
the performance of generation models. Encoder-decoder models have been used for various NLG
tasks such as machine translation [168], summarization [88].
Nevertheless, the input text alone contains limited knowledge to support neural generation

models to produce the desired output, so the performance of generation is still far from satisfaction
in many real-world scenarios. For example, in dialogue systems, conditioning on only the input text,
a text generation system often produces trivial or non-committal responses of frequent words or
phrases in the corpus [102, 158, 180], such as “Me too.” or “Oh my god!” given the input text “My skin
is so dry.” These mundane responses lack meaningful content, in contrast to human responses rich in
knowledge. In comparison, humans are constantly acquiring, understanding, and storing knowledge
so that the learned knowledge from broader sources can be employed to understand the current
situation in communicating, reading, and writing. For instance, in conversations, people often
first select concepts from related topics (e.g., sports, food), then organize them into understandable
content to respond; for summarization, people tend to write summaries containing keywords used
in the input document and perform necessary modifications to ensure grammatical correctness and
fluency; in question answering (QA), people use commonsense or professional knowledge pertained
to the question to infer the answer. Therefore, it is often the case that knowledge beyond the input
sequence is required to produce informative output text.

1.1 What is Knowledge-enhanced Text Generation?
In general, knowledge is a familiarity, awareness, or understanding that coalesces around a particular
subject [61]. In NLG systems, knowledge is an awareness and understanding of the input text and
its surrounding context. This knowledge can be learnt by many different methods and from various
information sources, including but not limited to keywords, topics, linguistic features, knowledge
bases, knowledge graphs, and grounded texts (see Figure 1). In other words, these sources provide
information (e.g., commonsense triples, topic words, reviews, background documents) that can be
used as knowledge through different neural representation learning methods, and then applied to
enhance the process of text generation. The research direction of incorporating knowledge into
text generation is known as knowledge-enhanced text generation.

Problem 1 (Knowledge-enhanced Text Generation). Given a text generation problem where
the system is given an input sequence 𝑋 , and aims to generate an output sequence 𝑌 Assume we
also have access to additional knowledge denoted as 𝐾 . Knowledge-enhanced text generation aims
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Fig. 1. Categorization of information sources and methods used in knowledge-enhanced text generation
systems. Knowledge can be learnt from various information sources, and then integrated into the generation
process by a number of methods. Information sources and methods are not limited to the ones listed above.

to incorporate the knowledge 𝐾 to enhance the generation of 𝑌 given 𝑋 , through leveraging the
dependencies among the input, knowledge, and output.

Many existing knowledge-enhanced text generation systems have demonstrated promising
performances on generating informative, logical, and coherent texts. In dialogue system, a topic-
aware Seq2Seq model helps understand the semantic meaning of an input sequence and generate a
more informative response such as “Then hydrate and moisturize your skin.” to the aforementioned
example input “My skin is so dry.” In summarization, knowledge graph helps produce a structured
summary and highlight the proximity of relevant concepts, when complex events related with
the same entity may span multiple sentences. A knowledge graph enhanced Seq2Seq model has
been shown to generate summaries that are able to correctly answer 10% more document-related
questions [65]. In question answering (QA) systems, facts stored in knowledge bases help complete
missing information in the question and elaborate details to facilitate answer generation [40, 60]. In
story generation, using commonsense knowledge acquired from knowledge graph helps facilitate
understanding of the storyline and better narrate following plots step by step, so each step could
be reflected as a link on the knowledge graph and the whole story would be a path [56].

1.2 Why a Survey of Knowledge-enhanced Text Generation?
Incorporating knowledge in NLG beyond input text is seen as a promising direction in both academia
and industry. Therefore, researchers have proposed various methods to tackle this problem by
incorporating knowledge acquired from different information sources. Existing surveys in this area
have only partially reviewed some related topics. Garbacea et al. and Gatt et al. provided synthesis
of research on the core NLG tasks and main architectures adopted in each task [49, 50], but they did
not go deeper to the knowledge-enhanced text generation. Ji et al. conducted a review on knowledge
graph techniques, some of which have been applied to enhance NLG performance [71]. Wang et al.
summarized how to represent structural knowledge (i.e., knowledge base and knowledge graph)
for a number of NLP tasks such as reading comprehension and retrieval [142].

To the best of our knowledge, our survey is the first work that presents a comprehensive review
of knowledge-enhanced text generation. It aims to provide NLG researchers a synthesis and pointer
to related researches. Our survey also includes a detailed discussion about how NLG can benefit
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Table 1. We organize recent work on knowledge-enhanced text generation according to two dimensions:
application and source of knowledge. In the table header, LF is short for linguistic features, KB is short for
knowledge base, KG is short for knowledge graph, DG is short for dependency graph, and KeyG is short for
keyword graph, and GT is short for grounded text. Due to space limitation, we give an external long reading
list and code collection in here: https://github.com/wyu97/KENLG-Reading.

Application Input Section 3 Section 4 Section 5
Topic Keyword LF KB KG DG KeyG GT

Dialogue Sentence [158, 164] [102, 132] - [39, 93, 155] [108, 180] - - [36, 52, 169]
system (i.e., utterance) [151, 179] [85, 144, 154] [138, 173] [96, 114, 121]
Question Sentence - - - [10, 44] [7, 26, 40] - - [11, 23, 48]answering (i.e., query) [60, 170]
Question Sentence - - [181] - - [27, 109] [59] -generation (i.e., answer)

Creative writing Document - - [38] - [56, 70] - - -(e.g., story, paper) (e.g., paper title) [75, 149]

Summarization Document [105, 146] [80, 84] [2, 104] [166] [65, 183] [72, 87] [84] [18, 47, 145](e.g., an article) [43, 149] [81]
Machine Sentence [152, 174] - [31, 124] - [103, 177] [1, 6] [15, 165]translation [131]
Content Document [83] - - [41, 67, 150] - - -manipulation
Content Document [46, 90] - - - - [22, 73]paraphrasing

from recent progress in deep learning and artificial intelligence, including technologies such as
graph neural network, reinforcement learning, neural topic modeling and so on.

To start with, we note that the primary challenge in knowledge-enhanced NLG is how to obtain
useful related knowledge from diverse sources. There has been a rising line of work that discovers
knowledge from topic, keyword, knowledge base, knowledge graph and knowledge grounded
text. The second challenge is how to effectively understand and leverage the acquired knowledge to
facilitate text generation. Multiple methods have been explored to improve the encoder-decoder
architecture (e.g., attention mechanism, copy and pointing mechanism).
Based on the first challenge, the main content of our survey is divided into two parts: (1)

general methods of integrating knowledge into text generation (Section 2); (2) specific methods and
applications according to different sources of knowledge enhancement (Sections 3–5). Based on the
second challenge, we categorize recent knowledge-enhanced text generation methods evolved from
how knowledge is extracted and incorporated into the process of text generation in each section
(named as M1, M2, and etc). Furthermore, we review methods for a variety of NLG applications
(see Table 1) in each section to help practitioners choose, learn, and use the methods. In total, we
discuss seven mainstream applications presented in more than 80 papers that were published or
released during the past five years (2016–2020).

1.3 How is the Survey Organized?
The remainder of this survey is organized as follows. Section 2 presents basic text generation
models and general methods of integrating knowledge into text generation. Sections 3–5 review
knowledge-enhanced text generation methods and applications according to different sources of
knowledge enhancement. Section 6–7 discusses future works and concludes the survey.
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Table 2. Symbols used in this survey and their descriptions.

Symbol Description
𝑋,X input sequence item, and the set of all input sequences
𝑌,Y output sequence item, and the set of all output sequences
𝑥𝑖 , e(𝑥𝑖 ) 𝑖-th word in the input sequence and its word embedding
𝑦𝑖 , e(𝑦𝑖 ) 𝑖-th word in the output sequence and its word embedding
𝑦<𝑡 a sequence of words from 𝑦0 to 𝑦𝑡−1, i.e., (𝑦0, · · · , 𝑦𝑡−1)
h𝑖 , s𝑖 , c𝑖 encoding, decoding hidden state and decoding context state at 𝑖-th step
𝑓𝑒𝑛 (·), 𝑓𝑑𝑒 (·) nonlinear encoding and decoding functions (e.g., LSTM, Transformer)
𝜓mode (·) a nonlinear score function for a decoding mode
𝜂 (·) a nonlinear, potentially multi-layered, function (e.g., MLP)
𝜎 (·) a nonlinear activation function (e.g., tanh, ReLU)
V,V𝑋 pre-defined vocabulary and source sequence vocabulary

2 GENERAL METHODS OF INTEGRATING KNOWLEDGE INTO NLG
2.1 The Basic Text Generation Models
Early encoder-decoder frameworks are often based on recurrent neural network (RNN), such
as RNN-Seq2Seq [4, 135]. More recently, convolutional neural network (CNN) based encoder-
decoder [51] and Transformer encoder-decoder [139] have also been increasingly widely used.
Basically, the encoder learns to encode a variable length sequence into a fixed length vector
representation. The decoder is to decode a given fixed length vector representation into a variable
length sequence [29, 135]. From a probabilistic perspective, the encoder-decoder model framework
learns the conditional distribution over a variable length sequence conditioned on yet another
variable length sequence:

𝑃 (𝑌 |𝑋 ) = 𝑃 (𝑦1, · · · , 𝑦𝑚 |𝑥1, · · · , 𝑥𝑛) =
𝑚∏
𝑡=1

𝑝 (𝑦𝑡 |𝑋,𝑦1, · · · , 𝑦𝑡−1) . (1)

RNN-Seq2Seq [4, 135]. The encoder reads the input sentence 𝑋 sequentially:

h𝑖 = 𝑓𝑟𝑛𝑛−𝑒𝑛 (e(𝑥𝑖 ),h𝑖−1), (2)

where e(𝑥𝑖 ) is the word embedding of word 𝑥𝑖 , h𝑖 is the contextualized hidden representation of
𝑥𝑖 , and 𝑓𝑟𝑛𝑛−𝑒𝑛 (·) is an RNN-based encoder (e.g., GRU, LSTM). The last hidden state h𝑛 is seen as
the representation of the whole input sequence, denoted as c = h𝑛 . During the decoding phase, it
adopts another RNN-based function 𝑓𝑑𝑒 (·) to generate the output sequence by predicting the next
word 𝑦𝑡 based on the hidden state s𝑡 . Both 𝑦𝑡 and s𝑡 are conditioned on e(𝑦𝑡−1) and c of the input
sequence. Formally, the 𝑡-th hidden state and the decoding function can be written as

s𝑡 = 𝑓𝑟𝑛𝑛−𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c), (3)

𝑝 (𝑦𝑡 |𝑦𝑡−1, 𝑦𝑡−2, · · · , 𝑦1, c) = 𝑓mlp (s𝑡 , e(𝑦𝑡−1), c), (4)

where 𝑓mlp (·) is a nonlinear multi-layered function that outputs the probability of 𝑦𝑡 .

Transformer [139]. The encoder maps an input sequence to a sequence of continuous represen-
tations. The encoder is composed of a stack of identical layers. Each layer has two sub-layers.
The first is a multi-head self-attention network, and the second is a position-wise fully connected
feed-forward network. For brevity, we use 𝑓𝑡 𝑓 −𝑒𝑛 (·) to represent the transformer encoder,

(h1,h2, · · · ,h𝑛) = 𝑓𝑡 𝑓 −𝑒𝑛 (e(𝑥1), e(𝑥2), · · · , e(𝑥𝑛)) (5)
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The decoder is also composed of a stack of identical layers. In addition to the two sub-layers in each
encoder layer, the decoder inserts a third sub-layer, which performs multi-head attention over the
output of the encoder stack H = (h1,h2, · · · ,h𝑛). Given H, the decoder then generates an output
sequence one element at a time. At each step the model is auto-regressive, consuming the previously
generated symbols as additional input when generating the next. Efficient implementations of the
transformer use the cached history matrix S𝑡 to generate next token. To compare with RNN-Seq2Seq
more intuitively, we summarize the transformer decoder using recurrent notation,

S𝑡 = 𝑓𝑡 𝑓 −𝑑𝑒 (S𝑡−1, e(𝑦𝑡−1),H), (6)

where S𝑡 = [(K(1)𝑡 ,V(1)𝑡 ), · · · , (K
(𝑙)
𝑡 ,V(𝑙)𝑡 )], where (K

(𝑖)
𝑡 ,V(𝑖)𝑡 ) corresponds to the key-value pairs

from the 𝑖-th layer generated at all time-steps from 0 to 𝑡 . The last layer of S𝑡 can be further mapped
to a logit vector. For brevity, we will use 𝑓𝑒𝑛 (·) and 𝑓𝑑𝑒 (·) to represent encoder and decoder in the
following sections, instead of specifically referring to a certain kind of encoder and decoder.

Optimization. A generation process is regarded as a sequential multi-label classification problem.
It can be directly optimized by the negative log likelihood (NLL) loss. Therefore, the objective of a
text generation model via maximum likelihood estimation (MLE) is formulated as:

L𝑁𝐿𝐿 (𝜃 ) = − log𝑝𝜃 (𝑌 |𝑋 ) = −
𝑚∑︁
𝑡=1

log (𝑝𝜃 (𝑦𝑡 |𝑦<𝑡 , 𝑋 )) . (7)

2.2 Knowledge-enhanced Model Architectures
The perhaps most popular way of enhancing text generation with knowledge is by designing
specialized model architectures that reflect the particular knowledge. In the context of neural
networks, several general neural architectures are widely used (and customized) to bake the
knowledge about the problems being tackled into the model.

2.2.1 Attention Mechanism. It is useful to capture the weight of each time step in both encoder
and decoder [4]. During the decoding phase, the context vector c𝑡 is added, so the hidden state s𝑡 is:

s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c𝑡 ). (8)

Unlike the vanilla Seq2Seq approach stated in Eq.(3), here the probability is conditioned on the
distinct context vector c𝑡 for target word 𝑦𝑡 , and c𝑡 depends on a sequence of hidden states {h𝑖 }𝑛𝑖=1
that were mapped from input sequence. Then c𝑡 is computed as a weighted sum of {h𝑖 }𝑛𝑖=1:

c𝑡 =
𝑛∑︁
𝑖=1

𝛼𝑡𝑖h𝑖 , where 𝛼𝑡𝑖 =
exp(𝜂 (s𝑡−1,h𝑖 ))∑𝑛
𝑘=1 exp(𝜂 (s𝑡−1,h𝑘 ))

, (9)

where 𝜂 (·) is parametrized as a multi-layer perception to compute a soft alignment. 𝜂 (·) enables the
gradient of loss function to be backpropagated. There are six alternatives for the 𝜂 (·) function (see
Table 2 in [49]). The probability 𝛼𝑡𝑖 reflects the importance of the hidden state of input sequence in
presence of the previous hidden state s𝑡−1 for deciding the next hidden state.

Knowledge-related attention. Leveraging attention mechanism to incorporate knowledge rep-
resentation into the decoding phase has been widely used in recent knowledge-enhanced NLG
work. The general idea is to learn a knowledge-aware context vector (denoted as c̃𝑡 ) by integrat-
ing both hidden context vector (c𝑡 ) and knowledge context vector (denoted as c𝐾𝑡 ) into decoder
update, such as c̃𝑡 = 𝑓𝑚𝑙𝑝 (c𝑡 ⊕ c𝐾𝑡 ). The knowledge context vector (c𝐾𝑡 ) calculates attentions over
knowledge representations (e.g., topic vectors, node vectors in knowledge graph). Table 3 sum-
marizes of different kinds of knowledge attention proposed by recent papers, including keyword
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Table 3. Natural language generation methods that incorporates knowledge-related attention.

Sources Decoder hidden update knowledge context attention Papers

Topic

s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c𝑡 , c𝑡𝑝𝑡 ) c𝑡𝑝𝑡 =
∑ |𝑃 |
𝑗=1 𝛼𝑡 𝑗p𝑗 , 𝛼𝑡 𝑗 =

exp(𝜂 (s𝑡−1,p𝑗 ,h𝑛))∑|𝑃 |
𝑗′=1 exp(𝜂 (s𝑡−1,p𝑗′ ,h𝑛))

[90, 152, 158]

Description: c𝑡𝑝𝑡 is the topic-aware attention at time step 𝑡 ; p𝑗 denotes the embedding of 𝑗-th topic word
generated from topic models (e.g., LDA); h𝑛 is the last hidden state of encoder used to weaken the effect of
irrelevant topic words and highlight the importance of relevant topic words; 𝑃 is the set of topic words.

s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c𝑡 , c𝑡𝑝𝑡 ) c𝑡𝑝𝑡 =
∑ |𝑋 |
𝑗=1 𝛼𝑡 𝑗q𝑗 , 𝛼𝑡 𝑗 =

exp(𝜂 (s𝑡−1,q𝑗 )∑|𝑋 |
𝑗′=1 exp(𝜂 (s𝑡−1,q𝑗′ ))

[174]

Description: q𝑗 denotes the word distributions over topics for each word in input sequence𝑋 ; different from
topic word attention, it directly calculates attention between decoder hidden state and topic distribution.

