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ABSTRACT
Ambient air pollution in urban areas is a signi�cant health haz-
ard, with over 4.2 million deaths annually attributed to it. A cru-
cial step in tackling these challenge is to measure air quality at a
�ne spatiotemporal granularity. A promising approach for several
smart city projects, called drive-by sensing, is to leverage vehicles
retro�tted with di�erent sensors (pollution monitors, etc.) that can
provide the desired spatiotemporal coverage at a fraction of the cost.
However, deploying a drive-by sensing network at a city-scale to
optimally select vehicles from a large �eet is still unexplored. In this
paper, we propose Modulo – a system to bootstrap drive-by sensing
deployment by taking into consideration a variety of aspects such as
spatiotemporal coverage, budget constraints. Modulo is well-suited
to satisfy unique deployment constraints such as colocations with
other sensors (needed for gas and PM sensor calibration), etc. We
compare Modulo with two baseline algorithms on real-world taxi
and bus datasets. Modulo signi�cantly outperforms the baselines
when a �eet comprises of both taxis and �xed-route vehicles such as
public transport buses. Finally, we present a real-world case study
that uses Modulo to select vehicles for an air pollution sensing
application.

CCS CONCEPTS
• Information systems ! Sensor networks; • Hardware !
Sensor applications and deployments; • Theory of computa-
tion ! Approximation algorithms analysis.
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1 INTRODUCTION
Over 91% of the world’s population lives in areas that exceed WHO
guideline limits for air quality. Globally, an estimated 4.2 million
deaths annually are attributed to ambient air pollution [2] — higher
than malaria and HIV. The myriad of health complications resulting
from poor air quality includes several cardiovascular and lung dis-
eases (chronic obstructive pulmonary disease, lung cancer, asthma,
etc.) [37]. One crucial step in tackling this menace is to measure the
air quality at a �ne spatiotemporal granularity. Access to quality
data is the �rst step to perform wide-ranging analyses [11] that in-
clude — identifying sources of air pollution, monitoring compliance
of air quality standards, measuring the e�cacy of various interven-
tions, etc. Multiple ‘smart city’ initiatives around the world [26]
have touted to solve this problem by having a static deployment
of either thousands of low-cost sensors or a few tens of reference-
grade expensive monitors. Although systems to monitor our cities
will certainly empower government administrators to make in-
formed decisions, it is not without certain caveats. For example,
governments around the world have installed Beta Attenuation
Monitors (BAMs) for monitoring pollution levels at �xed locations
around a city [9, 25]. However, installing and maintaining BAMs
require major capital investment [16] — rendering them infeasible
for several smaller towns. Moreover, these statically placed de-
vices need dedicated physical infrastructure and cannot capture the
spatial variations in the pollution within the monitoring region. Al-
ternately, there are plans to install thousands of low-cost pollution
monitors [3], which can generate �ne-grained spatiotemporal data.
However, this approach is associated with a massive administrative
overhead of managing such an extensive network.

Led by improvements in mobile network connectivity, an alter-
nate approach called drive-by sensing has become quite popular for
monitoring large geographic areas using a �eet of vehicles equipped
to sense relevant quantities. Using drive-by sensing, one can retro�t
the vehicles with low-cost optical and electrochemical sensors to
continuously monitor pollution values [21, 22]. Drive-by sensing
leverages the mobility of vehicles to have a larger spatial footprint
equivalent to multiple static monitors at a fraction of a cost. How-
ever, these low-cost sensors require continuous on-�eld calibration
to correct for any sensor drifts. With drive-by sensing, vehicles can
potentially rendezvous across a couple of static reference-grade
monitors installed in the city a few times each day. Thus, the process
of calibrating low-cost mobile sensors does not necessitate the sus-
pension of their operation. On the contrary, static low-cost sensors
would have numerous periods of downtime over their lifespan for
calibration through manual colocation with expensive monitors.
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Apart from air pollution monitoring, prior works have shown the
e�cacy of drive-by sensing to monitor tra�c congestion [30], detect
potholes [19], recognize unsafe pedestrian movement [18], record
parking violations [23] and identify available parking spaces [29, 39]
using in-built sensors in smartphones (IMU, cameras, etc.). Several
papers have used public transportation as their choice of vehicle
�eet [22]. With predictability in routes1 and lower cost of operation,
one can summon this resource for monitoring urban locations. But,
many cities around the world do not have a good public transport
system and, therefore, cannot guarantee su�cient coverage [17].
Fortunately, over the past few years, ride-sharing services (such as
Uber, Ola, etc.) have gained tremendous popularity, and their vehicle
�eets have emerged as a credible alternative. For example, as one of
the largest of such ride-sharing companies, Ola is operating in >250
cities spread across multiple countries with over 1.5 million driver
partners [7]. Although seemingly straightforward, piggybacking on
either or both of public transport and ride-sharing services as the
medium for city-scale sensing raises several complications. First, the
data collection depends on the type of sensing application. Some
applications may require data every few minutes, while others
may require a data point once every few days. Further, the data
requirement itself may not be uniform as the sensing application
might need more data during a speci�c time and/or location. We
will discuss these factors in more detail in Section 2.