Keyword

s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c𝑡 , ckw𝑡 ) ckw𝑡 =
∑ |𝐾 |
𝑗=1 𝛼𝑡 𝑗k𝑗 , 𝛼𝑡 𝑗 =

exp(𝜂 (s𝑡−1,k𝑗 ))∑|𝐾 |
𝑗′=1 exp(𝜂 (s𝑡−1,k′𝑗 ))

[80, 81]

Description: ckw𝑡 is the keyword-aware attention at time step 𝑡 , k𝑗 denotes the embedding of 𝑗-th ex-
tracted/assigned keyword, 𝐾 is the set of all extracted/assigned keywords.

s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c𝑡 , ckwg𝑡 ) ckwg𝑡 =
∑
𝑢∈Ukwg

𝛼 (𝑢) u, 𝛼 (𝑢) = exp(𝜂 (s𝑡−1,u))∑
𝑢′∈Ukwg exp(𝜂 (s𝑡−1,u′)) [84]

Description: c𝑘𝑤𝑔𝑡 is the keyword graph aware attention at time step 𝑡 ;Ukwg is the set of nodes in keyword
graph; u is the node embedding (often obtained from graph neural networks).

Knowledge
Base

s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c𝑡 , c𝑘𝑏𝑡 ) c𝑘𝑏𝑡 =
∑ |𝐾 |
𝑗=1 𝛼𝑡 𝑗k𝑗 , 𝛼𝑡 𝑗 =

exp(𝜂 (s𝑡−1,(k(𝑠 )𝑗 ⊕k
(𝑝 )
𝑗
⊕k(𝑜 )

𝑗
)))∑|𝐾 |

𝑗′=1 exp(𝜂 (s𝑡−1,(k(𝑠 )𝑗′ ⊕k
(𝑝 )
𝑗′ ⊕k

(𝑜 )
𝑗′ )))

[44, 60, 144]

Description: c𝑘𝑏𝑡 is the knowledge base attention at time step 𝑡 ; k𝑗 denotes the embedding of 𝑗-th knowledge
triple obtained from a KB where k𝑗 = (k(𝑠)𝑗 ⊕ k(𝑝)

𝑗
⊕ k(𝑜)

𝑗
); 𝐾 is the set of all retrieved knowledge triples.

Knowledge
Graph

s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c𝑡 , c𝑘𝑔𝑡 ) c𝑘𝑔𝑡 =
∑
𝑢∈U𝑠𝑢𝑏 𝛼 (𝑢)u, 𝛼 (𝑢) =

exp(𝜂 (s𝑡−1,u))∑
𝑢′∈U𝑠𝑢𝑏 exp(𝜂 (s𝑡−1,u′)) [65, 173, 183]

Description: c𝑘𝑔𝑡 is the knowledge graph attention at time step 𝑡 ; u is the node embedding (often obtained
from graph neural networks);U𝑠𝑢𝑏 is the sub-graph determined by a specific input sequence.

s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c𝑡 , c𝑘𝑒𝑡 )
c𝑘𝑒𝑡 =

∑
𝑢∈U𝑠𝑢𝑏

∑
(𝑢𝑖 ,𝑟 ,𝑢 𝑗 ) ∈N(𝑢)

𝛼 (𝑢)𝛽 (𝑢𝑖 , 𝑟 , 𝑢 𝑗 ) 𝜗 (u𝑖 , r,u𝑗 ),
[56, 180]

𝛽 (𝑢𝑖 , 𝑟 , 𝑢 𝑗 ) =
exp(𝜂 (s𝑡−1,𝜗 (u𝑖 ,r,u𝑗 )))∑

(𝑢𝑖′ ,𝑟 ,𝑢𝑗′ )∈N(𝑢) exp(𝜂 (s𝑡−1,𝜗 (u𝑖′ ,r,u𝑗′ )))

Description: c𝑘𝑒𝑡 is the knowledge edge attention at time step 𝑡 ; based on knowledge graph attention, it
further calculates attention on each knowledge edge; 𝜗 (·) learns embedding of knowledge edges, which
can be 𝜗 (u𝑖 , r,u𝑗 ) = 𝑓𝑚𝑙𝑝 (TransE(u𝑖 , r,u𝑗 )) [180] and 𝜗 (u𝑖 , r,u𝑗 ) = (W𝑟 r)⊤ tanh(W𝑖u𝑖 +W𝑗u𝑗 ) [56].

Ground
Text

s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c𝑡 , c𝑔𝑡𝑡 ) c𝑔𝑡𝑡 =
∑𝑛
𝑗=1 𝛼𝑡 𝑗h𝑗 , 𝛼𝑡 𝑗 =

exp(𝜂 (s𝑡−1,h𝑗 ))∑𝑛
𝑗′=1 exp(𝜂 (s𝑡−1,h𝑗′ ))

[121, 169]

Description: c𝑔𝑡𝑡 is the grounded text attention at time step 𝑡 ; h𝑗 denotes the contextual embedding (e.g.,
LSTM hidden state) of 𝑗-th word in grounded document; 𝑛 is the length of grounded document.

s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c𝑡 , c𝑟𝑐𝑡 ) c𝑟𝑐𝑡 =
∑𝑛
𝑗=1 𝛼𝑡 𝑗h

𝑟𝑐
𝑗 , 𝛼𝑡 𝑗 =

exp(𝜂 (s𝑡−1,h𝑟𝑐𝑗 ))∑𝑛
𝑗′=1 exp(𝜂 (s𝑡−1,h𝑟𝑐𝑗′ ))

[11, 96]

Description: c𝑟𝑐𝑡 is the grounded text attention learnt from reading background document at time step 𝑡 ; h𝑟𝑐𝑗
denotes the context-aware background representation, i.e., h𝑟𝑐𝑖 = RC(𝑋, 𝐵) [𝑖] where RC(·, ·) is a reading
comprehension model; 𝑛 is the length of grounded document.

attention [80, 81, 84], topic attention [90, 152, 158, 174], knowledge base attention [44, 60, 144],
knowledge graph attention [65, 75, 173, 183], grounded text attention [11, 96, 121, 169] and etc.

2.2.2 Copy and Pointing Mechanisms. Copy and pointing mechanisms are used to choose subse-
quences in the input sequence and put them at proper places in the output sequence.

CopyNet [54]. CopyNet has a differentiable network architecture. It can be easily trained in an
end-to-end manner [54]. In CopyNet, the probability of generating a target token is a combination
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of the probabilities of two modes, generate-mode and copy-mode. First, CopyNet represents unique
tokens in the global vocabularyV and the vocabulary of source sequenceV𝑋 . It builds an extended
vocabularyVext = V ∪V𝑋 ∪ {unk}. Then, the distribution over the extended vocabulary is

𝑝 (𝑦𝑡 ) = 𝑝𝑔 (𝑦𝑡 ) + 𝑝𝑐 (𝑦𝑡 ), (10)

where 𝑝𝑔 (·|·) and 𝑝𝑐 (·|·) stand for the probability of generate-mode and copy-mode. It is given by

𝑝𝑔 (𝑦𝑡 ) =
{ 1

𝑍
exp𝜓𝑔 (𝑦𝑡 ), 𝑦𝑡 ∈ V ∪ {unk},

0, otherwise; (11)

𝑝𝑐 (𝑦𝑡 ) =
{ 1

𝑍

∑
𝑗 :𝑥 𝑗=𝑦𝑡 exp𝜓𝑐 (𝑥 𝑗 ), 𝑦𝑡 ∈ V𝑋 ,

0, otherwise; (12)

where 𝜓𝑔 (·) and 𝜓𝑐 (·) are score functions for generate-mode and copy-mode [54], and 𝑍 is the
normalization term shared by the two modes, i.e., 𝑍 =

∑
𝑣∈V∪{unk} exp𝜓𝑔 (𝑣) +

∑
𝑥 ∈V𝑋 exp𝜓𝑐 (𝑥),

The score of each mode is calculated by

𝜓𝑔 (𝑦𝑡 = 𝑣𝑖 ) = v⊤𝑖 W𝑔s𝑡 , 𝑣𝑖 ∈ V ∪ {unk}, (13)
𝜓𝑐 (𝑦𝑡 = 𝑥 𝑗 ) = h⊤𝑗 W𝑐s𝑡 , 𝑥 𝑗 ∈ V𝑋 , (14)

where v𝑖 is the one-hot indicator vector for 𝑣𝑖 , where𝜓 (·) can be alternated by other two forms [92].

Pointer-Generator Network [123]. Similar to CopyNet, Pointer-generator network (PGN) has a
differentiable network architecture [123]. Differently, PGN explicitly calculates a switch probability
𝑝𝑚 between generate-mode and copy-mode. It recycles the attention distribution to serve as the
copy distribution. The vocabulary distribution overVext is calculated by

𝑝 (𝑦𝑡 ) = 𝑝𝑚 (g) · 𝑝𝑔 (𝑦𝑡 ) + (1 − 𝑝𝑚 (g)) · 𝑝𝑐 (𝑦𝑡 ), (15)

where 𝑝𝑚 (g) indicates the probability of choosing generate-mode, which is obtained by

𝑝𝑚 (g) = sigmoid(Wℎ ·
𝑛∑︁
𝑗=1

𝛼𝑡 𝑗h𝑗 +W𝑠 · s𝑡 +W𝑦 · e(𝑦𝑡−1)), (16)

where 𝛼𝑡 𝑗 is given in Eq.(9). Vocabulary distribution 𝑃𝑔 (𝑦𝑡 ) and attention distribution 𝑃𝑐 (𝑦𝑡 ) are

𝑝𝑔 (𝑦𝑡 ) =
{ 1

𝑍
𝜓𝑔 (𝑦𝑡 ), 𝑦𝑡 ∈ V ∪ {unk},

0, otherwise; (17)

𝑝𝑐 (𝑦𝑡 ) =
{ 1

𝑍

∑
𝑗 :𝑥 𝑗=𝑦𝑡 𝛼𝑡 𝑗 , 𝑦𝑡 ∈ V𝑋 ,

0, otherwise. (18)

Note that the mechanisms in CopyNet and PGN can be viewed as a soft switch that chooses
between generation and copymodes. They are different from hard-switchmethods [57]. Importantly,
CopyNet and PGN have been used as the base model for a lot of knowledge-enhanced NLG work.

Knowledge-related mode. A knowledge-related mode choose subsequences in the obtained knowl-
edge and put them at proper places in the output sequence. It helps NLG models to generate words
that are not included in the global vocabulary (V) and input sequence (V𝑋 ). For example, by
adding knowledge base-mode, the extended vocabulary (V𝑒𝑥𝑡 ) also includes entities and relations
appearing in knowledge base, i.e.,V𝑒𝑥𝑡 = V +V𝑋 + V𝐾𝐵 . The probability of generating a target
token is a combination of the probabilities of three modes: generate-mode, copy-mode and knowl-
edge base-mode. Therefore, knowledge-related mode is not only capable of the regular generation
of words but also the operation of producing appropriate subsequences in different knowledge
sources. Table 4 summarizes different kinds of knowledge-related mode proposed by recent papers,
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Table 4. Natural language generation methods that incorporates knowledge-related mode.

Sources Generation mode Scoring function Papers

Topic

𝑝𝑡𝑝 (𝑦𝑡 ) =
{ 1

𝑍

∑
𝑗 :𝑝 𝑗=𝑦𝑡 exp𝜓𝑡𝑝 (𝑦𝑡 ), 𝑦𝑡 ∈ V𝑃 ,

0, otherwise, 𝜓𝑡𝑝 (𝑦𝑡 = 𝑝 𝑗 ) = 𝑓𝑚𝑙𝑝 (s𝑡 , e(𝑦𝑡−1), c𝑡 )) [146, 158]

Description: the score of copying a word from topics is calculated by a MLP function; In [146, 158],
𝑓𝑚𝑙𝑝 (s𝑡 , e(𝑦𝑡−1, c𝑡 )) = 𝜎 (v⊤𝑗 (W𝑠s𝑡 + W𝑦e(𝑦𝑡−1) + W𝑐c𝑡 )) where v𝑗 is the one-hot indicator vector for topic
𝑝 𝑗 ; 𝑍 is a normalization term shared by the generation mode and topic mode;V𝑃 is the set of all topic words.

Keyword

𝑝kw (𝑦𝑡 ) =
{ 1

𝑍

∑
𝑗 :𝑘 𝑗=𝑦𝑡 exp𝜓kw (𝑦𝑡 ), 𝑦𝑡 ∈ V𝐾 ,

0, otherwise. 𝜓kw (𝑦𝑡 = 𝑘 𝑗 ) = 𝛼𝑡 𝑗 [81]

Description: the score of copying a keyword is the same as keyword attention score as mentioned in Table 3; 𝑍 is
a normalization term shared by the generation mode and keyword mode;V𝐾 is the set of all keywords.

Knowledge
Base

𝑝𝑘𝑏 (𝑦𝑡 ) =
{

1
𝑍

∑
𝑗 :𝑘 (𝑜 )

𝑗
=𝑦𝑡

exp𝜓𝑘𝑏 (𝑦𝑡 ), 𝑦𝑡 ∈ V𝐾
0, otherwise

𝜓𝑘𝑏 (𝑦𝑡 = 𝑘 (𝑜)𝑗 ) = 𝑓𝑚𝑙𝑝 (k𝑗 , e(𝑦𝑡−1),H𝐾𝐵) [60]

Description: the score of copying a word from knowledge base is calculated by a MLP function; In [60],
𝑓𝑚𝑙𝑝 (k𝑗 , e(𝑦𝑡−1),H𝐾𝐵) = 𝜎 (W𝑘k𝑗 +W𝑦e(𝑦𝑡−1) +WℎH𝐾𝐵) where H𝐾𝐵 is an accumulated vector which record
the attentive history for each knowledge triple in candidate knowledge triples. Besides,V𝐾 is the set of all objects
in knowledge triples, i.e.,V𝐾 = {𝑘 (𝑜)

𝑗
} |𝐾 |
𝑗=1. This is because the subjects {𝑘

(𝑠)
𝑗
} |𝐾 |
𝑗=1 are contained in input sequences

and used to retrieve knowledge triples, so they do not have to be included inV𝐾 .

Knowledge
Graph

𝑝𝑘𝑔 (𝑦𝑡 ) =
{ 1

𝑍

∑
𝑗 :𝑢 𝑗=𝑦𝑡 exp𝜓𝑘𝑔 (𝑦𝑡 ), 𝑦𝑡 ∈ U𝑠𝑢𝑏

0, otherwise 𝜓𝑘𝑔 (𝑦𝑡 = 𝑢 𝑗 ) = 𝛼 (𝑢𝑖 )𝛽 (𝑢𝑖 , 𝑟 , 𝑢 𝑗 ) [180]

Description: the score of copying a node entity from knowledge graph is calculated by a hierarchical attention as
mentioned in Table 3;U𝑠𝑢𝑏 is the subset of nodes (entities) in KG determined by a specific input sequence.

𝑝𝑘𝑔 (𝑦𝑡 ) =
{ 1

𝑍

∑
𝑗 :𝑢 𝑗=𝑦𝑡 exp𝜓𝑘𝑔 (𝑦𝑡 ), 𝑦𝑡 ∈ U𝑠𝑢𝑏

0, otherwise 𝜓𝑘𝑔 (𝑦𝑡 = 𝑢 𝑗 ) = 𝜎 (s𝑡 · u𝑗 ) [173]

Description: the score of copying a node entity is calculated by a bi-linear model; 𝜎 (·) is an activation function.

Grounded
Text

𝑝𝑔𝑡 (𝑦𝑡 ) =
{ 1

𝑍

∑
𝑗 :ℎ 𝑗=𝑦𝑡 exp𝜓𝑔𝑡 (𝑦𝑡 ), 𝑦𝑡 ∈ V𝑇 ,

0, otherwise. 𝜓𝑔𝑡 (𝑦𝑡 = ℎ 𝑗 ) = 𝛼𝑡 𝑗 [96, 169]

Description: the score of copying a word in grounded text is the same as grounded text attention score as mentioned
in Table 3;V𝑇 is the set of all words in grounded text (e.g., retrieved text snippets, background document).

such as topic mode [146, 158], keyword mode [81], knowledge base mode [60], knowledge graph
mode [173, 180], background mode [96, 169] and etc.

2.2.3 Memory Network. Memory networks (MemNNs) are recurrent attention models over a
possibly large external memory [134]. They write external memories into several embedding
matrices, and use query (generally speaking, the input sequence 𝑋 ) vectors to read memories
repeatedly. This approach can encode long dialog history and memorize external information.
Given an input set {𝑚1, · · · ,𝑚𝑖 } to be stored in memory. The memories of MemNN are repre-

sented by a set of trainable embedding matrices C = {C1, · · · ,C𝐾+1}, where each C𝑘 maps tokens
to vectors, and a query (i.e., input sequence) vector h𝑘𝑋 is used as a reading head. The model loops
over 𝐾 hops and it computes the attention weights at hop 𝑘 for each memory𝑚𝑖 using:

p𝑘𝑖 = softmax((h𝑘𝑋 )⊤C𝑘𝑖 ), (19)

where C𝑘𝑖 = C𝑘 (𝑚𝑖 ) is the memory content in 𝑖-th position, i.e., mapping𝑚𝑖 into a memory vector.
Here, p𝑘 is a soft memory selector that decides the memory relevance with respect to the query
vector h𝑘𝑋 . Then, the model reads out the memory o𝑘 by the weighted sum over C𝑘+1,

o𝑘 =
∑︁
𝑖

p𝑘𝑖 C
𝑘+1
𝑖 . (20)
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Then, the query vector is updated for the next hop by using h𝑘+1𝑋 = h𝑘𝑋 + o𝑘 . The result from the
encoding step is the memory vector o𝐾 , which will become the input for the decoding step.

Knowledge-related memory. Memory augmented encoder-decoder framework has achieved
promising progress for many NLG tasks. For example, MemNN is widely used for encoding dialogue
history in task-oriented dialogue systems [20, 120, 153]. Such frameworks enable a decoder to
retrieve information from a memory during generation. Recent work explored to model external
knowledge with memory network such as knowledge base [89, 93, 167] and topic [44, 179].

2.2.4 Graph Network. Graph network captures the dependence of graphs via message passing
between the nodes of graphs. Recent advances of graph neural networks (GNNs) [156] and graph-to-
sequence (Graph2Seq) [8] potentiate to bridge up the gap between graph representation learning and
text generation. Knowledge graph, keyword graph, dependency graph and other graph structures
can be integrated into encoder-decoder frameworks through various GNN algorithms. Here we
denote a graph as G = (U, E), whereU is the set of entity nodes and E is the set of (typed) edges.
Modern GNNs typically follow a neighborhood aggregation approach, which iteratively updates the
representation of a node by aggregating information from its neighboring nodes and edges [163].
After 𝑘 iterations of aggregation, a node representation can capture the structural information
within its 𝑘-hop neighborhood. Formally, the 𝑘-th layer of a node 𝑢 ∈ U is:

u(𝑘) = Combine𝑘 (u(𝑘−1) ,Aggregate𝑘 (
{
(u(𝑘−1)
𝑖

, e(𝑘−1)
𝑖 𝑗

,u(𝑘−1)
𝑗
) : ∀(𝑢𝑖 , 𝑒𝑖 𝑗 , 𝑢 𝑗 ) ∈ N (𝑢)

}
)), (21)

where N(𝑢) = {(𝑢𝑖 , 𝑒𝑖 𝑗 , 𝑢 𝑗 ) ∈ E|𝑢𝑖 = 𝑢 or 𝑢 𝑗 = 𝑢} denotes the set of edges containing node 𝑢, u(𝑘)

and e(𝑘)
𝑖 𝑗

are feature vectors of a node 𝑢 and the edge between 𝑢𝑖 and 𝑢 𝑗 at the 𝑘-th iteration/layer.
The choice of Aggregate(·) and Combine(·) in GNNs is crucial. A number of architectures for
Aggregate(·) have been proposed in different GNN works such as GAT [140]. Meanwhile, the
Aggregate(·) function used in labeled graphs (e.g., a knowledge graph) is often taken as those
GNNs for modeling relational graphs [53, 122], such as a relational GAT [180]:

u(𝑘) = 𝜎
( ∑︁
(𝑢𝑖 ,𝑒𝑖 𝑗 ,𝑢 𝑗 ) ∈N(𝑢)

𝛼 (𝑢𝑖 , 𝑒𝑖 𝑗 , 𝑢 𝑗 ) · (u(𝑘−1)
𝑖

⊕ u(𝑘−1)
𝑗
)
)
, (22)

𝛼 (𝑢𝑖 , 𝑒𝑖 𝑗 , 𝑢 𝑗 ) =
exp(𝜂 (u𝑖 , e𝑖 𝑗 ,u𝑗 ))∑

(𝑢𝑖′ ,𝑒𝑖 𝑗 ,𝑢 𝑗′ ) ∈N(𝑢) exp(𝜂 (u𝑖′, e𝑖 𝑗 ,u𝑗 ′))
, (23)

𝜂 (𝑢𝑖 , 𝑒𝑖 𝑗 , 𝑢 𝑗 ) = (W𝑒 · e(𝑘−1)
𝑖 𝑗
)⊤ tanh(W𝑖 · u(𝑘−1)

𝑖
+W𝑗 · u(𝑘−1)

𝑗
), (24)

where 𝜎 (·) denotes a nonlinear activation function (often taken as LeakyReLU), andW𝑖 ,W𝑗 ,W𝑒 are
all trainable weightmatrices. In practical,𝐾 is usually set as𝐾 = 2 [65, 173, 183] or𝐾 = 1 [56, 84, 180]
(see performance comparisons with different K in Figure 3 of [5]). Graph attention mechanism
could be multi-head attention [65]. The attention weight measures the association of a relation 𝑒𝑖 𝑗
between two entity nodes 𝑢𝑖 and 𝑢 𝑗 . To obtain the representation of graph G (denoted as h𝐺 ), the
Readout function pools node features from the final iteration 𝐾 ,

h𝐺 = Readout(
{
u(𝐾) , 𝑢 ∈ U

}
), (25)

where Readout(·) can be a simple permutation invariant function such as averaging or a more
sophisticated graph-level pooling function [171].
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Applications. Graph network has been commonly used in integrating different knowledge of
graph structure, such as knowledge graph and dependency graph. Graph attention network [140]
has demonstrated its effectiveness in many NLG tasks since it can be easily combined with sequence
attention and jointly optimized [173, 180]. We will introduce different graph structure knowledge
in subsequent sections such as knowledge graph (Section 4.2), internal knowledge graph (Section
4.3.1), dependency graph (Section 4.3.2-4.3.3) and keyword/sentence graph (Section 4.3.4).

2.2.5 Pre-trained Models. Given the limited size of the most NLG datasets and relative the large
number of parameters, it’s hard for the deep neural network to generalize well in the specific
tasks. However, since large-scale unlabeled datasets are easy to obtain as well as the success of the
pre-trained model in the computer vision (CV) domain, it’s natural to consider utilizing a pre-trained
model for the NLG tasks which can provide better model initialization and regularization [117].
The first-generation pre-trained models aim to learn good non-contextual embedding (i.e., word
embedding), such as Word2Vec [99] and GloVe [111]. The second-generation pre-trained models
focus on learning contextual word embeddings, such as GPT [118] and BERT [34].

Non-contextual embedding. They map discrete language symbols into a distributed embedding
space. Commonly used non-contextual embeddings such as Word2Vec [99] and GloVe [111] can
capture semantic meanings of words and provide initialization for generation tasks. However, there
are two major limitations. First, the embeddings are static. The embedding for a word is always
the same irrespective of its context, which fails to model polysemous words and capture context
information. Second, out-of vocabulary words cannot be mapped with an embedding.

Contextual embedding. To address the issue of polysemous and the context-dependent nature
of words, contextualized pre-trained models on the large corpus benefit downstream NLG tasks
by providing high quality contextualized language representations. Given a series of tokens 𝑋 =

{𝑥1, 𝑥2, ..., 𝑥𝑛} where 𝑥𝑖 ∈ V𝑋 is a word or sub-word, the contextual representation of x𝑖 depends
on the whole text, i.e., (h1,h2, · · · ,h𝑛) = 𝑓context (𝑥1, 𝑥2, ..., 𝑥𝑛) where 𝑓context (·) is a neural network
such as a deep long-short term memory (LSTM) or a Transformer [139]. For examples, ELMo [112]
uses deep bidirectional LSTM pre-trained on large corpora; OpenAI’s GPT [118] uses Transformer
decoder instead of multi-layer LSTM. One constraint of GPT is that it only uses unidirectional
information. Therefore, BERT [34] utilized the masked language model (MLM) to overcome the
drawbacks in training unidirectional language model. BERT was further extended to many other
encoder-decoder architectures with MLM such as MASS [130] and BART [79].

Applications. Pre-trained models have been widely used in text generation systems, such as
GloVe [26, 56], BERT [27], GPT [33, 115]. Recent papers explored to transfer commonsense knowl-
edge into pre-trained language models by utilizing triple information in knowledge bases [9, 55].

2.3 Knowledge-enhanced Learning and Inference
Besides the choice of model architectures, another commonway of injecting knowledge information
to the model is through the learning and inference processes. For example, one can encode knowl-
edge into the objective function that guides the model training to acquire desired model behaviors.
Such approaches enjoy the flexibility of integrating diverse types of knowledge by expressing the
knowledge into certain forms of losses or constraints. In general, knowledge-enhanced learning and
inference is agnostic to the model architecture, and can be combined with the various architectures
mentioned above. On the other hand, some specialized learning and inference processes could
require specific model architectures (e.g., specific models conditioning on knowledge).
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2.3.1 Learning with knowledge-related tasks. One could devise learning tasks informed by the
knowledge so that the model is trained to acquire the knowledge information.

Knowledge as the target. The first category of knowledge-related tasks creates learning targets
based on the knowledge, and the model is trained to recover the targets. The knowledge-related
tasks can be different from the standard text generation task of interest, and be combined as auxiliary
to the text generation task, resulting in a multi-task learning setting. For example, knowledge loss
in [36, 74] is defined as the cross entropy between the predicted and true knowledge sentences, and is
combinedwith the standard conversation generation loss to enhance grounded conversation. Similar
tasks include keyword extraction loss [81], template re-ranking loss [18, 145], mode loss [155, 180],
BOW loss [85, 164], etc. Alternatively, one can directly derive the text generation targets from the
knowledge, and use those (typically noisy) targets as supervisions in the standard text generation
task. The approach is called weakly-supervised learning. Weakly-supervised learning enforces the
relevancy between the knowledge and the target sequence. For example, in the problem of aspect-
based summarization, the work [136] automatically creates target summaries based on external
knowledge bases, which are used to train the summarization model in a supervised manner.

Knowledge as the condition. The second common way of devising knowledge-related tasks is
to augment the original text generation task by additionally conditioning the generation on the
knowledge. That is, the goal is to learn a function 𝑝𝜃 (𝑌 |𝑋,𝐾), where 𝑋 is the input sequence, 𝑌 is
the target text and 𝐾 is the knowledge. Generally, the knowledge 𝐾 is first given externally (e.g.,
style, emotion) or retrieved from external resources (e.g., facts from knowledge base, a document
from Wikipedia) or extracted from the given input text (e.g., keywords, topic words). Second, a
conditional text generation model is used to incorporate knowledge and generate target output
sequence. In practice, knowledge is often remedied by soft enforcing algorithms such as attention
mechanism [4] and copy/pointing mechanism [54, 123]. Regarding knowledge as condition is
widely used in knowledge-enhanced text generation. For examples, work has been done in making
personalized dialogue response by taking account of persona [176] and emotion [179], controlling
various aspects of the response such as politeness [107], grounding the responses in external source
of knowledge [36, 52, 180], generating topic-coherent sequence [137, 164] and so on.

2.3.2 Learning with knowledge constraints. Instead of creating standalone tasks (training objectives)
that encapsulate knowledge, the second paradigm of knowledge-enhanced learning is to treat
knowledge as the constraints to regularize the original text generation training objective.
The posterior regularization (PR) framework was proposed to restrict the space of the model

posterior on unlabeled data as a way to guide the model towards desired behavior [45, 62, 184]. PR
has been used as one of the principled frameworks to impose knowledge constraints on probabilistic
models (including deep networks) in general, and has demonstrated effectiveness in regulating the
learning of models in language generation [64, 175]. PR augments any regular training objective
L(𝜃 ) (e.g., negative log-likelihood, as in Eq.(7)) with a constraint term to encode relevant knowledge.
Formally, denote the constraint function as 𝑔(𝑋,𝑌 ) ∈ R such that a higher 𝑔(𝑋,𝑌 ) value indicates
a better generated sequence 𝑌 in terms of the particular knowledge. To incorporate the constraint,
PR introduces an auxiliary distribution 𝑞(𝑌 |𝑋 ), and imposes the constraint on 𝑞 by encouraging
a large expected 𝑔 value: E𝑞 [𝑔(𝑋,𝑌 )]. Meanwhile, the model 𝑝𝜃 is encouraged to stay close to 𝑞
through a KL divergence term. The learning problem is thus a constrained optimization problem:

max
𝜃,𝑞
L(𝜃 ) − KL(𝑞(𝑌 |𝑋 ) | |𝑝𝜃 (𝑌 |𝑋 )) + 𝜉 (26)

𝑠 .𝑡 . E𝑞 [𝑔(𝑋,𝑌 )] > 𝜉, (27)
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where 𝜉 is the slack variable. The PR framework is also related to other constraint-driven learning
methods [e.g., 19, 86, 94]. We refer readers to [45] for more discussions.

2.3.3 Inference with knowledge constraints. Pre-trained languagemodels can leverage large amounts
of unannotated data and a simple log-likelihood training objective. However, once such models
are trained, controlling language generation with particular knowledge becomes difficult without
modifying the model architecture to allow for external input knowledge or fine-tuning with spe-
cific data [33]. Plug and play language model (PPLM) opens up a new way to control language
generation with particular knowledge during inference. At every generation step during inference,
the PPLM shifts the history matrix in the direction of the sum of two gradients: one toward higher
log-likelihood of the attribute 𝑎 under the conditional attribute model 𝑝 (𝑎 |𝑌 ) and one toward higher
log-likelihood of the unmodified pre-trained generation model 𝑝 (𝑌 |𝑋 ) (e.g., GPT). Specifically, the
attribute model 𝑝 (𝑎 |𝑌 ) make gradient based updates to ΔS𝑡 as follows:

ΔS𝑡 ← ΔS𝑡 +
∇ΔS𝑡 log𝑝 (𝑎 |S𝑡 + ΔS𝑡 )
| |∇ΔS𝑡 log𝑝 (𝑎 |S𝑡 + ΔS𝑡 ) | |𝛾

(28)

where 𝛾 is the scaling coefficient for the normalization term; ΔS𝑡 is update of history matrix S𝑡
(see Eq.(6)) and initialized as zero. The update step is repeated multiple times. Subsequently, a
forward pass through the generation model is performed to obtain the updated S̃𝑡+1 as S̃𝑡+1 =

𝑓𝑑𝑒 ((S𝑡 + ΔS𝑡 ), e(𝑦𝑡 ),H). The perturbed S̃𝑡+1 is then used to generate a new logit vector.
PPLMs have demonstrated great efficiency and flexibility in combination of differentiable attribute

models to steer text generation. Recent work has followed its idea in other tasks [115].

3 NLG ENHANCED BY TOPIC, KEYWORD AND LINGUISTIC FEATURES
3.1 NLG Enhanced by Topic
Topic, which can be considered as a representative or compressed form of text, has been often used
to maintain the semantic coherence and guide the NLG process. For example, text summarization
requires the short-generated output to capture the topics of the long input document. Dialogue
systems avoid generating trivial and digressive utterance. Topic modeling is a powerful tool for
finding the high-level content of a document collection in the form of latent topics [12]. A classical
topic model, Latent Dirichlet allocation (LDA), has been widely used for inferring a low dimensional
representation that captures latent semantics of words and documents [12]. In LDA, each topic
is defined as a distribution over words and each document as a mixture distribution over topics.
LDA generates words in the documents from topic distribution of document and word distribution
of topic. Recent advances of neural techniques open a new way of learning low dimensional
representations of words from the tasks of word prediction and context prediction, making neural
topic models become a popular choice of finding latent topics from text [17, 58].

Applications. Popular NLG tasks that need topics include dialogue systems [16, 158], text sum-
marization [43, 105, 146, 149] and neural machine translation [152, 174]. In dialogue systems, a
vanilla Seq2Seq often generates trivial or non-committal sentences of frequent words or phrases in
the corpus [158]. For example, a chatbot may say “I do not know”, “I see” too often. Though these
off-topic responses are safe to reply to many queries, they are boring with very little information.
Such responses may quickly lead the conversation to an end, severely hurting user experience.
In text summarization, the attention mechanism tries to align words between input and output
sequences. However, the input sequence (i.e., original documents) is often much longer than the
output sequence (i.e., summary). So, the attention mechanism can hardly ensure the coherence
between the two sequences without the guidance from topics. In machine translation, though the
input and output languages are different, the contents are the same, and globally, under the same
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Table 5. Natural language generation methods that incorporate topic knowledge in text generation.