Let us consider a scenario where one partners with a ride-sharing
service to use their �eet for sensing air pollution in a city. The ride-
sharing service may have a few thousand vehicles operating in the
city, but one may have a budget to deploy only a few sensors. A
natural question that arises is:How does one select a subset of vehicles
from the entire �eet that would maximize the spatiotemporal coverage
of the city? In this paper, we answer this question while accounting
for the aforementioned complicating factors. Speci�cally, we make
the following key contributions:

• Vehicle Selection Algorithm:We formulate the problem
of selecting the optimal set of vehicles as an integer linear
program. Further, we introduce several relevant extensions
suitable for di�erent drive-by sensing applications by chang-
ing either or both the objective and the constraints of this
linear program. As the problem is NP-Hard, we present a
greedy algorithm that gives the best-possible polynomial-
time approximation algorithm for our problem.

• System Implementation:We introduce Modulo, our sys-
tem for selecting the optimal set of vehicles for any drive-
by sensing application. Modulo provides in-built support
for using our greedy algorithm while considering various
deployment-level details. Notably, for sensing applications
that require calibration (gas and particulate matter sensors),
Modulo uses geohash — a geospatial indexing approach — to
quickly �nd mobile colocations with other sensors. Modulo
is released as an open-source Python library for the commu-
nity to utilize our approach for individual drive-by sensing
applications. Modulo can bootstrap the process of sensor
deployment in any city by examining its historical vehicular
mobility patterns.

1Public transport vehicles operate on �xed routes. The routes and schedules are made
available to the residents of the city to help them plan their commute.

• Detailed evaluation:We benchmark Modulo against two
baseline approaches for vehicle selection. We evaluate the
performance on real-world datasets from San Francisco and
Rome. Moreover, we use two kinds of datasets: one of taxis
that move randomly across the city, and the other one con-
taining buses from the public transportation system that
follow �xed routes over long periods. We also conduct a
case-study involving air pollution monitoring in a large In-
dian city using the vehicles selected by Modulo.

2 BACKGROUND
In this section, we elaborate on how the spatiotemporal properties
observed in the measured entity (such as pollution, potholes, traf-
�c congestion, etc.) dictate the strategy utilized for sensing them.
We also provide a brief background on the unique distinguishing
characteristics of drive-by sensing to monitor urban environments.

2.1 Spatiotemporal properties in the sensed
entity

In this paper, we introduce three complementary properties that
underlies any drive-by sensing application — granularity, variability,
and frequency. As elaborated below, these properties may apply
to both the spatial and temporal dimensions. Understanding these
properties will lead to a consequent data collection representing
the characteristics exhibited by the speci�c sensing use-case. Next,
we de�ne these three properties and explain how they are relevant
in deciding on a deployment strategy.

• Granularity: Granularity is the scale of data collection re-
quired for a sensing application. As discussed, granularity
can be de�ned separately for both the space and time dimen-
sions. Requiring high temporal granularity would translate
to sensing every few seconds or minutes; while sensing at
a low temporal granularity equates to recording data every
few days. Similarly, high spatial granularity needs record-
ing data every few meters; whereas, low spatial granularity
means collecting data every few kilometers.

• Variability: Variability is the extent to which changes in
the granularity of data collection are needed (or tolerated)
for a sensing application. Again, variability can be de�ned
separately for space and time dimensions. Requiring uni-
form spatial variability means having similar granularity
in the sensed data for di�erent regions. Correspondingly,
weighted spatial variability means that the granularity of
data collection changes with di�erent areas.

• Frequency: Frequency is the quantity of data collected at
a �xed granularity for a sensing application. We de�ne fre-
quency only for the time dimension. For most applications,
one value sensed at a given spatiotemporal granularity might
su�ce. However, there could be cases where the application
needs multiple sensing probes for accurate modeling of the
sensed phenomena.

The spatial and temporal granularity needed to perform drive-by
sensing vary depending on the type of applications. For example,
ozone gas concentrations do not change over a few kilometers. Thus,
building a drive-by sensing network with low spatial granularity
will su�ce. Detecting potholes on roads requires lower temporal
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Drive by sensing
application

Granularity Variability Frequency
Spatial Temporal Spatial Temporal Temporal

Ozone gas Low Medium Uniform Uniform One

Parking spot availability High High Weighted towards city-
centers and public areas

Weighted higher
during peak times One

Particulate matter Medium Medium Uniform Uniform One

Pothole detection High Low Uniform Weighted; bursts in
data collection tolerable Multiple

Tra�c Congestion Medium Medium Uniform Weighted higher
during peak hours One

Table 1: Drive-by sensing application needs

granularity as road conditions may not change drastically over a
few days. However, we might need multiple transits from various
vehicles, preferably moving on each lane to tag the road segments
correctly — i.e. frequency >1 at high spatial granularity. Interest-
ingly, some applications need both higher spatial and temporal
granularity. An example application would be identifying available
parking spots using cameras mounted on cabs. Nonetheless, such an
application can have variability in sensing. For example, the higher
granularity is necessary only during the peak hours (temporal) and
at city-centers (spatial) where there is a contention on the available
slots. Whereas, in the case of sensing particulate matter, we would
like to have uniformity in spatial and temporal variability. Table 1
lists several applications and their associated drive-by sensing needs
in terms of granularity, variability, and frequency.