Task Method Description

Dialogue
system

Topic-Seq2Seq [158] RNN Seq2Seq + LDA topics M1
PEE [164] RNN Seq2Seq + MLP topics M3

Machine
translation

Topic-NMT [174] RNN Seq2Seq + LDA topics M1
BLT-NMT [152] RNN Seq2Seq + CNNs latent topics M2

Summarization

Topic-ConvS2S [105] ConvS2S (CNN Seq2Seq) + LDA topics M1
RL-Topic-ConvS2S [146] Topic-ConvS2S + Reinforcement Learning M1
TGVAE [149] Variational RNN Seq2Seq + MLP topics M3
VHTM [43] Variational RNN Seq2Seq + MLP topics M3

Content
manipulation TATGM [83] Variational RNN Seq2Seq + MLP topics M3

Paraphrase TGLM [46] RNN Seq2Seq + CNNs latent topics M2
PTA-Seq2Seq [90] RNN Seq2Seq + LDA topics + Regularization M1

topic. Therefore, topic can serve as an auxiliary guidance to preserve the semantics information of
input text in one language into the output text in the other language.
Table 5 summarizes some representative NLG models that are enhanced by knowledge from

topics. They can be grouped into three categories of methodologies:

• M1: Leverage topic words from generative topic models. It first discovers topics using
generative topic models (e.g., LDA), and then incorporate the topics representations into
neural generation models through topic attention mechanism. The topic embeddings provide
high level guidance on generating coherent output sequences.
• M2: Jointly optimize generationmodel and CNN topic model. It is to design an end-to-
end neural framework that simultaneously learns latent topic representations and generates
output sequences. Convolutional neural networks (CNN) are often used to generate the latent
topics through iterative convolution and pooling operations.
• M3: Enhance NLG by neural topic models with variational inference. Neural topic
models have relatively more parameters than conventional topic models, so they suffer from
the issue of overfitting. Variational inference may alleviate this issue by assuming a prior
distribution (e.g. Gaussian) in the latent space of topics. Besides, the neural property of topic
models enables back propagation for joint optimization, contributing to more coherent topics.

3.1.1 Leverage Topic Words from Generative Topic Models. Topics help understand the semantic
meaning of sentences. It determines the semantic spectrum to a certain extent. For example, in
human-human conversations, people might first select topically related concepts (e.g., sport, food) in
their minds, then organize content and select words to respond. Thus, an effective solution to NLG
tasks is to first discover topics using generative topic models (e.g., LDA), and then incorporate the
topics representations into neural generation models. In existing work, there are two mainstream
methods to represent topics obtained from generative topic models. The first way is to use the
generated topic distributions for each word (i.e., word distributions over topics) in the input
sequence [105, 174]. The second way is to assign a specific topic to the input sequence, then picks
the top-𝑘 words with the highest probabilities under the topic, and use word embeddings (e.g.,
GloVe) to represent topic words [90, 146, 158]. Explicitly making use of topic words can bring
stronger guidance than topic distributions, but the guidance may deviate from the target output
sequence when some generated topic words are irrelevant.
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Zhang et al. proposed a topic-informed Seq2Seq model by concatenating the topic distributions
with encoder and decoder hidden states [174]. Xing et al. designed a topic-aware Seq2Seq model
(called “Topic-Seq2Seq”) in order to use topic words as prior knowledge to help dialogue genera-
tion [158]. Specifically, topic words are obtained from a pre-trained LDA model and represented
as {p𝑖 }𝑘𝑖=1. At the decoding phase, each word is generated according to both the input sequence
and topic words through a joint attention mechanism. It summarizes context vectors from input
sequence attention (c𝑡 ) and topic attention (c𝑡𝑝𝑡 ) simultaneously. Then, the decoder updates it
hidden state s𝑡 by taking above two context vectors, i.e., s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, c𝑡 , c

𝑡𝑝

𝑡 , e(𝑦𝑡−1)), where c𝑡
is the decoder context state as introduced in Eq.(9) and c𝑡𝑝𝑡 calculates attentions over each topic
word p𝑖 (details in Table 3). The probability of generating a target word is a combination of the
probabilities of two modes: generate-mode and topic-mode (details in Table 4).

Follow-up work. Topic-Seq2Seq used LDA to extract topics that help dialogue systems improve
their consistency and topicality, which has been further extended by many studies [90, 105, 146].
Liu et al. added two penalty terms to directly supervise the importance assigned to the topic and
the selection of topic words [90]. Combining the two types of regularization has been shown
more efficient than mere supervision from the generation loss. Moreover, Wang et al. proposed
a topic-aware ConvS2S (short for convolutional sequence-to-sequence) [146]. ConvS2S can be
stacked to represent long input sequence and find the long distant dependency among words. It can
avoid gradient vanishing issue caused by an RNN-Seq2Seq model. Besides, they used reinforcement
training to directly optimize the proposed model with respect to the non-differentiable metric
ROUGE, which can avoid the exposure bias during inference. Narayan et al. proposed to concatenate
word embeddings and topic distribution vectors (at both word-level and document-level) together
as encoder inputs, thus, the textual knowledge embedded in the input document and the topical
knowledge would be attended together to enhance the decoding phase of summarization [105].

3.1.2 Jointly Optimize Generation Model and CNN Topic Model. LDA models are usually unsuper-
vised with an assumption that the word distributions of topics are Dirichlet distributions. However,
LDA models may not be able to find proper topics that the target task (e.g., NLG) requires. Also, the
LDA models were separated from the training process of neural generation model and were not
able to adapt to the diversity of dependencies between input and output sequences. Convolutional
neural networks were used to learn latent topic representations through iterative convolution and
pooling operations. There are growing interests of using the CNNs to map latent topics implicitly
into topic vectors that can be used to enhance NLG tasks [46, 152]. Empirical analyses showed that
convolution-based topic extractors could outperform LDA-based topic models for multiple applica-
tions (e.g., conversation/dialogue system, text summarization). However, theoretical analysis was
missing to ensure the quality of the topics captured by the convolutions. And their interpretability
is not as satisfactory as the LDA-based topic models.

3.1.3 Enhance NLG by Neural Topic Models with Variational Inference. Neural topic models combine
the advantages of neural networks and probabilistic topic models [17, 58]. They can be trained effi-
ciently by backpropagation, scaled to large data sets, and easily adapted to any available contextual
information. In topic models, documents have a multinomial distribution over topics and topics
have a multinomial distribution over words [12]. Cao et al. connected this view of topic models
with neural networks by embedding the relationship with differentiable functions [17]. In order to
facilitate efficient inference, Dirichlet distributions can be employed as the prior to generate the
parameters of the multinomial distribution 𝜃𝑑 for each document [97]. The generative process of
LDA is represented as: (1) 𝜃𝑑 ∼ Dirichlet(𝛼); (2) 𝑡𝑖 ∼ Multinomial(𝜃𝑑 ); (3)𝑤𝑖 ∼ Multinomial(𝛽𝑡𝑖 ),
where 𝑑 denotes the bag-of-words representation of a document, 𝑡𝑖 represents the topic assignment
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for word 𝑤𝑖 , and 𝛽𝑡𝑖 represents the topic distribution over words given topic assignment 𝑡𝑖 . The
marginal likelihood for document 𝑑 is:

𝑝 (𝑑 |𝛼, 𝛽) =
∫
𝜃

𝑝 (𝜃 |𝛼)
( 𝑛∏
𝑖=1

∑︁
𝑡𝑖

𝑝 (𝑤𝑖 |𝛽𝑡𝑖 )𝑝 (𝑡𝑖 |𝜃 )
)
𝑑𝜃 =

∫
𝜃

𝑝 (𝜃 |𝛼)𝑝 (𝑑 |𝛽, 𝜃 )𝑑𝜃 . (29)

However, a directed generative model comes up against the problem of establishing low variance
gradient estimators. Miao et al. parameterized the multinomial distributions with neural networks
and jointly learned the model parameters via variational inference [97]. They created neural
structures for constructing topic distributions conditioned on a draw from a multivariate Gaussian
distribution, represented as 𝜃𝑑 ∼ G(𝜇0, 𝜎

2
0 ), where G(𝜇0, 𝜎

2
0 ) is composed of a neural network

conditioned on an isotropic Gaussian N(𝜇0, 𝜎
2
0 ). Now, the marginal likelihood for document 𝑑 is:

𝑝 (𝑑 |𝛽, 𝜇0, 𝜎
2
0 ) =

∫
𝜃

𝑝 (𝜃 |𝜇0, 𝜎
2
0 )
( 𝑛∏
𝑖=1

∑︁
𝑡𝑖

𝑝 (𝑤𝑖 |𝛽𝑡𝑖 )𝑝 (𝑡𝑖 |𝜃 )
)
𝑑𝜃 =

∫
𝜃

𝑝 (𝜃 |𝜇0, 𝜎
2
0 )𝑝 (𝑑 |𝛽, 𝜃 )𝑑𝜃 . (30)

Compared with Eq.(29), the latent variable 𝜃 is parameterized by a neural network conditioned
on a draw from a Gaussian distribution. To carry out neural variational inference, Miao et al.
constructed an inference network 𝑞(𝜃 |𝜇 (𝑑), 𝜎 (𝑑)) to approximate the posterior 𝑝 (𝜃 |𝑑), where
𝜇 (𝑑) and 𝜎2 (𝑑) are functions of 𝑑 . The network was implemented by a multi-layer perceptron
(MLP) [97, 98]. Taking a Gaussian prior distribution makes re-parameterization feasible to build
an unbiased and low-variance gradient estimator for the variational distribution [35]. Without
conjugacy prior, the updates of the parameters are derived directly and easily from the variational
lower bound. Formally, a variational lower bound (aka., evidence lower bound (ELBO)) for the
document log-likelihood is constructed as:

J𝑡𝑜𝑝𝑖𝑐 = E𝑞 (𝜃 |𝑑) [log𝑝 (𝑑 |𝛽, 𝜃 )] − KL(𝑞(𝜃 |𝑑) | |𝑝 (𝜃 |𝜇0, 𝜎
2
0 )), (31)

where 𝑞(𝜃 |𝑑) is the variational distribution approximating the true posterior 𝑝 (𝜃 |𝑑). Its lower
bound is estimate by sampling 𝜃 from 𝑞(𝜃 |𝑑) = G(𝜃 |𝜇 (𝑑), 𝜎2 (𝑑)).
In order to combine neural topic model and neural generation model, the idea is to use the

Variational Auto-Encoder (VAE) [35]. It adopts autoregressive networks (e.g., LSTM) both as the
encoder and decoder. VAE can learn latent codes 𝑧 of texts by reconstructing texts with its decoder.
It assumes that the generation process is controlled by codes in a continuous latent space. This
kind of VAE implementation considers sequential information of texts that can model the linguistic
structure of texts. Wang et al. proposed topic guided variational autoencoder (TGVAE), to draw
latent code 𝑧 from a topic-dependent Gaussian Mixture Prior in order to incorporate the topical
knowledge into latent variables [149]. The topic-dependent Gaussian Mixture Model (GMM) is
defined as:

𝑝 (𝑧 |𝛽, 𝑡) =
𝑇∑︁
𝑖=1

𝑡𝑖N(𝜇 (𝛽𝑖 ), 𝜎2 (𝛽𝑖 )), (32)

where 𝑇 is the number of topics, 𝜇 (𝑑) and 𝜎2 (𝑑) are functions implemented by MLP. TGVAE uses
bag-of-words as input and embeds an input document into a topic vector. The topic vector is then
used to reconstruct the bag-of-words input, and the learned topic distribution over words is used
to model a topic-dependent prior to generate an output sequence 𝑌 from conditioned on an input
sequence 𝑋 . Specifically, the joint marginal likelihood can be written as:

𝑝 (𝑌,𝑑 |𝑋 ) =
∫
𝜃

∫
𝑧

𝑝 (𝜃 )𝑝 (𝑑 |𝛽, 𝜃 )𝑝 (𝑧 |𝛽, 𝜃 )𝑝 (𝑌 |𝑋, 𝑧)𝑑𝜃𝑑𝑧. (33)
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To maximize the log-likelihood log 𝑝 (𝑌,𝑑 |𝑋 ), a variational objective function is constructed as:

J𝑠𝑒𝑞2𝑠𝑒𝑞 = E𝑞 (𝑧 |𝑋 ) [log𝑝 (𝑌 |𝑋, 𝑧)] − E𝑞 (𝜃 |𝑑) [KL(𝑞(𝑧 |𝑋 ) | |𝑝 (𝑧 |𝛽, 𝜃 ))], (34)

where 𝑞(𝑧 |𝑋 ) is variational distributions for 𝑧. The combined object function is given by:

J = J𝑡𝑜𝑝𝑖𝑐 + J𝑠𝑒𝑞2𝑠𝑒𝑞 . (35)

Follow-up work. Fu et al. extended TGVAE with a variational hierarchical topic-aware mechanism
(VHTM) that incorporated topical knowledge into words embedding and paragraph attention for
long document summarization [43]. The topic-related parts with different levels of granularities
in long documents are positioned and extracted to generate more germane summaries. Li et al.
addressed that TGVAE and VHTM did not separate the semantic and structure latent codes explic-
itly [83]. They proposed two separate autoencoders that comprises a topic modeling component
capturing topical knowledge and a sequence modeling capturing structural features (e.g., style).
Moreover, the encoder of the topic modeling is served as a discriminator to force the decoder of the
sequence modeling to generate texts having the semantics as close to the original texts as possible.
By separating the semantic and structural codes, the model can control structural and semantic
information independently. One interesting application is content manipulation (CM), which aims
to generate sequence with same structure (e.g., style) in different semantic spaces [41, 83, 150].

3.1.4 Pros and Cons Discussion in NLG Enhanced by Topic. Topic models (e.g., LDA) has a strict
probabilistic explanation since the semantic representations of both words and documents are
combined into a unified framework. Besides, topic models can be easily used and integrated into
generation frameworks. For examples, topic words can be represented as word embeddings; topic
embedding can be integrated into the decoding phase through topic attention. However, LDA
models are separated from the training process of neural generation model, so they cannot adapt to
the diversity of dependencies between input and output sequences. Neural topic models combine
the advantages of neural networks and probabilistic topic models, they can be trained efficiently by
backpropagation, scaled to large data sets. Generally, neural topic models can provide better topic
coherence than LDAs [17, 83, 149]. However, neural variational approaches share a same drawback
that topic distribution is assumed to be an isotropic Gaussian, which makes them incapable of
modeling topic correlations. Existing neural topic models assume that the documents should be i.i.d
to adopt VAE. In fact, the documents are composed of words, which tend to be correlated instead
of completely independent. So, the correlations between documents are critical for topic modeling.

3.2 NLG Enhanced by Keywords
Keyword (aka., key phrase, key term) is often referred as a sequence of one or more words, providing
a compact representation of the content of a document. The mainstream methods of keyword
acquisition for documents can be divided into two categories [128]: keyword assignment and
keyword extraction. Keyword assignment means that keywords are chosen from a controlled
vocabulary of terms or predefined taxonomy. Keyword extraction selects the most representative
words explicitly presented in the document, which is independent from any vocabulary. Keyword
extraction techniques (e.g., TF-IDF , TextRank , PMI) have been widely used over decades. Many
NLG tasks can benefit from incorporating such a condensed form of essential content in a document
to maintain the semantic coherence and guide the generation process.

Applications. Dialogue system [126, 132, 162, 179] and summarization [80, 81, 84] are two main-
stream tasks that have adopted keyword knowledge. In a dialogue system, keywords help enlighten
and drive the generated responses to be informative since vanilla Seq2Seq model tends to generate
universally relevant replies which carry little semantics (e.g., “I don’t know”, “Okay” ). Besides,
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Table 6. NLGmethods that enhance text generation by incorporating keyword with keyword assignment (M1)
or keyword extraction (M2). For brevity, we abbreviate keyword extraction to “KExt”, keyword embedding to
“KEmb”, keyword sequence encoder to “KSeqE”, and keyword graph encoder to “KGraphE”.

Task Method Description

Dialogue
system

Seq2BF [102] Seq2Seq + KExt (PMI) + KEmb M2
E-SCBA [82] Keyword assignment with 7 emotions M1
EmoChat [179] E-SCBA + two memory modules M1
EmoDS [132] Keyword assignment after decoding M1
CDL [126] EmoChat + dual tasks learning M1

Summarization
KIGN [80] Seq2Seq + KExt (TextRank) + KSeqE M2
ComGen [84] Seq2Seq + KExt (PMI, TFIDF) + KGraphE M2
G-S2A [59] Seq2Seq + KExt + KGraphE M2
KGAS [81] Seq2BF + KExt (BiLSTM) + multi-task M2

personalized dialogue, as an emerging topic, plays an important role for improving user experience
in human-computer interaction. Recent work introduced personalized information into the genera-
tion of dialogue to help deliver better dialogue response such as emotion (e.g., “sad” ) [82, 132, 179],
persona [176, 178], politeness [107] and etc. In summarization tasks, abstractive summarization
is popular for displaying a document summary in a coherent form that is easily readable and
grammatically correct. However, it suffers when the generation process is hard to control and often
misses salient information [80]. Making use of keywords as explicit guidance can provide significant
clues of the main points about the document [80, 81]. It is closer to the way that humans write
summaries: make sentences to contain the keywords, and then perform necessary modifications to
ensure the fluency and grammatically correctness.

Researchers have developed a great line of keyword-enhanced NLG methods as summarized in
Table 6. These methods can be categorized into two methodologies:

• M1: Incorporate keyword assignment into text generation. In keyword assignment,
keywords are pre-stored and selected from the prepared vocabularies. To obtain the keywords,
a general way is to learn a keyword classifier to predict appropriate keywords based on the
input sequence, then use them to guide generation.
• M2: Incorporate keyword extraction into text generation. Keyword extraction selects
themost important words presented in the document. There are numerous keyword extraction
techniques ranging from statistical approaches (e.g., TF-IDF, TextRank) to supervised learning
approaches (e.g., BiLSTM). Extracted keywords are then used to enhance the decoding phase.

3.2.1 Incorporate Keyword Assignment into Text Generation. In this methodology, when assigning
a keyword to an input document, the set of possible keywords is bounded by a pre-defined vo-
cabulary [128]. One advantage is that the quality of keywords is guaranteed, because irrelevant
keywords would not be included in the vocabulary. The keyword assignment is implemented by a
classifier that maps the input document to a word in the pre-defined vocabulary [30, 82, 132, 179].
Another advantage is that even if two semantically similar documents do not have common words,
they can still be assigned with the same keyword. Unfortunately, some NLG scenarios do not
hold an appropriate pre-defined vocabulary, so keyword assignment cannot be widely used to
enhance NLG tasks. One applicable scenario is to use a pre-determined domain specific vocabulary
to maintain relevance between the input sequence and the output sequence [30]. Another scenario
is to generate dialogue with specific attributes such as persona [129, 164], emotion [82, 132, 179].
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Adding assigned keyword into the decoder. A straightforward method of keyword assignment
is to assign the words from pre-defined vocabulary and use them as the keywords [129, 164, 182].
Sometimes, however, the input sequence does not have an explicit keyword, but we can find one
from the pre-defined vocabulary. For example, a dialogue utterance “If you had stopped him that day,
things would have been different.” expresses sadness but it does not have the word “sad.” To address
this issue, Li et al. propose a method to predict an emotion category by fitting the sum of hidden
states from encoder into a one-layer MLP classifier [82]. Then, the response will be generated with
the guidance of the emotion category. More concretely, the predicted emotion category 𝑘 ∈ K is
first represented by a real-valued, low dimensional vector k. Then, the emotion category embedding
k are combined with the original context vector c𝑡 together as a new context vector to generate
target words, i.e., c𝑡 ← (c𝑡 ⊕ k). In order to dynamically track how much the emotion is expressed
in the generated sequence, Zhou et al. propose a memory module to capture the emotion dynamics
during decoding [179]. Each category is initialized with an emotion state vector before the decoding
phase starts. At each step, the emotion state decays by a certain amount. Once the decoding process
is completed, the emotion state decays to zero, indicating that the emotion is completely expressed.
Xu et al. further improve the performance by learning response generation and query generation
with emotions as a dual task, and use the duality to model the mutual relation between them [162].

Assigning keyword for generated sequence. As mentioned in [132], explicitly incorporating emo-
tional keywords suffers from expressing a certain emotion overwhelmingly. Instead, Song et al.
propose to increase the intensity of the emotional experiences not by using emotional words
explicitly, but by implicitly combining neutral words in distinct ways on emotion [132]. Specifically,
they use an emotion classifier to build a sentence-level emotion discriminator, which helps to
recognize the responses that express a certain emotion but not explicitly contain too many literal
emotional words. The discriminator is connected to the end of the decoder (i.e., the predicted output
sequence 𝑌 ). Overall, the generation loss of assigning keyword for generated sequence is:

L𝐾𝐴−𝑁𝐿𝐿 (𝜃 ) = − log(𝑝 (𝑘 |𝑌 )) −
𝑚∑︁
𝑡=1

log (𝑝 (𝑦𝑡 |𝑦<𝑡 , 𝑋 )) , (36)

3.2.2 Incorporate Keyword Extraction into Text Generation. Keyword extraction selects salient
words from input documents [128]. Many recent works have explored to make use of statistical
keyword extraction techniques (e.g., PMI [102], TextRank [80, 84]), and neural-based keyword
extraction techniques (e.g., BiLSTM [81]). The process of incorporating extracted keywords into
generation is much like the process discussed in Section 3.2.1. It takes keywords as an additional
input into decoder. Recent works improve encoding phase by adding another sequence encoder
(e.g., RNN) to represent keywords [80, 81], denoted as {k𝑖 }𝑝𝑖=1. Then, the contextualized keywords
embeddings {k𝑖 }𝑝𝑖=1, word embedding e(𝑦𝑡−1), and the context vector c𝑡 are fed into the decoder
together to update the hidden state s𝑡 , i.e., s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, e(𝑦𝑡−1), c𝑡 , c𝑘𝑡 ), where c𝑘𝑡 is the keyword
context vector. Li et al. use a bi-directional LSTM to encode extracted keywords, and take the
last forward hidden state

−→
k𝑝 and backward hidden state

←−
k1 as the key context vector c𝑘𝑡 , i.e.,

c𝑘𝑡 = (
−→
k𝑝 ⊕

←−
k1) [80]. Li et al. use keyword attention to calculate c𝑘𝑡 (details in Table 3) [81]. In

addition, Li et al. propose to use multi-task learning for training a keyword extractor network and
generating summaries [81]. Because both summarization and keyword extraction aim to select
important information from input document, these two tasks can benefit from sharing parameters
to improve the capacity of capturing the gist of the input text. In practice, they take overlapping
words between the input document and the ground-truth summary as keywords, and adopt a
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BiLSTM-Softmax as keyword extractor. Overall, the generation loss is written as:

L𝐾𝐸−𝑁𝐿𝐿 (𝜃 ) = −
∑︁
𝑘∈𝐾

log(𝑝 (𝑘 |𝑋 )) −
𝑚∑︁
𝑡=1

log (𝑝 (𝑦𝑡 |𝑦<𝑡 , 𝑋, 𝐾)) . (37)

3.2.3 Pros and Cons Discussion of Different Methods. The primary advantage of keyword assign-
ment is that the quality of keywords is guaranteed, because irrelevant keywords are not included in
the pre-defined vocabulary. Another advantage is that even if two semantically similar documents
do not have common words, they can still be assigned with the same keyword. However, there are
mainly two drawbacks. On one hand, it is expensive to create and maintain dictionaries in new do-
mains. So, the dictionaries might not be available. On the other hand, potential keywords occurring
in the document would be unfortunately ignored if they were not in the vocabulary. Therefore, key-
word assignment is suitable for the task that requires specific categories of keywords to guide the
generated sentences with these key information. For example, dialogue systems generate responses
with specific emotions or attitudes. Keyword extraction selects the most representative words
explicitly presented in the document, which is independent from any vocabulary. So, keyword
extraction is easy to use. The drawbacks of using keyword extraction lie in two aspects. First, it
cannot guarantee consistency because similar documents may still be represented by different
keywords if they do not share the same set of words. Second, when an input document does not
have a proper representative word, and unfortunately, the keyword extractor selects an irrelevant
word from the document as a keyword, this wrong guidance will mislead the generation. Therefore,
keyword extraction is suitable for the task that the output sequence needs to keep important
information in the input sequence such as document summarization and paraphrase.

3.3 NLG Enhanced by Linguistic Features
In NLG community, feature enriched encoder means that the encoder not only reads the input
sequence, but also incorporates auxiliary hand-crafted features [181]. Linguistic features are the
most common hand-crafted features, such as lemmas, part-of-speech (POS) tags, dependency
parsing, and semantic parsing [124]. In this section, we introduce lemmatisation features, POS tags,
NER tags and leave dependency parsing, semantic parsing in Section 4.3.2-4.3.3.

3.3.1 Lemmatisation features. In morphology and lexicography, a lemma is the canonical form and
dictionary form of a set of words that have the same meaning.∗ For example, “run”, “runs”, “ran”, and
“running” are forms of the same lexeme, with “run” as the lemma. Modeling sequences of tokens
in morphologically rich languages (e.g., German, Czech) is a difficult task of great importance in
many NLG tasks like machine translation [31, 124]. Therefore, lemmatisation has been used to
help reduce data sparseness and allow inflectional variants of the same word to explicitly share a
representation in the model. Semmrich et al. indicated the hidden representation between word
forms should be shared in some dimensions if the word forms share the same base form (i.e., a
lexeme) [124]. Conforti et al. directly concatenated the word embedding and lemma embedding to
obtain a single vector representation for each input word [31].

3.3.2 POS tags and NER tags. Part-of-speech tagging (POS) assigns token tags to indicate the
token’s grammatical categories and part of speech such as noun (N), verb (V), adjective (A). Named-
entity recognition (NER) classifies named entities mentioned in unstructured text into pre-defined
categories such as person (P), location (L), organization (O). CoreNLP is the most common used
tool [95]. In spite of homonymy and word formation processes, the same surface word form may

∗https://en.wikipedia.org/wiki/Lemma_(morphology)
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Table 7. Natural language generation methods that incorporate knowledge bases in text generation model.

Task Method Description

Question
answering

GenQA [170] The first work on KB-based QA M1
CoreQA [60] GenQA + three modes of using KB M1
HetMem [44] CoreQA + document (KB’s source) M1
KEAG [10] CoreQA + reading contexts M1

Dialogue
system

KBCopy [39] Enhance dialogue with KB by copy M1
Mem2Seq [93] KBCopy + facts/utterances memory M1
GLMP [153] Mem2Seq + global-to-local memory M1
MKST [144] KBCopy + two-stage decoder M1
PostKS [85] KBCopy + facts selection M3
TopicKA [155] KBCopy + topical facts selection M3

Content
manipulation

U-TCM [150] KB makes Text CM (TCM) unsupervised M2
DS-TCM[41] U-TCM at document scale manipulation M2
FactEditor [67] U-TCM + three actions for text editing M2

Summarization HATS [166] Seq2Seq + facts retrieval + RL + GAN M1

be shared between several word types. Incorporating NER tags and POS tags can detect named
entities and understand input sequence better, hence, further improve NLG [2, 38, 104, 181].

4 NLG ENHANCED BY KNOWLEDGE BASE/GRAPH, DEPENDENCY GRAPH
4.1 NLG Enhanced by Knowledge Base
One of the biggest challenges in NLG is to discover the dependencies of elements within a sequence
and/or across input and output sequences. The dependencies are actually various types of knowledge
such as commonsense, factual events, and semantic relationship. Knowledge base (KB) is a popular
technology that collects, stores, and manages large-scale information for knowledge-based systems
like search engines. It has a great number of triples composed of subjects, predicates, and objects.
People also call them “facts” or “factual triplets”. Recently, researchers have been designing methods
to use KB as external knowledge for learning the dependencies easier, faster, and better. Commonly
used KBs in general domains include DBpedia, Freebase, and Wikidata.

Applications. One popular task of leveraging KBs in text generation is generation-based question
answering (QA) [10, 44, 60]. It is often difficult to generate proper answers only based on a given
question. This is because, depending on what the question is looking for, a good answer may
have different forms. It may completes the question precisely with the missing information. It
may elaborate details of some part of the question. It may need reasoning and inference based
on some facts and/or commonsense. As a result, only incorporating input question into neural
generation models often fails the task due to the lack of commonsense/factual knowledge [10].
Related structured information of commonsense and facts can be retrieved from KBs.
On the other hand, a proper answer must be in understandable natural language instead of a

simple subject or object entity in the base. Here is an example:
• Question: Do you know where was Jet Li from?
• Related facts in KB: <Jet Li, birthplace, Beijing> ; <Jet Li, nationality, Singapore>
• Answer by KB-based reasoning: Beijing
• Expected seq answer: Jet Li was born in Beijing. He is now a Singaporean citizen.

Other interesting applications include completing dialogue system [85, 93, 144, 154, 155] and
“content manipulation” (CM) [24, 41, 67]. The needs of KB in generating conversations or dialogues
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are relevant with QA but differ from two aspects. First, a conversation or dialogue could be open
discussions when started by an open topic like “Do you have any recommendations?” Second,
responding an utterance in a certain step needs to recall previous contexts to determine involved
entities. KB will play an important role to recognize dependencies in the long-range contexts. In
addition, the task of content manipulation is to describe KB data in a more desired way rather than
just putting subject, predicate, and object together as a rigid sentence [24, 41]. It can be seen as the
opposite task of style [63, 127]. The gold output of content manipulation is the text consisting of
the content of KB data in the same style as the reference sentence. For example, a sports journalist
may use particular expressions and language styles to describe specific kinds of games [68].
To address this problem, researchers have developed a great line of methods as summarized in

Table 7. To handle different kinds of relationships between KB and input/output sequences, these
methods can be categorized into three methodologies:
• M1: Design supervised tasks around KB for joint optimization. The knowledge for
accomplishing some tasks on KB may be useful for generating a sequence from the other
sequence. In other words, when a model learns to perform well in finding information in
KB, this extra training can help it generate the output sequence. People design supervised
learning tasks around the KB to jointly optimize model parameters.
• M2: Design unsupervised methods with KB as a conditional factor of sequence. The
input and output sequences may be expected to have underlying information in common
(like facts or events), while they look very different as in two different languages or different
styles. Then KB, which maintains a large set of facts and events, can be considered as a
condition of generating the input and output sequences. For example, adversarial methods
are widely used for machine translation and language style transfer.
• M3: Enhance incorporation by selecting KB or facts. The relevance of KB with se-
quences plays an essential role in discovering knowledge for sequence generation. So, select-
ing relevant KB and/or selecting relevant facts from a KB can enhance KB’s incorporation.

We discuss in detail about each methodology in the following subsections.

4.1.1 Design Supervised Tasks around KB for Joint Optimization. Knowledge bases (KBs) that
acquire, store, and represent factual knowledge can be used to enhance neural based question
answering (QA) and dialogue systems. However, designing effective incorporation to achieve a
desired enhancement is challenging because a vanilla Seq2Seq often fails to represent discrete
isolated concepts though they performwell to learn smooth shared patterns (e.g., language diversity).
To fully utilize the knowledge bases, the idea is to jointly train neural models on multiple tasks.
For example, the target task is answer sequence generation, and additional tasks include question
understanding and fact retrieval in the KB. Knowledge can be shared across a unified encoder-
decoder framework design. Typically, question understanding and fact retrieval are relevant and
useful tasks, because a question could be parsed to match (e.g., string matching, entity linking,
named entity recognition) its subject and predicate with the components of a fact triple in KB, and
the answer is the object of the triple. For example, if the question is “Where was Barack Obama
born in the U.S.?”, the phrase “Barack Obama” can be matched to a fact triple, (Barack Obama,
born, Hawaii), in the KB. Parsing the question and retrieving relevant facts can exclude unrelated
information and prevent unrelated knowledge from hindering answer generation.