2.2 Feasibility of Drive-by sensing
Public transport vehicles (i.e., buses, trams) or vehicles driven by
working individuals with a set route and schedule have �xed
routes. With these vehicles, there is almost complete certainty
on the coverage achieved based on their historical mobility data.
In cities with dense public transport network, using just the �xed
route vehicles might su�ce as the sensors placed on them can
cover signi�cant portions of the urban expanse while satisfying
the properties discussed earlier. Whereas, in many cities around
the world, with poor connectivity o�ered by the public transport
system, one might have to rely on cabs operated by ride-sharing
platforms. These vehicles have random routes, and their move-
ment may vary signi�cantly from one day to another. Thus, this
stochasticity in their motion may lead to non-uniform coverage in
di�erent parts of the city. However, we can reduce the possible spar-
sity in sensing coverage with the proper selection of vehicles that
cover more distance on varied routes. A composite approach would
involve deploying sensors on both �eets of vehicles — i.e., those
having �xed or random routes. Naturally, the choice of selecting
the type of �eet will vary from city to city.

3 ALGORITHM DESIGN
We start with formulating the problem of e�cient city-scale deploy-
ment of low-cost sensors on the �eet of vehicles. Given a sensing
application, one must decide on the granularity and variability re-
quirements. Based on these requirements, one can leverage vehicles
willing to participate in the drive-by sensing exercise. Further, the

optimal number of vehicles with either or both �xed and random
routes can be considered using their mobility patterns. These pat-
terns include schedules of public transport vehicles, past transit
times of vehicles registered with the ride-sharing services, etc.

Let D represent the set of segments that are obtained by spa-
tially partitioning the city under consideration for drive-by sensing.
The segments could be line slices covering the entire road net-
work or polygonal regions covering the whole city. Further, the
spatial granularity speci�ed decides to the cardinality of the set
of segments (|D |). Higher the granularity, higher is the value of
|D |. Similarly, let T represent the set of time intervals that are ob-
tained by temporally partitioning the historical vehicular mobility
data. Again, the number of the time intervals (|T |) depends on the
minimal temporal granularity speci�ed. Now, let us consider, n
vehicles with known mobility pattern represented as a collection
of sets V = {V1,V2, ....,Vn }. A set in this collection, represented by
Vi where i 2 [1, ..,n], contains the multiple tuples - hd, ti, which
represents the segment index d 2 D and time interval index t 2 T .
A presence of a tuple indicates that the vehicle visited segment d
at time interval t . Our objective is to increase the coverage of the
sensing setup containing the selected vehicles V 0 ✓ V , such that
|V 0 |  m. Here,m is the maximum number of vehicles that can be
summoned (m  n). Thus, we want to maximize the union of the
set containing hd, ti tuples visited by the selected vehicles -

������
ÿ

Vi 2V 0
Vi

������
3.1 Integer Linear Programming Formulation
Here, we present a linear programming formulation that maximizes
the term described earlier. Let xi be a binary decision variable rep-
resenting if the i 2 [1, ...,n] vehicle is selected by our optimization.
Further, letm be the maximum budget of vehicles that can be se-
lected for a given drive-by sensing exercise. Let Od,t represent the
occupancy obtained from these selected vehicles at time interval
t 2 T , i.e., the set of all time intervals, andd 2 D, the set of segments.
This variable again takes binary values. Od,t = 1, if the segment d
at time interval t was occupied by any of the selected vehicle. Let
Ci,d,t represent a known binary parameter that describes if the ith
vehicle travelled to segment d at time interval t . Based on these pa-
rameters and variables, we de�ne our integer linear programming
formulation as:
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max
’

d 2D,t 2T
Od,t (1)

subject to:
’

i 2[1, ...,n]
xi  m (2)

’
i 2[1, ...,n]

(Ci,d,t · xi ) � Od,t 8d 2 D, t 2 T (3)

Od,t 2 {0, 1} 8d 2 D, t 2 T (4)
xi 2 {0, 1} 8i 2 [1, ...,n] (5)

We expand on the choice of the objective function and the con-
straints mentioned above as follows:-

• Objective function:Wewant the selected vehicles to travel
to as many segments at di�erent time intervals to ensure
maximum coverage. Thus, we de�ne our objective function
shown in (1) to maximize the sum of the binary variable
occupancy Od,t over every d 2 D and t 2 T .

• Budget constraint: Out of all the vehicles for which the
mobility patterns are known, we want to select a subset of
them based on a prede�ned budget. Hence, the sum over
the binary variable xi , representing selected vehicles, cannot
cross the budget allocated (m), as shown in (2).

• Coverage-Occupancy constraint: If the occupancy vari-
able Od,t > 0, then at least one of the selected vehicles was
present in segment d at time interval t (see (3)).

• Occupancy binary constraint: As de�ned earlier, occu-
pancy Od,t is a binary variable. This constraint (see (4))
ensures that the variable can only take one of the two values
of 0 and 1 — i.e., multiple transits from the selected vehicles
are not counted multiple times.

• Vehicle binary constraint: As de�ned earlier, the variable
xi is a binary variable. This constraint (see (5)) ensures that
the decision variable on the selection of vehicles can only
take one of the two values of 0 and 1.

3.1.1 Algorithm Analysis. The above formulation exactly matches
the classical maximum coverage problem — a widely studied prob-
lem in the theoretical computer science and operations research
community. Unfortunately, the maximum coverage problem is NP-
hard [24]. Thus, our problem cannot be solved exactly in polyno-
mial time, if P , NP.

3.1.2 Calibration considerations. The described integer program-
ming formulation provides a general framework for selecting ve-
hicles for drive-by sensing. However, a few sensing applications
require placing additional constraints. For example, in the case of
city-scale deployment of low-cost gas or particulate matter sen-
sors, one needs to ensure that they are calibrated on-�eld regularly.
This obligation necessitates the low-cost sensors to rendezvous
around reference-grade pollution measuring stations 2 or other
low-cost sensors that have been recently calibrated. To guarantee
calibration, we can easily extend the above formulation by ensuring
that the selected sensors have mobile colocations with either or
both of reference-grade and other low-cost sensors. Let us consider
the parameters Lbi and Lsi represent the number of colocations

2Pollution measurement through Beta Attenuation Monitors – a gravimetric method

of the ith vehicle with reference-grade and other low-cost sensors
respectively. Then we can add the following constraints -

Lbi · xi � b 8i 2 [1, ...,n] (Reference colocations),
Lsi · xi � s 8i 2 [1, ...,n] (Low-cost sensor colocations)

Above, b and s represent the minimum number of colocations
needed for selected vehicles with reference-grade and other low-
cost sensors, respectively.

3.1.3 Budget Minimization Formulation. We can easily change the
above formulation from maximizing coverage for a given budget to
minimizing the budget necessary to meet a speci�c amount of cov-
erage. For this modi�cation we can replace the objective functions
and the budget constraint, while keeping the other constraints as
is in the following way:

min
’

i 2[1, ...,n]
xi (Budget minimization)

subject to:
’

d 2D,t 2T
Od,t � k (Minimum coverage)

3.1.4 Weighted Coverage Formulation. As described in section 2,
some sensing applications might require the variability in coverage
to be weighted at certain spatial and temporal levels (see the "Park-
ing Spot Availability" sensing application in Table 1). The above
integer linear programming formulation can easily accommodate
this by modifying the objective function in the following way:

max
’

d 2D,t 2T
Od,t ·Wd,t (Weighted objective function)

Here,Wd,t represents the weights given to the segment d 2 D

at time interval t 2 T . For uniform variability, theWd,t = 1 8d 2 D

and t 2 T . The weighted maximum coverage problem is also widely
studied in the literature [31].

3.2 Greedy Approximation
As discussed earlier, the maximum coverage problem is NP-hard.
Fortunately, there exists a greedy heuristic that provides a solution
within an approximation ratio of 1� 1

e , i.e., the best polynomial-time
approximation algorithm — unless P = NP — for both unweighted
and weighted maximum coverage problem [24, 31].

We modify the same greedy algorithm (see Algorithm 1) to in-
clude additional constraints such as to ensure a minimum number
of reference and low-cost sensor colocations. This algorithm com-
putes a list called �ehicles that maximizes the weighted coverage.
Similar to the notations used earlier, we have a prede�ned budgetm,
a binary parameter Ci,d,t , which indicates if the ith vehicle was in
segment d at time interval t .Od,t is a binary variable that indicates
if the segment d at time interval t was covered by the selected vehi-
cles. Functions re f Colocs(j) and sensorColocs(j) return the number
of colocations of the jth vehicle with reference-grade monitors and
other low-cost sensors, respectively.
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Algorithm 1 Greedy Sensor Deployment for Drive-by Sensing

1: Parameters: i) Ci,d,t8i 2 [1, ...,n], d 2 D, t 2 T ; ii)
minRe f Colocs; iii)minSenColocs iv)m

2: Initialize: i) currSum = 0; ii) �ehicles = []; iii) Od,t =
08d 2 D t 2 T

3: for i in [1,...,m] do
4: for j in [1,...,n] do
5: if re f Colocs(j) >=minRe f Colocs then
6: if sensorColocs(j) >=minSenColocs then
7: €Od,t = Od,t [Cj,d,t 8d 2 D t 2 T