GenQA was the first work to generate answers using factual knowledge bases [170]. During the
generation, GenQA is able to retrieve words from the KBs. However, it could not adopt relevant
words from the question (i.e., input sequence). It could not handle complex questions that were
associated with multiple facts, either. He et al. recognized these two issues and proposed CoreQA.
CoreQA used both copying and retrieving mechanisms to generate answer sequences with an
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end-to-end fashion [60]. Specifically, it had a retrieval module to understand the question and find
related facts from the KB. The retrieval module calculates score 𝑆 by a matching function between
representation of input query (h𝑋 ) and each relevant fact ({k𝑖 }𝑁𝑖=1) based on a multi-layer perception
(MLP): 𝑆 (h𝑋 ,k) = 𝑓𝑚𝑙𝑝 (h𝑋 ,k). Scoring function also could be bi-linear model [170], rule-based
method [10] and etc. A fact representation (k) in KB is the concatenation of word representations
of subject k(𝑠) , predicate k(𝑝) , and object k(𝑜) . It is denoted by k = (k(𝑠) ⊕ k(𝑝) ⊕ k(𝑜) ). Then,
the question and all retrieved facts are transformed into latent representations by two separate
encoders. During the decoding phase, the integrated representations are fed into the decoder.
The decoder updates its hidden state (s𝑡 ) by performing a joint attention on both input sequence
and retrieved facts, i.e., s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, c𝑡 , c𝑘𝑏𝑡−1, e(𝑦𝑡−1)), where c𝑡 is introduced in Eq.(9) and c𝑘𝑏𝑡
calculates attention over each retrieved fact (see details in Table 3). CoreQA predicts words on a
mixed probabilistic model of three modes: (i) generating a word from global vocabulary, (ii) retrieval
a factual word from KB, and (iii) copying a word from input sequence (see details in Table 4).

Follow-up work. CoreQA devoted a general and end-to-end framework to generate natural
answers by leveraging retrieved information from KBs. It has been extended by many works [10, 44,
154]. For example, Fu et al. extended GenQA and CoreQA by adding a heterogeneous memory in
the neural language generation framework, when textual documents were also given for knowledge
retrieval besides KBs. Their work used not only the facts in KBs but also semi-structured entities
in the retrieved documents [44]. Gao et al. take a Wasserstein distance based adversarial learning
method as an additional training signal for generating more consistence answer [48]. Bi et al.
developed a method to incorporate a textual document attached to the given question [10]. For
conversation and dialogue systems, Madotto et al., addressed CoreQA is not easy to effectively
incorporate historical KB into the decoder’s hidden states after the systems run multiple steps [93].
They proposed Mem2seq, which used a memory network (i.e., previous utterances are mapped
to vectors called memory) to dynamically update information. It combined multi-hop attention
mechanisms with pointer networks [141] to effectively incorporate knowledge obtained from the
KB. Wu et al. further improved Mem2Seq with a global-to-local memory pointer network [153].

4.1.2 Design Unsupervised Methods with KB as a Conditional Factor of Sequence. Natural language
has a variety of styles. News articles, social media tweets, scientific publication are written in
different styles. Recently, there has been growing interests in text style transfer. A great line of
techniques for controllable NLG have been developed [63, 127]. They modified the property of
sentences like transferring from positive sentiment to negative. However, they do not update
any essential content to make it consistent with the property change. So, the task of content
manipulation was proposed and studied. It is to express the given fact(s) in an expected writing
style of a reference (input) sequence [150]. For example, given a structured fact 𝑘 (player: “Lebron
James”, points: “20”, assists: “10”), and a reference sentence 𝑋 “Kobe easily dropped 30 points”,
the goal is to generate a styled sentence 𝑌 to describe the fact like “Lebron easily dropped 20
points and 10 assists”. The challenge is to understand the content’s structure, manipulate according
to the reference sentence, and polish the output for grammatical correctness and fluency in an
unsupervised way. In other words, the problem is to generate a new desired sentence 𝑌 based on
(𝑋, 𝑘), without ground-truth sentence 𝑌 for training.
Wang et al. proposed an unsupervised neural generation model to address this problem. The

model optimized two objectives with an extra content coverage constraint [150]. One objective
is content fidelity and the other is style preservation. First, content fidelity aims to accurately
describe 𝑘 by reconstructing the original description 𝑘 ′, i.e., 𝑝 (𝑋 ′ |𝑘,𝑋 ). For instance, 𝑋 ′ could be
“Lebron James put together a 20-point, 10-assist double-double”. Since 𝑋 ′ was originally written by
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human to describe 𝑘 , it could be seen as maximum data fidelity. Second, style preservation aims to
retain writing style by reconstructing 𝑋 based on 𝑘 , i.e., 𝑝 (𝑋 |𝑘 ′, 𝑋 ). Here 𝑘 can be considered as a
conditional fact of the input/output sentences. Therefore, the two objectives are competitive with
each other. Coupled the two objectives together, the loss function is defined as below:

L𝐶𝑀 (𝜃 ) = Lcontent (𝜃 ) + Lstyle (𝜃 ) = log𝑝𝜃 (𝑋 ′ |𝑘,𝑋 ) + log𝑝𝜃 (𝑋 |𝑘 ′, 𝑋 ). (38)

Briefly speaking, 𝑋 denotes original description of 𝑘 without following the reference sentence 𝑋 ′,
and 𝑘 ′ is the fact that 𝑋 ′ originally describes. However, Wang et al. model facts and references
as independent modules [150]. Instead, Feng et al. created a fused representations of facts and
references using an interactive attention mechanism with a hierarchical encoder [41]. It can
effectively capture the semantic relatedness with the references to strengthen the capability of
content selection from the two types of inputs. In addition, it also uses back-translation [125] to
improve the content fidelity and style preservation by constructing pseudo training pairs.

4.1.3 Enhance Incorporation by Selecting KB or Facts in KB. The general method to incorporate KB
into NLG is to parse input sequence, retrieve relevant facts, and subsequently, a knowledge-aware
output can be generated based on the input sequence and previously retrieved facts. Ideally, the
relevance of the facts is satisfactory with the input and output sequence dependencies, which is not
always true in real cases. Lian et al. addressed the issue of selecting relevant facts from KBs based
on retrieval models (e.g. semantic similarity) might not effectively achieve appropriate knowledge
selection [85]. The reason is that different kinds of selected knowledge facts can be used to generate
diverse responses for the same input utterance. Given a specific utterance and response pair, the
posterior distribution over knowledge base from both the utterance and the response may provide
extra guidance on knowledge selection. The challenge lies in the discrepancy between the prior
and posterior distributions. Specifically, the model learns to select effective knowledge only based
on the prior distribution, so it is hard to obtain the correct posterior distribution during inference.

To tackle this issue, the works of Lian et al. [85] and Wu et al. [154] approximated the posterior
distribution using the prior distribution in order to select appropriate knowledge even without
posterior information. They introduced an auxiliary loss, called Kullback-Leibler divergence loss
(KLDivLoss), to measure the proximity between the prior distribution and the posterior distribution,

LKLDiv (𝜃 ) =
𝑁∑︁
𝑖=1

𝑝 (𝑘 = 𝑘𝑖 |𝑋,𝑌 ) log
𝑝 (𝑘 = 𝑘𝑖 |𝑋,𝑌 )
𝑝 (𝑘 = 𝑘𝑖 |𝑋 )

, (39)

where 𝑁 is the number of retrieved facts. When minimizing KLDivLoss, the posterior distribution
𝑝 (𝑘 |𝑋,𝑌 ) can be regarded as labels to apply the prior distribution 𝑝 (𝑘 |𝑋 ) for approximating
𝑝 (𝑘 |𝑋,𝑌 ). Finally, the total loss is written as the sum of the KLDivLoss and NLL (generation) loss.

4.2 NLG Enhanced by Knoweldge Graph
Knowledge graph (KG), as a type of structured human knowledge, has greatly attracted research
attention from both academia and industry. A KG is a structured representation of facts (a.k.a.
knowledge triplets) consisting of entities†, relations, and semantic descriptions [71]. The terms of
knowledge base and knowledge graph are often interchangeably used, but they are not necessarily
synonymous. A knowledge graph is organized as a graph, so connections between entities are
first-class citizens in a KG. In a KG, People can easily traverse links to discover how entities are
interconnected with certain knowledge. Recent advances in artificial intelligence research have
demonstrated the effectiveness of KG in various applications such as recommendation system [143].

†For brevity, “entities” denotes both entities (e.g., Prince) and concepts (e.g., musician) throughout the paper.
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Applications. Dialogue system is the most popular task that makes use of KG for the semantics
in linked entities and relations [5, 108, 138, 173, 180]. A dialogue may shift focus from one concept
to another, breaking the discourse into several segments, which can be interpreted as a linked
path connecting multiple entities on a KG. Other interesting applications include question answer-
ing [7], creative writing (e.g., scientific writing [75, 147], story generation [56, 70]), and machine
translation [103, 177]. Scientific writing aims to explain natural processes and phenomena step by
step, so each step could be reflected as a link on KG and the whole explanation would be a path. In
story generation, using implicit knowledge in KGs can facilitate understanding of the storyline and
better predict what will happen in the next plot. In abstractive summarization, using commonsense
knowledge in KGs can help produce summaries that do not conflict with the facts in the article;
representations on KGs can produce a structured summary and highlight the proximity of relevant
concepts, when complex events related with the same entity may span multiple sentences.

Instead of using separate, independent knowledge triplets, leveraging KG benefits text generation
from the rich semantics in linked entities and relations. As important components of graph, node
embedding and path of connected links serve as important roles in various text generation tasks. The
corresponding techniques are knowledge graph embedding (KGE) [148] and path based knowledge
graph reasoning [25]. Furthermore, harnessed with the emerging graph neural network (GNN) [156]
and graph-to-sequence (Graph2Seq) encoder-decoder frameworks [8], it becomes possible to encode
multi-hop and high-order relations in KGs. Since there is no widely-accepted formal definition of
KG-related concepts [71], we give the definition of (1) KG, (2) sequence-associated subgraph, and
(3) k-hop path that will be used in the following sections.

Definition 4.1 (Knowledge graph (KG)). A knowledge graph (KG) is a directed and multi-relational
graph composed of entities and relations which are regarded as nodes and different types of edges.
Formally, a KG is defined as G = (U, E,R), whereU is the set of entity nodes and E ⊆ U ×R ×U
is the set of typed edges between nodes inU with a certain relation in the relation schema R.

It should be noted that in an ontological KG (sometimes referred as a curated KG), each knowledge
edge is fully disambiguated against a fixed vocabulary of entities and relations; in an open KG,
however, nodes are mentions of entities and edges are open relations [14]. In this section, we only
introduce ontological KG and leave the open KG in Section 4.3.1. Besides, KG-based technologies can
be applied to knowledge bases (KBs) when the entity-relation-entity triplets in KBs are represented
as edges in the KGs. Formally, the triplet is written as (𝑢𝑖 , 𝑟 , 𝑢 𝑗 ), where 𝑢𝑖 , 𝑢 𝑗 ∈ U, 𝑟 ∈ R denote
the head entity (as source node), tail entity (as target node), and relation (as type of edge).

Definition 4.2 (Sequence-associated K-hop subgraph). A sequence-associated K-hop subgraph
is defined as G𝑠𝑢𝑏 = (U𝑠𝑢𝑏, E𝑠𝑢𝑏,R), where U𝑠𝑢𝑏 is the union of the set of entity nodes mapped
through an entity linking function𝜓 : V ×X → U and their neighbors within K-hops. Similarly,
E𝑠𝑢𝑏 ⊆ U𝑠𝑢𝑏 × R ×U𝑠𝑢𝑏 is the set of typed edges between nodes inU𝑠𝑢𝑏 .

Definition 4.3 (K-hop path). A 𝑘-hop path from entity nodes 𝑢0 ∈ U to entity nodes 𝑢𝑘 is defined
as a sequence of 𝑘 + 1 entity nodes connected by 𝑘 relations, denoted by Φ𝑘 (𝑢0, 𝑢𝑘 ) =

{
𝑢0

𝑟1→ 𝑢1
𝑟2→

· · · 𝑟𝑘→ 𝑢𝑘

}
where 𝑢𝑡−1

𝑟𝑡→ 𝑢𝑡 represents either (𝑢𝑡−1, 𝑟𝑡 , 𝑢𝑡 ) ∈ E or (𝑢𝑡 , 𝑟𝑡 , 𝑢𝑡−1) ∈ E, 𝑡 ∈ [1, 𝑘].

To address this problem, researchers have developed a great line of methods as summarized
in Table 8. To learn the relationship between KG semantics and input/output sequences, these
methods can be categorized into three methodologies:
• M1: Incorporate knowledge graph embeddings into language generation. KGE tech-
niques are to embed entities and relations into continuous vector spaces through a certain
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Table 8. Natural language generation methods that incorporate knowledge graph in text generation model.
For brevity, we abbreviate knowledge graph embedding to “KGE” and path finding to “PF”.

Task Method KG Source M1: KGE M2: PF M3: GNN

Dialogue
system

CCM [180] ConceptNet [133] TransE [13] GAT [140]
AKGCM [108] A self-built KG RL [160]
DyKgChat [138] A self-built KG PR [76, 77]
ConceptFlow [173] ConceptNet [133] TransE [13] GAT [140]

Machine KG-NMT [103] DBpedia [3] TransE [13]
translation KGENMT [177] DBpedia [3] TransE [13]

Question
answering MHPGM [7] ConceptNet [133] PR [76, 77]

Creative
writing

StoryEnding [56] ConceptNet [133] GAT [140]
GraphWriter [75] An abstract KG GTN [172]
PaperRobot [147] A biology KG TransE [13] GAT [140]

objective, to preserve inherent structures of a KG. However, KGE is only directly dependent
on one-hop relation path and restricted with rigorous objective of a certain scoring function.
• M2: Perform reasoning over knowledge graph via path finding strategies. Path find-
ing algorithms provide flexible multi-hop walks on graphs, not restricted to one hop relations.
More importantly, path-finding on KG is a process of knowledge reasoning, which can be
well integrated with the scenarios of complex QA or dialogue systems.
• M3: Augment graph representations with graph neural networks. Recent advances of
GNNs and Graph2Seq potentiate to bridge up the gap between graph representation learning
and generation. Besides, many NLG task might not need to follow a reasoning process but to
understand the global context under a particular generation process. So, GNNs serve as an
important role of integrating rich semantic and structural knowledge into text generation.

4.2.1 Incorporate Knowledge Graph Embeddings into language Generation. Knowledge graph em-
bedding (KGE) techniques learn node embedding from KGs [148]. Since KGs provide connectivity
information (i.e., different types of relations) between entity nodes, KGE aims to capture semantic
relatedness between the entity nodes. The primary idea is to represent entities and relations in
a low-dimensional vector space R𝑑 , where 𝑑 ≪ |U ∪ R|, to reduce data dimensionality while
preserving the inherent structure of a KG. In KGE, TransE [13] is the most widely used technique. In
TransE, given a KG edge (𝑢𝑖 , 𝑟 , 𝑢 𝑗 ), the relation is seen as a translation vector r so that the embedded
entities u𝑖 and u𝑗 can be connected with low error, namely u𝑖 + r ≈ u𝑗 . For example, we have
®𝑇𝑜𝑘𝑦𝑜 + ®𝐼𝑠𝐶𝑎𝑝𝑡𝑖𝑐𝑎𝑙𝑂 𝑓 ≈ ®𝐽𝑎𝑝𝑎𝑛 for the knowledge edge (Tokyo, IsCapticalOf, Japan). TransE is

adopted by many researchers for NLG tasks because of its simplicity and effectiveness [103, 147]. A
common strategy to form a negative set for the margin-based objective in KGE is to build corrupted
knowledge edges by replacing either the head or tail of the knowledge edge with a randomly chosen
entity node. Then, the low-dimensional entity and relationship embeddings are optimized through
stochastic gradient descent with L2 normalization of the entity embeddings:

L𝑇𝑟𝑎𝑛𝑠𝐸 =
∑︁

𝑢𝑖 ,𝑟 ,𝑢 𝑗 ∈E

∑︁
𝑢𝑖 ,𝑟 ,𝑢 𝑗 ∈Ē

max(0, 𝛾 + ||u𝑖 + r − u𝑗 | |22 − ||ū𝑖 + r̄ − ū𝑗 | |22)), (40)

where (𝑢𝑖 , 𝑟 , 𝑢 𝑗 ) is a positive edge and (𝑢𝑖 , 𝑟 ,𝑢 𝑗 ) is a negative edge, and 𝛾 denotes the margin. Then,
the natural language generation (NLG) process can benefit from incorporating the entity and
relation representations (i.e., embeddings) in both encoding and decoding phase.
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Enhancing encoder. On the encoder side, entity nodes are first mapped through an entity linking
function 𝑢 = 𝜓 (𝑣, 𝑋 ). Second, the two channels of word representations (x) and corresponding
entity representations (u) are fused together (e.g. u ⊕ x) to enrich the encoder [173, 180].

Enhancing decoder. On the decoder side, the attention mechanism is employed to perform on
hidden representations as well as knowledge edges E𝑠𝑢𝑏 in the sequence-associated subgraph G𝑠𝑢𝑏 .
Formally, the decoder updates its state s𝑡 as s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, c𝑡 , c𝑘𝑒𝑡−1, e(𝑦𝑡−1)), where c𝑡 is introduced
in Eq.(9) and c𝑘𝑒𝑡 calculates attention over each knowledge edge (see details in Table 3).