8: if currSum <
Õ
d 2D,t 2T €Od,t ·Wd,t then

9: selectVehicleIndex = j

10: currSum =
Õ
d 2D,t 2T €Od,t ·Wd,t

11: Od,t = Od,t [CselectV ehiclesIndex,d,t 8d 2 D t 2 T

12: �ehicles .append(selectVehiclesIndex)
13: return �ehicles

3.2.1 Handling dynamism in deployments. In any drive-by sensing
exercise, there might be cases where one would have to swap the
sensors from one vehicle to the other for several reasons. For exam-
ple, there could be churn in the driver pool of a ride-sharing service
or a few participating cab drivers may not want to continue with
the sensing application. Further, with an increased budget, there is
scope for adding new vehicles to the sensing �eet. For long-term
deployments of drive-by sensing, such dynamism would be com-
monplace. Thus, it is essential to support cases where one would
like to have a new list of vehicles for an incremental deployment.
For this, we can modify the existing greedy algorithm by changing
the parameters and initializations to re�ect the incremental case. In
parameters, Ci,d,t will be a binary parameter showing remaining
vehicles that are not part of the sensing application, andm will be
the remaining or additional budget available. Likewise, in initial-
izations, �ehicles will contain the current set of vehicles and Od,t
will have the occupancy from these vehicles. Whereas, currSum is
set to

Õ
d 2D,t 2T Od,t ·Wd,t , calculated using the current vehicles.

4 MODULO: SYSTEM IMPLEMENTATION
In this section, we describe Modulo, our system to identify the opti-
mal set of vehicles that must be chosen by operators of large-scale
drive-by sensing networks (from hereon referred just as operators).
Modulo is designed to be application-agnostic, i.e., it is general
enough to serve a plethora of sensing use-cases. Figure 1 shows the
complete pipeline of Modulo consisting of the three key steps.

4.1 Step 1 - Strati�cation
In this step, the operator inputs a list of coordinates (latitude and
longitude) encompassing the chosen geographical area to parti-
tion into smaller regions. Further, the operator provides the spatial
granularity required by the sensing application (as described in Sec-
tion 2). The operator also provides a division-type and weights for
the strati�cation. They can choose one of the two in-built types of
strata — i) Square-shaped grids, or ii) Road segments. This feature is
provided as di�erent sensing use-cases may require di�erent kinds
of strati�cation of the city. For air pollution sensing, it could be
uniformly sized grids. Whereas, for pothole detection, it could be

segments of the road network. The resulting strata are outputted
as a GeoJSON �le. Alternatively, the operator can provide a custom
GeoJSON �le with partitioning of the geographical region as GeoJ-
SON encoded polygons. Finally, Modulo assigns each stratum (each
grid, road-segment, or custom stratum) a unique stratum ID, which
gets embedded in the exported GeoJSON �le.

4.2 Step 2 - Spatiotemporal Query Execution
In this step, the operator inputs historical mobility data of the �eet
that they want to use for deployment. The operator also input a
temporal granularity that is required for their use case. The spa-
tial and temporal granularity together decide the coverage of the
deployment. Additionally, the administrator may also input the
locations and time frequencies of any reference-grade sensors they
may have deployed across the city. This is important for use-cases
like air pollution sensing, where the low-cost mobile sensors need to
be calibrated using the colocated reference-grade sensors. Modulo
processes the historical data provided in three stages:

• The raw data is parsed, and for each record, the timestamp,
GPS location, and vehicle ID are inserted into a NoSQL Mon-
goDB [4] database. The mapping between the personally
identi�able information (PII) and assigned vehicle IDs is en-
crypted and made available only to network administrators.
Thus, any PII like vehicle number, driver names, etc. are
stripped from our main database.

• A compound spatiotemporal index is created on this data-
base for e�cient querying of data. We choose MongoDB as
our database because it implements a geospatial index by
calculating a geohash 3 on the locations of the records.

• Using the geospatial index and the GeoJSON resulting from
step 1, we e�ciently assign a stratum_id for each record
depending on the stratum that they fall under. The records
are also assigned a time_interval_id depending on the
temporal granularity inputted by the operator.

After these three stages, every NoSQL record in the database has
the following structure:

vehicle_id: <int>,

stratum_id: <int>,

timestamp: <int|Unix timestamp>,

time_interval_id: <int|Unix timestamp>,

location: {

�type�: �Point�,

�coordinates�: [<float|lng>, <float|lat>]

}

With this setup in place, Modulo runs queries to �nd the coverage
achieved by each vehicle in the dataset as per the stratum_ids and
time_interval_ids assigned to them. Further, if needed, Modulo
provides support to run queries to �nd colocations in the mobility
data. Finally, this database setup is made available to the next stage
in the pipeline to improve upon the achieved coverage.

3A geohash divides the earth’s surface into grids and encodes a location into an al-
phanumeric string. These string have similar pre�xes for places near to each other [32].
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Figure 1: Pipeline highlighting the three steps involved in Modulo

(a) Grids in Rome (b) Roads in Rome (c) Wards in Blr.

Figure 2: We show the di�erent division types enabled by
Modulo. (c) shows the division of Bangalore on the basis
of administrative boundaries de�ned in a GeoJSON format.
Similarly, any other arbitrary boundaries suiting the sens-
ing application can be handled by Modulo.

4.3 Step 3 - Vehicle Selection
In the �nal step of the pipeline, Modulo runs a greedy approxi-
mation solution to the Maximum Coverage Problem as detailed in
Section 3.2. The result of this algorithm is a deployment strategy
for the network. More speci�cally, the greedy algorithm returns a
set of vehicles that should be used for deployment of the drive-
by sensing network for improved coverage. This �nal step of the
pipeline can be run every few days by the operator in order to
account for dynamism in the sensor network deployments.

4.4 Open-source Python Library
We release Modulo as an open-source Python Library 4. This li-
brary exposes APIs to perform the di�erent steps in the Modulo
pipeline. We have explained the speci�cs of input formats (such as
JSON speci�cation for vehicle mobility data, etc.) in the documenta-
tion accompanying the library. Further, the library repository also
contains easy-to-follow examples in the form of iPython notebooks.

5 EVALUATION METHODOLOGY
In this section, we provide a comprehensive description of the
datasets used in our evaluation. Further, we present two non-trivial
baselines for selecting vehicles from their past mobility data. Next,

4https://github.com/microsoft/Modulo

we will describe the experimental setup in detail. Finally, we intro-
duce the metric used to evaluate the e�cacy of Modulo.

5.1 Dataset description
For real-world evaluation, we used taxi-tracking datasets for the
city of San Francisco [36] and Rome [12] from CRAWDAD. We also
found public transport transit data for the buses operated by the San
Francisco Municipal Transportation Agency [5]. These two cities
di�er from each other in three factors that a�ect transportation:

• Geography – The two cities are in di�erent continents (San
Francisco in N. America and Rome in Europe)

• Population density – Rome: 2,232/km2 [38]; San Francisco:
7,272/km2 [13]

• City extent – Rome: 1,285 km2; San Fran.: 600.59 km2 [14]
The San Francisco taxi dataset contains 11,219,878 records over

25 days in 2008 and reports GPS data every 1 minute. The Rome
taxi dataset contains 21,817,850 records over 25 days in 2014, but it
reports GPS data every 15 seconds. Hence we consider one in every
four records to get minute-level data to maintain consistency across
experiments. Each record in both the datasets contains a timestamp,
taxi ID, and the corresponding GPS location. In both these datasets,
we perform our experiments over seven days. The San Francisco
bus dataset contained 5,610,179 records over 7 days in 2013. For
realistic comparison with the San Francisco taxi dataset, we obtain
records on the same month and dates as those of the taxi dataset
and transpose them from 2013 to 2008.

Records Vehicles Time Period
San Francisco (Bus) 5603166 627 7 days
San Francisco (Cabs) 2977508 511 7 days

Rome (Cabs) 631535 304 7 days
Table 2: Summary of datasets used

For our experiments, we consider only the records in a rectangle
around the center of the city. We do this to limit the number of
grids we divide the cities into (as explained in section 4) for com-
putational convenience. The selected rectangle covers about 90%
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(a) Selected area of Rome (b) Selected area of San Fran.

Figure 3: Selected areas of San Francisco and Rome for
our experiments. In [minimum longitude, minimum lat-
itude, maximum longitude, minimum longitude] format,
the bounds for Rome are: [12.4, 41.825, 12.575, 41.975]. The
bounds for San Francisco are: [-122.35, 37.67, -122.515, 37.83].
Courtesy: Maps plotted using Mapbox.

of the records in both San Francisco and Rome. In terms of area,
this rectangle covers 250 km2 of San Francisco, and 240 km2 of
Rome. In San Francisco, a substantial part of this rectangle covers
oceans (for example, the San Francisco Bay) to be able to cover the
Golden Gate Bridge and Treasure Island. After selecting the records
inside the rectangle over seven days, the dataset that we use for
our experiments is summarized in table 2.

In addition to the taxi data, we also consider data from reference-
grade air pollution sensors in these two cities. Since we do not know
of the existence of the reference-grade sensors in 2008, we use the
current (August 2019) locations of these sensors fromAQICN.org [6].
Further, we assume that each of these sensors reports data at a
15-minute interval 5. Here, as well, we only consider the reference-
grade sensors located inside our rectangle of interest. According
to AQICN.org, there is just one reference-grade monitor in San
Francisco and four in Rome. We consider this data in addition to
the vehicle data to investigate the number of “colocation” or “ren-
dezvous” instances of taxis with high-grade air pollution sensors
for highly accurate 1-hop calibration [20].