4.2.2 Perform Reasoning over Knowledge Graph via Path Finding Strategies. KGE makes use of
one-hop relational path and learns node representations through a certain semantic relatedness (e.g.
TransE). An intelligent machine is supposed to have the ability to conduct explicit reasoning over
relational paths to make multiple inter-related decisions, rather than merely embedding entities in
KGs as latent vectors [157, 160]. Taking the QA task an example, to handle complex queries that
do not have an obvious answer, intelligent machines perform reasoning over a KG, infer potential
answer-related entities, and generate the corresponding answer. So, the challenge lies in identifying
a subset of desired entities and mentioning them in a response [101]. These connected entities
usually follow natural conceptual threads which are able to help generate reasonable and logical
answers or keep conversations engaging and meaningful. Path based methods explore various
patterns of connections among different entity nodes (a.k.a. meta-paths or meta-graphs) and learn
walkable paths on KG to provide additional guidance for the generation process. The path finding
based methods can be mainly divided into two categories: (1) path ranking based methods and (2)
reinforcement learning (RL) based path finding methods.

Path ranking. Path ranking algorithm (PRA) emerges as a promising method for learning and
inferring paths on large KGs [76, 77]. PRA uses random walks to perform multiple bounded depth-
first search processes to find relational paths. Coupled with elastic-net based learning [185], PRA
picks more plausible path to prune non-ideal, albeit factually correct KG paths. For example, Tuan
et al. proposed a neural conversation model with dynamic knowledge graphs based on the PRA
algorithm [138]. In the decoding phase, it selected an output from two networks, i.e. a general GRU
decoder network and a PRA based multi-hop reasoning network, at each time step, in order to
generate informative responses. However, the major disadvantage is that PRA operates in a fully
discrete space, making it complex to find similar entities and relations in a KG. Bauer et al. rank and
filter paths to ensure both the quality and variety of added information via a 3-step scoring strategy,
i.e., initial node scoring, cumulative node scoring, and path selection [7]. Ji et al. heuristically prune
the noisy edges between entity nodes and propose a path routing algorithm to propagate the edge
probabilities along multi-hop paths to the connected entity nodes [69].

Reinforcement learning path finding. Reinforcement learning based methods perform reasoning
on finding a path in a continuous space. These methods incorporate various criteria in their reward
functions of path finding, making the path finding process flexible. Xiong et al. proposed DeepPath,
the first work that employed Markov decision process (MDP) and used RL based approaches to
find paths in KGs [160]. However, the state of MDP requires the target entity to be known in
advance, so the path finding strategy depends on the answer entity. Thus, it is often not applicable
in many real-world QA and dialogue scenarios. Recent RL based knowledge graph reasoning
methods have demonstrated appealing performances on non-generative QA scenarios such as
answer retrieval [32] and reading comprehension [116]. Leveraging RL based path finding for NLG
tasks typically consists of two stages [91, 161]. First, they take sequence 𝑋 as input, retrieve a
starting node 𝑢0 from G, then perform multi-hop graph reasoning, and finally arrive at a target
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node 𝑢𝑘 that incorporates the appropriate knowledge for output sequence generation. Second, they
represent the sequence 𝑋 and the selected path Φ𝑘 (𝑢0, 𝑢𝑘 ) through two separate encoders. They
decode a sequence with multi-source attentions on the input sequence and the selected path (details
in Table 3). Path based knowledge graph reasoning converts graph structure of a KG into a linear
structure of a path, making it easily represented by sequence encoders (e.g, RNN) [40, 108, 138]. For
instance, Niu et al. encoded the selected path Φ𝑘 (𝑢0, 𝑢𝑘 ) and input sequence 𝑋 though two RNNs,
and decodes with a general copy mechanism as introduced in Eq.12 [108]. Overall the generation
loss with RL based path finding method is L𝐾𝐺−𝑅𝐿−𝑁𝐿𝐿 (𝜃 ) = −

∑𝑚
𝑡=1 log (𝑝 (𝑦𝑡 |𝑦<𝑡 ,Φ𝑘 (𝑢0, 𝑢𝑘 ), 𝑋 )).

Follow-up work. Niu et al. addressed that previous methods cannot effectively exploit the long text
information within nodes [108]. They improves by using a machine reading comprehension model
and a bi-linear model to score each possible node from both global and local perspective. Xu et al.
propose an improved adversarial meta-learning algorithm to facilitate dialogue generation with
dynamic KGs since entities or relations are temporal and evolve as a single time scale process [161].

4.2.3 Augment Graph Representation with Graph Neural Networks. Path based methods have shown
great abilities for reasoning knowledge over a certain KG to bridge knowledge gap between question
and answer, or capture conceptual flow in conversation/dialogue systems. However, many NLG
tasks might not need to follow a reasoning process but to better understand global context under a
particular generation process [56, 65, 75]. For instance, the summarization task requires structured
representation to facilitate the connection of relevant entities, and the preservation of global context
(e.g. entity interactions) [65]. A graph representation produces a structured summary and highlights
the proximity of relevant concepts. Recent advances of Graph Neural Networks (GNN) demonstrate
a promising advancement in graph-based representation learning [156]. In order to help NLG,
graph-to-sequence (Graph2Seq) models encode the full structural information contained in the
graph via a neural encoder-decoder architectures [8]. Thus, GNNs have been gradually playing an
important role in helping generation process.

Enhancing encoder. For encoding phase, a general process of leveraging GNNs for incorporating
KG is to augment semantics of a word by including the corresponding entity node vector [56,
65, 173, 180]. A pre-defined entity linking function 𝜓 : V × X → U maps a word in the input
sequence to a corresponding entity node in the KG. For an input sequence, all linked entities
and their neighbors within 𝐾-hops are represented as a sequence-associated K-hop subgraph G𝑠𝑢𝑏 .
For each entity node in G𝑠𝑢𝑏 , it uses the KG structure as well as entity and edge features (if
have, e.g., semantic description) to learn a representation vector u for each entity node. The
sub-graph representation h𝑠𝑢𝑏𝐺 is learned thorough a Readout(·) function from all entity node
representations (i.e., h𝑠𝑢𝑏𝐺 = Readout(

{
u, 𝑢 ∈ U𝑠𝑢𝑏

}
) as introduced in Section 2.2.4). Zhou et al.

was the first to design such a KG interpreter to facilitate the understanding of a input sequence [180].
Besides, some recent work transforms the input KG into its equivalent Levi graph [8], which

treats each entity node and relational edge equally in a KG. In this process, an edge is replaced by
two nodes: one representing the forward direction of the relation and the other representing the
reversed direction. These nodes are connected to the entity nodes so that the directionality of the
former edge is maintained. So, it restructures the original knowledge graph as an unlabeled directed
graph. Existing NLG works have used such a KG format to help generation process [65, 75, 183].

Enhancing Decoder. For decoding phase, the initial hidden state is augmented by subgraph
representation h𝑠𝑢𝑏𝐺 , i.e., s0 = h𝑛 ⊕ h𝑠𝑢𝑏𝐺 [8]. The KG enhanced decoder attentively reads the
retrieved subgraph to obtain a graph-aware context vector, then uses the vector to update the
decoding state [56, 65, 173, 180, 183]. It adaptively chooses a generic word or an entity from the
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retrieved subgraph for word generation. Since graph-level attention alone may overlook fine-
grained knowledge edge information, many existing works adopt a hierarchical graph attention
mechanism [56, 180]. It first attentively reads the retrieved subgraph G𝑠𝑢𝑏 and then attentively
reads all knowledge edges E𝑠𝑢𝑏 involved in G𝑠𝑢𝑏 for final word generation. The decoder updates its
state as s𝑡 = 𝑓𝑑𝑒 (s𝑡−1, c𝑡 , c

𝑘𝑔

𝑡−1, c
𝑘𝑒
𝑡−1, e(𝑦𝑡−1)), where c𝑡 is introduced in Eq.(3); c𝑘𝑔𝑡 and c𝑘𝑒𝑡−1 denote

graph-level context vector and edge-level context vector at time step 𝑡 . The hierarchical graph
attention mechanism pays attention to not only subgraph but also fine-grained entities and relations.
The graph-level context vector c𝑘𝑔𝑡 is a weighted sum of the entity node vectors, measuring the
association between the decoding state s𝑡 and entity node vector u (see details in Table 3).

Follow-up work. Followed by [180], Wang et al. proposed a novel system for scientific writing,
called PaperRobot [147]. It can iteratively construct knowledge graphs, predict new links between
concepts, and write new paper drafts. Zhang et al. proposed ConceptFlow that represents the
potential conversation flow as traverses in the concept space along commonsense relations [173].
The traverses in the concept graph are guided by graph attention mechanisms (GAT) to attend
on more appropriate concepts. Specifically, ConceptFlow is able to grow the grounded concepts
by hopping from the conversation utterances, along the commonsense relations, to distant but
meaningful concepts, guiding the model to generate more informative and on-topic responses.

4.2.4 Pros and Cons Discussion of Different Methods. Knowledge graph embedding (KGE) embeds
components of a KG including entities and relations into continuous vector spaces, so as to simplify
the manipulation while preserving the inherent structure of the KG. Those entity and relation
embeddings can simply be used to enrich input text representations (e.g., concatenating embeddings),
bridging connections between entity words linked from input text in latent space. However, KGE
fails to model complex relation paths. KGE is often used as a basic method in combination with KG
path reasoning and GNNs [173, 180]. The choice between path reasoning and GNNs mainly depends
on the purpose and application of using knowledge graphs. Relation path reasoning leverages path
information over the graph structure, allowing one to infer indirect facts. (Conversational) question
answering system is the most important application. GNN is introduced for learning multi-hop
connectivity structure by iteratively aggregating information from neighboring nodes and edges.
It directly supplies structured knowledge related to entity words in the input text, and assists in
understanding global context under a particular generation process.

4.3 NLG Enhanced by Other Graph Structures
4.3.1 Internal knowledge graph (open KG). Abovementioned KGs (e.g., ConceptNet) are constructed
based on data beyond the input text. We refer them as external KGs. On the contrary, an internal
KG is defined as a KG constructed solely based on the input text. In this section, we will mainly
discuss recent work that incorporated internal KG tos help text generation [26, 40, 65, 183].

Internal KG plays an important role in understanding the input sequence especially when it is of
great length. By constructing an internal KG intermediary, redundant information can be merged or
discarded, producing a substantially compressed form to represent the input document [40]. Besides,
representations on KGs can produce a structured summary and highlight the proximity of relevant
concepts, when complex events related with the same entity may span multiple sentences [65]. One
of the mainstream methods of constructing an internal KG is using open information extraction
(OpenIE). Unlike traditional information extraction (IE) methods, OpenIE is not limited to a small
set of target entities and relations known in advance, but rather extracts all types of entities and
relations found in input text [106]. In this way, OpenIE facilitates the domain independent discovery
of relations extracted from text and scales to large heterogeneous corpora.
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After obtaining an internal KG, the next step is to learn the representation of the internal KG and
integrate it into the generation model. For example, Zhu et al. use a graph attention network (GAT)
to obtain the representation of each node, and fuse that into a transformer-based encoder-decoder
architecture via attention [183]. Their method generates abstractive summaries with higher factual
correctness. Huang et al. extend by first encoding each paragraph as a sub-KG using GAT, and then
connecting all sub-KGs with a Bi-LSTM [65]. This process models topic transitions and recurrences,
which enables the identification of notable content, thus benefiting summarization. Fan et al.
propose to construct an internal KG under a multiple input document scenario [40]. The graph
construction process (i) compresses multiple documents to a significantly smaller size, allowing
models to encode the entirety of the compression, and (ii) reduces redundancy through merge
operations, allowing relevant information to be more easily identified. Fan et al. add hierarchical
and memory compressed attention mechanisms to a standard Graph2Seq [8], in order to encode
the full graph and attend the most relevant information in it.

4.3.2 Syntactic dependency graph. Syntactic dependency graph is a directed acyclic graph rep-
resenting syntactic relations between words [6]. For example, in the sentence “The monkey eats
a banana”, “monkey” is the subject of the predicate “eats”, and “banana” is the object. Enhanc-
ing sequence representations by utilizing dependency information captures source long-distance
dependency constraints and parent-child relation for different words [1, 6, 21, 27]. In NLG tasks,
dependency information is often modeled in three different ways as follows: (i) linearized represen-
tation: linearize dependency graph and then use sequence model (e.g., RNN) to obtain systax-aware
representation [1]; (ii) path-based representation: calculate attention weights based on the linear
distance between a word and the aligned center position, i.e., the greater distance a word to the
center position on the dependency graph is, the smaller contribution of the word to the context
vector is [21]; and (iii) graph-based representation: use graph neural network (GNN) to aggregate
information from dependency relations [6, 27].

4.3.3 Semantic dependency graph. Semantic dependency graph represents predicate-argument
relations between content words in a sentence and have various semantic representation schemes
(e.g., DM) based on different annotation systems. Nodes in a semantic dependency graph are
extracted by semantic role labeling (SRL) or dependency parsing, and connected by different
intra-semantic and inter-semantic relations [109]. Since semantic dependency graph introduces a
higher level of information abstraction that captures commonalities between different realizations
of the same underlying predicate-argument structures, it has been widely used to improve text
generation [72, 87, 109, 131]. Jin et al. propose a semantic dependency guided summarization
model [72]. They incorporate the semantic dependency graph and the input text by stacking
encoders to guide summary generation process. The stacked encoders consist of a sequence encoder
and a graph encoder, in which the sentence encoder first reads the input text through stacked multi-
head self-attention, and then the graph encoder captures semantic relationships and incorporates
the semantic graph structure into the contextual-level representation. Some recent work leverages
abstract meaning representation (AMR) as a structured semantic representation to improving text
generation performances [87, 131]. Compared with semantic roles, AMR is able to directly capture
entity relations and abstract away inflections and function words. Song et al. demonstrate that
making use of AMR helps in enforcing meaning preservation and handling data sparsity (i.e., many
sentences correspond to one meaning) of machine translation models.

4.3.4 Keyword/sentence graph. Instead of using sequence encoder to represent extracted keywords,
recent studies propose to construct a keyword interaction graph to represent documents especially
when they are of great length [59, 84]. It has been shown that keyword interaction graph can
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Table 9. Natural language generation methods that incorporate grounded text in text generation.

Task Method Description

Dialogue
system

KGNCM [52] RNN-Seq2Seq + retrieve review snippets M1
WizardWiki [36] Transformer + retrieve wiki articles + selection loss M1
DeepCopy [169] KGNCM + hierarchical pointer network M1
CMR [114] RNN-Seq2Seq + background document attention M2
RefNet [96] CMR + two decoding modes, i.e., add background copy M2
GLKS [121] CMR + a global-to-local knowledge selection M2

Question
answering

RAGE [23] RNN-Seq2Seq + retrieve review snippets M1
PAAG [48] RNN-Seq2Seq + retrieve review snippets M1
LatentQA [11] CMR + stochastic selector network M2

Summarization
Re3Sum [18] Retrieve and rerank summary template + rewrite M1
BiSET [145] Re3Sum + bi-directional selective template encoder M1

Content
paraphrase FSET [73] Retrieve most similar pair to paraphrase M1

reflect the structure of a document. There are two steps constructing a keyword graph. First, the
document is decomposed into several keyword centered clusters of text, each of which together
with the keyword form a node in the graph. Second, each sentence of the documents is associated
to one corresponding keyword node if the keyword appears in the sentence. The edges between
nodes are built based on the semantic relationship between the nodes. Note that one sentence can
be associated with multiple keyword nodes, which implicitly indicates connection between the two
keywords. Sentences that do not contain any keyword are put into a special node called “Empty”. Li
et al. and Han et al. use graph-to-sequence (Graph2Seq) models based on the constructed keyword
interaction graph [59, 84].

5 NLG ENHANCED BY GROUNDED TEXT

k1

k3

k2

k4

Empty

S: a sentence

S1 S3 

S1        S4        S5 

S1 S4 S4 

S2 

k: a keyword

Fig. 2. An illustration of keyword graph.

Knowledge grounded text refers to textual information
that can provide additional knowledge relevant to the
input sequence. The textual information may not be
found in training corpora or structured databases (like
knowledge bases and knowledge graphs that are men-
tioned in Sections 6 and 7), but can be obtained from
massive textual data from online resources. These online
resources include encyclopedia (e.g., Wikipedia), social
media (e.g., Twitter), shopping websites (e.g., Amazon re-
views). Knowledge grounded text plays an important role
in understanding the input sequence and its surround-
ing contexts. For example, Wikipedia articles may offer
textual explanations or background information for the
input text. Amazon reviews may contain necessary descriptions and reviews needed to answer a
product-related question. Tweets may contain people’s comments and summaries towards an event.
Therefore, knowledge grounded text is often taken as an important external knowledge source to
help with a variety of NLG tasks.