5.2 Baseline Description
In this section, we describe the two baseline methods against which
we compare the results of our algorithm.

• O’Kee�e et al. – In the approach used by O’Kee�e et al. [35],
the required number of cabs are chosen randomly from the
set of vehicles.

• Maximum Points – In this method, the vehicles reporting
the maximum number of records in the vehicle mobility
dataset are selected [8] without considering other factors.

5.3 Experimental Setup
In this section, we explain the setup we use for performing our
experiments. While using Modulo, we chose ’grids’ as the division
type. Further, we input the temporal granularity to be 2 hours and
the spatial to be 100 meters. For a fair comparison among the three

5Reference monitors typically report one value every 15 minutes.

methods (Modulo + 2 baselines), we divide the seven days of the
taxi and bus data into two halves of equal periods. This splitting
is akin to the training and test set in case of evaluating machine
learning algorithms. The data corresponding to the �rst period was
used by the three methods to compute the list of selected vehicles.
We evaluated the three methods by using the vehicles selected on
the data corresponding to the second period.

5.4 Evaluation Metric: Percentage Coverage
We design an intuitive metric to compare the e�ectiveness of Mod-
ulo with the other baselines. Let N be the set of all vehicles present
in a dataset and let a techniques select M vehicles. Similar to the
notations used in section 3, we have Ci,d,t , i.e., the binary vari-
able representing if the ith vehicle was in the dth segment at time
interval t .Wd,t represents the weight of the dth segment at time
interval t . We de�ne the metric Percentage Coverage, as follows:

Percentage Coverage = 100 ·

Õ
i 2M,d 2D,t 2T

Wd,t ·Ci,d,t
Õ

j 2N ,d 2D,t 2T
Wd,t ·Cj,d,t

6 EXPERIMENTAL RESULTS
In evaluation, we seek to gain insights on the following questions –
(i) How e�ective isModulo in selecting vehicles on di�erent datasets
containing di�erent vehicle types?, (ii) How e�ective is Modulo in
running spatiotemporal queries?

6.1 Baseline Comparisons
We examine the performance of our approach, Modulo, as com-
pared to the performance of the two baselines, O’Kee�e et al., and
Max Points. We �rst divide our dataset into two halves of 3.5 days
each. We then allow each of the three approaches to select vehi-
cles from the �rst set that must be deployed in the second set for
increased coverage. Finally, we calculate the performance metric of
percentage coverage obtained by the selected vehicles from each
approach in the second set. We repeat the experiment for a selection
budget of up to 100 vehicles. In case of O’Kee�e et al., we runs 10
experiments with di�erent seeds for di�erent deployment sizes in
the multiple of 5. Figure 4 shows the results of this experiment on
4 datasets: San Francisco bus dataset, San Francisco mixed dataset
(cabs + buses), San Francisco cabs dataset, and Rome cabs dataset.

Figure 4 (a) shows the di�erence in the performance of the three
approaches for the San Francisco bus dataset. The plot on the top
indicates that for fewer buses, all the three approaches provide simi-
lar percentage coverage. However, as the deployment size increases,
the percentage coverage resulting from Modulo starts to overtake
the performance of O’Kee�e et al. and Max Points. Speci�cally,
we note that to achieve 40% coverage, Modulo requires 39 buses,
O’Kee�e et al. requires 55 buses (⇡ 41% extra), and Max Points re-
quires a whopping 92 buses (⇡ 136% extra). The plot on the bottom
shows the variation in performance between Modulo (green line)
and Max Points (yellow line) with the mean of the 10 experiments
of O’Kee�e et al. As seen, for a deployment size of more than 30
buses, Modulo always performs more than 3 standard deviations
(indicated as a dotted red line) better than the mean of the O’Kee�e
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(a) San Francisco (Bus) (b) San Francisco (Mix)

(c) San Francisco (Cabs) (d) Rome (Cabs)

Figure 4: Coverage through drive-by sensing for San Francisco and Rome (Modulo vs Max Points vs O’Kee�e et al.)

et al. deployment. This behavior is explained by the fact that buses
ply on �xed routes, which results in the predictability of routes
in the future. Since Modulo uses historical trends to select cabs,
this predictability allows it to provide increased coverage in the
future as well. Figure 4 (b) shows similar results when the three
approaches are applied to the dataset containing both �xed-route
vehicles (buses) and random-route vehicles (taxis). Modulo per-
forms better than O’Kee�e et al. and Max Points, and o�ers more
than 3 standard deviations higher coverage that the O’Kee�e et al.
baseline. However, in this case, O’Kee�e et al. performs much worse
than in �gure 4 (a) with respect to the performance of Modulo. This
is expected since O’Kee�e et al. now has a mixed set of vehicles
to pick. Hence, it may pick a few cabs, as opposed to picking all
buses with predictable routes with higher coverage in �gure 4 (a).
Surprisingly, Max Points picked up just 2 cabs in its selection of
100 vehicles, whereas Modulo picked as many as 37 cabs out of
the overall 100. This suggests that although buses have predictable
routes, they might be spending a lot of time in similar locations
and could have sparse coverage. A common trend observed in both
Figure 4 (a) and Figure 4 (b) is that there is diminishing return when
the deployment size increases.