Applications. Knowledge grounded text has been widely researched for improving the interactive
experience in dialogue systems [36, 52, 96, 114, 169]. This is because knowledge grounded text
provides supplementary information of a mentioned entity or background knowledge of the entire
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dialogue. These works can be divided into two categories according to the source and usage of
knowledge grounded text. Methods in the first category typically follow a two-stage process:
retrieval and generation. The first stage retrieves snippets from a large collection of raw text
entries (e.g., Wikipedia, Foursquare) or search engines (e.g., Google). It assumes that the top-
k results cover the most related knowledge. The second stage feeds both dialogue history and
retrieved snippets into a neural generation architecture [96, 114]. The second category is called
background based conversation (BBC) [36, 52, 169]. BBC establishes a conversation mode in which
relevant information can be obtained from the given document. In addition to dialogue systems,
the interesting applications include question answering [11, 23, 48], summarization [18, 47, 110,
145], content paraphrase [22, 73] and machine translation [15, 165]. In summarization, Seq2Seq
models that purely depend on the input text tend to “lose control” sometimes. For example, 3% of
summaries contain less than three words, and 4% of summaries repeat a word for more than 99
times as mentioned in [18]. Furthermore, Seq2Seq models usually focus on copying source words
in their exact order, which is often sub-optimal in abstractive summarization. Therefore, leveraging
summaries of documents similar as the input document as templates can provide reference for the
summarization process [18]. In the task of question answering (QA), it is often difficult to generate
proper answers only based on the given question. For example, without knowing any information
of an Amazon product, it is hard to deliver satisfactory answer to the user questions such as “Does
the laptop have a long battery life?” or “Is this refrigerator frost-free?” So, the product description
and customer reviews can be used as a reference for answering product-related questions [23, 48].

Table 9 summarizes representative NLG models that are enhanced by knowledge grounded text.
They can be categorized into two methodologies:

• M1: Guiding generation with retrieved information. Because knowledge grounded text
is not presented in the training corpora, an idea is to retrieve relevant textual information
(e.g., a review, a summary template) from external sources based on the input text and to
incorporate the retrieved grounded text into the generation process. This process is similar
to designing knowledge acquisition and incorporation of KBs and KGs in NLG tasks. The
difference is that ground text is unstructured and noisy. So, researchers design knowledge
selection and incorporation methods to address the challenges.
• M2:Modeling background document into response generation. The retrieved snippets
are locally related to the input sequence. Background document, with more global and
comprehensive knowledge, has been used for generating informative responses and ensuring
a conversation to not deviate from its topic. Keeping a conversation grounded on a background
document is referred as background based conversation (BBC) [11, 100]. It is important to
find an appropriate background snippet and generate response based on the snippet.

5.1 Guiding Generation with Retrieved Information
5.1.1 Retrieve relevant snippets. In dialogue system and question answering, people often search
and acquire external information as needed to respond or answer questions. However, building
a fully data-driven dialogue or QA system is difficult since most of the universal knowledge is
not presented in the training corpora [52]. The lack of universal knowledge considerably limits
the appeal of fully data-driven generation methods, as they are bounded to respond evasively or
defectively and seldom include meaningfully factual contents. Take an example in [52],

• User input: “Going to Kusakabe tonight.”
• Reviews on Foursquare: “Consistently the best omakase in San Francisco.”
• Response given by vanilla Seq2Seq: “Have a great time!”
• Golden Response: “You’ll love it! Try omakase, the best in town.”
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Though the response from a vanilla Seq2Seq is appropriate, it lacks content when compared to the
golden response. To infuse the response with factual information relevant to input text, an intelligent
machine has to first retrieve related fact or review snippets that contain necessary background
information. Methods for retrieving fact or review snippets are various, including matching from a
collection of raw text entries indexed by named entities [52]; scoring relevant documents within a
large document collection by statistical approaches such as TF-IDF and BM25 [36].
Ghazvininejad et al. proposed a knowledge grounded neural conversation model (KGNCM),

which is the first work to retrieve review snippets from Foursquare and Twitter. Then it incorporates
the snippets into dialogue response generation [52]. It uses an end-to-end memory network [134]
to generate responses based on the selected review snippets 𝐾 = {𝑘1, · · · , 𝑘𝑝 }. Memory network
calculates an attentive presentation h𝐾 over all retrieved review snippets. The hidden state of the
decoder is initialized with h𝐾 , i.e., s0 = h𝐾 . Formally, the attention over the knowledge relevant to
the conversation context is given by

h𝐾 =

𝑝∑︁
𝑖=1

𝛼𝑖h𝑘𝑖 , where𝛼𝑖 =
exp(𝜂 (h𝑋 ,h𝑘𝑖 ))∑𝑝

𝑗=1 exp(𝜂 (h𝑋 ,h𝑘 𝑗 ))
, (41)

where h𝑋 ∈ R𝑑 and h𝑘𝑖 ∈ R𝑑 are embeddings of input sequence and 𝑖-th retrieved fact snippet.
However, Ghazvininejad et al. did not enhance the decoding phase. In order to jointly attend and
copy tokens from all available facts as external knowledge, Yavuz et al. used a hierarchical pointer
network to determine the probability of copying a token from each fact snippet [169]. It not only
attends over the knowledge facts around the decoding step to capture the importance of each
snippet, but also adopts the copy mechanism to copy useful words from the snippet. Equipped
with a soft switch mechanism between copy and generation modes, it allows to softly combine the
copying probabilities with the generation probabilities into a final output probability distribution
over an extended vocabulary. In QA scenarios, Chen et al. [23] and Gao et al. [48] incorporated
online customer reviews to answer product-related questions.

5.1.2 Retrieve and rerank soft templates. In summarization, Seq2Seq models that purely depend
on the input document to generate summaries tend to deteriorate with the accumulation of word
generation, e.g., they generate irrelevant and repeated words frequently [18, 145]. Template-based
summarization [18, 110, 145] assume the golden summaries of the similar sentences (i.e., templates)
can provide a reference point to guide the input sentence summarization process. These templates
are often called soft templates in order to distinguish from the traditional rule-based templates. Soft
template-based summarization typically follows a three-step design: retrieve, rerank, and rewrite.
The step of retrieval aims to return a few candidate templates from a summary collection. The
reranking identifies the best template from the retrieved candidates. And the rewriting leverages
both the source document and template to generate more faithful and informative summaries. In
retrieval, similar with retrieving fact/review snippets, the candidate templates are ranked according
to the text similarity between each candidate template and the input document [18, 145]. The rerank-
ing module is developed to identify the best template 𝑇 that also resembles the actual summary 𝑌
as much as possible. In [18, 145], the actual saliency 𝑆∗ (𝑇,𝑌 ) is calculated by ROUGE, while the
predicted saliency of the template for the input sentence 𝑆 (𝑇,𝑋 ) is calculated by a bi-linear network.
Importantly, the predicted saliency 𝑆 (𝑇,𝑋 ) should be close to the actual saliency 𝑆∗ (𝑇,𝑌 ) as much
as possible. So, the generation loss for soft template-based summarization is written as L𝑆𝑇 (𝜃 ) =
L𝑅𝑒𝑟𝑎𝑛𝑘 (𝜃 ) + L𝑆𝑇−𝑁𝐿𝐿 (𝜃 ) = −

[
𝑆∗ (𝑇,𝑌 ) log 𝑆 (𝑇,𝑋 ) + log

(
𝑝 (𝑦𝑡 |𝑦<𝑡 , 𝑋, argmax𝑇 ∈T 𝑝 (𝑇 |𝑋 ))

) ]
.
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Follow-up work. Wang et al. proposed a bi-directional selective encoding with template (BiSET)
model [145]. BiSET involves a novel bi-directional selective layer with two gates to mutually select
key information from an article and its template to assist with summary generation.

5.2 Modeling Background Knowledge into Response Generation
Background Based Conversation (BBC, also known as grounded conversation), as an emerging
topic, has been proposed for generating informative responses that are grounded on one or multiple
background documents [11, 100]. Background knowledge plays an important role in human-human
conversations. For example, when talking about a movie, people often recall important points (e.g.,
a scene or review about the movie) and appropriately mention them in the conversation context.
The task of BBC is often compared with machine reading comprehension (MRC), in which a span
is extracted from the background document as a response to a question [119]. However, since
BBC needs to generate natural and fluent responses, the challenge lies in not only locating the
right semantic units (i.e., snippets) in the background, but also referring to the right background
information at the right time in the right place during the decoding phase.

As MRCmodels tie together multiple text segments to provide a unified and factual answer, many
BBC models use the same idea to connect different pieces of information and find the appropriate
background knowledge based on which the next response is to be generated [96, 114, 121]. For
instance, Qin et al. proposed an end-to-end conversation model that jointly learned response
generation together with on-demand machine reading [114]. The MRC models can effectively
encode the input utterance 𝑋 by treating it as a question in a typical QA task (e.g., SQuAD [119])
and encode the background document 𝐵 as the context. They took the utterance-aware background
representation {h𝑟𝑐𝑖 }

|𝐵 |
𝑖=1 as input into decoding phase. So, the context vector c𝑟𝑐𝑡 is no longer

calculated by a weighted sum of hidden states {h𝑖 }𝑛𝑖=1 of input sequence, but by a weighted sum of
utterance-aware background hidden states {h𝑟𝑐𝑖 }

|𝐵 |
𝑖=1,

c𝑟𝑐𝑡 =

|𝐵 |∑︁
𝑖=1

𝛼𝑡𝑖h𝑟𝑐𝑖 , where h
𝑟𝑐
𝑖 = RC(𝑋, 𝐵) [𝑖], (42)

where 𝛼𝑡𝑖 is the attention weight introduced in Eq.(9), 𝐵 is a background document, |𝐵 | is its
number of words, RC(·, ·) is a reading comprehension model. Additionally, RC(𝑋, 𝐵) ∈ R |𝐵 |×𝑑 ,
RC(𝑋, 𝐵) [𝑖] ∈ R𝑑 is the 𝑖-th vector representation, and 𝑑 is the vector dimension.

Follow-up work. Although utterance-aware background representation {h𝑟𝑐𝑖 }
|𝐵 |
𝑖=1 make soft align-

ment (i.e., cross attention) between utterance and background document, it does not accurately
locate the background information and explicitly use snippets to guide the generation process.
Therefore, Meng et al. proposed a reference-aware network (RefNet) to address the problem [96]. It
not only obtained the context-aware background representation through a MRC-based model, but
also incorporated a novel reference decoder learning to directly select a semantic unit (i.e., a snippet)
from the background supervised by annotated spans. Furthermore, Ren et al. argued that selecting
a snippet only leverages the background document from a local perspective [121]. It is problematic
due to lack of the guidance from a global perspective. So, Ren et al. enhanced knowledge selection
in background document by introducing a global-to-local knowledge selection (GLKS) mechanism.
GLKS first learned a topic transition vector to encode the most likely text fragments to be used in the
next response, which was then used to guide the local knowledge selection (i.e., snippet selection)
at each decoding timestamp. Besides, Bi et al. extended background based conversation (BBC) to
background based QA scenarios, specifically, to answer a certain question based on a background
document [11]. They proposed a novel stochastic selector network that selects words to form a final
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Fig. 3. Future direction of using pre-training methods. The first future direction (F1) is to design knowledge-
enhanced pre-training tasks. The second direction (F2) is to discover knowledge from pre-trained models.

answer directly from the modeled relationship between the question and the background document.
In the stochastic selector network, a sequence of discrete latent variables indicates which source
produces an answer word. The word in a well-formed answer comes from one of three sources: the
question, the background document, or the pre-defined vocabulary.

6 DISCUSSION ON FUTURE DIRECTIONS
Many efforts have been conducted to tackle the problem of knowledge-enhanced text generation
and its related applications. To advance the field, there remains several open problems and promising
future directions. First, designing more effective ways to represent knowledge and integrate them
into the generation process is still the most important trend in knowledge-enhanced text generation
systems. Besides, more research effort should be spent on learning to discover knowledge more
broadly and combine multiple forms of knowledge from different sources to improve the generation
process. For examples, multi-task learning can make mutual enhancement between knowledge
representation and text generation [18, 81]; structured knowledge and unstructured knowledge
can play a complementary role in enhancing text generation [44].

From a broader perspective, we provide three future directions that make focusing such efforts
worthwhile now: (i) pre-training, (ii) meta-learning, and (iii) lifelong learning.

6.1 Pre-training
The emergence of pre-training has brought natural language processing (NLP) to a new era. In
NLG area, pre-trained language generation models (e.g., UniLM) have demonstrated superior
performances on downstream tasks than many state-of-the-art generation models with simply
fine-tuning on a small amount task-specific data [37]. Since text generation tasks are usually
data-hungry, and many of them are low-resource in terms of labelled data [130], making use of pre-
trained language generation models can alleviate the problem by leveraging massive unlabelled data.
Pre-training allows model to learn universal language representations, provide a better parameter
initialization, and avoid overfitting on downstream tasks with small training data.

In practice, however, the improvements on the downstream tasks contributed by the pre-trained
generation models are not as much as expected in many real-world scenarios. As mentioned
in [55], directly fine-tuning pre-trained language generation models on the story generation task
still suffers from insufficient knowledge by representing the input text thorough a pre-trained
encoder, leading to repetition, logic conflicts, and lack of long-range coherence in the generated
output sequence. Therefore, incorporating knowledge into pre-training is one potential solution
to combine the advantages of pre-training and knowledge enhancement. Existing work in NLP
community has explored the idea of explicitly modeling task-specific knowledge by designing
pre-training tasks on massive unlabelled data [55, 159, 178]. It is thus important to design novel
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pre-training tasks and methods that incorporate knowledge for specific text generation tasks, which
will certainly bring promising progress to the knowledge-enhanced text generation systems. On
the other side, currently, fine-tuning is the dominant method to transfer pre-training knowledge to
downstream tasks, but discovering knowledge from pre-trained models can be more flexible, such
as knowledge distillation, data augmentation, using pre-trained models as external knowledge [113].
More efficient methods of obtaining knowledge from pre-trained models are expected.

6.2 Meta Learning
Most of current NLG research conduct on extensively labelled data to favor model training. However,
this is in contrast to many real-world application scenarios, where only a few shots of examples
are available for new domains. Limited data resources lead to limited knowledge that can be
learnt in new domains. For examples, learning topical information of a dialogue occurring under a
new domain is difficult since the topic may be rarely discussed before; constructing a syntactic
dependency graph of a sequence in a low-resource language is hard since many linguistic features
are of great uniqueness. Besides, external knowledge bases are often incomplete and insufficient to
cover full entities and relationships due to the human costs of collecting domain-specific knowledge
triples. Therefore, quick domain adaptation is an essential task in text generation tasks. One
potential route towards addressing these issues is meta-learning [42], which in the context of
NLG means a generation model develops a broad set of skills and pattern recognition abilities at
training time, and quickly adapt to a new task given very few examples without retraining the
model from scratch. Recently, there has been raising interests in both academia and industry to
investigate meta-learning in different NLG tasks. Thus, it is a promising research direction to build
efficient meta-learning algorithms that only need a few task-specific fine-tuning to learn the new
task quickly. And for knowledge-enhanced text generation, it is of crucial importance to adapt the
model quickly on new domains with limited new knowledge (e.g., only a few knowledge triples).

6.3 Lifelong Learning
Lifelong learning is an advanced machine learning paradigm that learns constantly, accumulates
the knowledge learned in previous tasks, and uses it to assist future learning [28]. In the process,
the intelligent machine becomes more and more knowledgeable and effective at learning new
knowledge. To make an analogy, humans continuously acquire new knowledge and constantly
update the knowledge system in the brain. However, existing knowledge-enhanced text generation
systems usually do not keep updating knowledge in real time (e.g., knowledge graph expansion).
Therefore, it is a promising research direction to continuously update knowledge obtained from
various information sources, empowering intelligent machines with incoming knowledge and
improving the performances on new text generation tasks.

7 CONCLUSIONS
In this survey, we present a comprehensive review of current representative research efforts and
trends on knowledge-enhanced text generation, and expect it can facilitate future research. To
summarize, this survey aims to answer two questions that commonly appears in knowledge-
enhanced text generation: how to acquire knowledge and how to incorporate knowledge to facilitate
text generation. Base on knowledge acquisition, the main content of our survey is divided into
three sections according to different sources of knowledge enhancement. Based on knowledge
incorporation, we first present general methods of incorporating knowledge into text generation and
further discuss a number of specific ideas and technical solutions that incorporate the knowledge to
enhance the text generation systems in each section. Besides, we review a variety of text generation
applications in each section to help practitioners learn to choose and employ the methods.
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