Observation. Modulo outperforms both O’Kee�e et al. and Max
Points when �xed route vehicles are allowed to be picked because they
allow applicability of past trends to the future. However, even in case
of mixed routes, Modulo picks vehicles based on their past coverage
and thus performs signi�cantly better. As the vehicle count increases,
there are diminishing returns in percentage coverage, i.e., the increase
in the deployment size follows a sub-linear trend.

Figure 4 (c) and (d) show the performance results of the three
approaches in datasets comprising only of taxis, i.e., San Francisco
and Rome, respectively. In this scenario, there is only 2-5% increase
in the percentage coverage o�ered by Modulo over Max Points, and
7-11% increase over O’Kee�e et al., when the size of deployment is
higher than 40%. This di�erence in performance is lower for smaller
deployments. This result suggests that the historical movement data
of taxis is not indicative of the trends theywould follow in the future.
Neither of the three approaches bene�ts from any predictability in
the movement patterns. In San Francisco, Modulo and Max Points
approaches are consistently more than three standard deviations
better than the mean values for O’Kee�e et al.. However, in Rome,
Max Points struggles to o�er signi�cant improvement, i.e., less than
two standard deviations, above the mean.
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Observation. Lack of predictability in taxi movement results in no
signi�cant outperforming of one approach over the other. In these cases,
the absolute performance of Modulo over other methods is marginal;
there is still a signi�cant statistical di�erence in performance.

6.2 Modulo Runtime Results
In these experiments, we show the e�ciency of Modulo in per-
forming spatiotemporal queries on a large database. We perform
these experiments on the original databases without removing any
records. However, the process of retrieving per-minute values in-
stead of per-15-second values results in the reduction of the Rome
dataset from 21,817,850 records to 3,094,358 records. Hence, we
perform this experiment on the San Francisco database of size
11,219,878 records and Rome database of size 3,094,358 records.

For the experiment shown in �gure 5, we choose 500 random
coordinates associated with records in the San Francisco and Rome
databases. We run a spatiotemporal query to �nd all colocations
around these coordinates, i.e., all points in its 50 meters spatial
radius and 5 minute temporal radius. The reported time is the total
time required by the database for query plan selection and query
execution in milliseconds [4]. The mean query time for the Rome
database is 75.55 milliseconds and for the San Francisco database in
99.7 milliseconds. This di�erence is expected as the San Francisco
database is almost 4⇥ as large as the Rome database.

Observation. The average query time in the Rome and the San
Francisco database is 75.55 and 99.7 milliseconds, respectively. There
is a correlation between query time and the database size.

Figure 6 and �gure 7 show another experiment on Modulo’s
geospatial database. In this experiment, we test the performance
of the database on arbitrarily sized polygons. E�cient resolving of
these queries is important for Modulo to be able to provide in-built
support for custom strati�cation. Further, this allows data stored in
Modulo database to be ideally suited for social science experiments
involving interventions created in di�erent portions of a given city.
To evaluate the performance of Modulo for arbitrarily sized regions,
we use a GeoJSON �le of polygons de�ning the neighbourhood
boundaries of San Francisco [1]. Then, for each neighborhood, we
query our database for all the records lying in it. We report the time
taken for each such query with respect to two metrics: the area of
the neighborhood in �gure 6, and the number of points returned in
the neighborhood 7. The Pearson’s r coe�cient for the area-time
plot is 0.363 and for the number-time plot is 0.797.

Observation. There seems to be a weak correlation between the
area of an arbitrary polygon and the query time. However, there
appears to be a stronger correlation between the number of points in
a polygon and the query time.

7 MODULO: REAL-WORLD DEPLOYMENT
India's National Capital Region, which consists of Delhi and neigh-
boring districts in the surrounding states, su�ers from very high
pollution levels. Speci�cally, in the winter months, the PM2.5 levels
are higher than 300 �gm�3 [33] — an order of magnitude above the
WHO prescribed guidelines of 10 �gm�3 [34]. Thus, we wanted to
deploy our drive-by-sensing approach using Modulo in this region.
For this purpose, we chose vehicles leased by driver-partners from
OLA-owned �eet. Initially, we pre�ltered vehicles based on their

age (<3 years old) and the number of days the driver has driven for
OLA (>300 days). These pre�ltered cabs from the overall �eet of the
ride-sharing service were given as input to Modulo. For this case
study, we chose a spatial granularity de�ned by GeoHash-5 and
a temporal granularity of 1 hour. We chose a uniform spatial and
temporal variability, and a temporal frequency of one. We looked
at the mobility data of pre�ltered cabs for a period of one month
in October 2019. For comparison, we also used O’Kee�e et al.’s
approach to select cabs from the mobility data of the available cabs.

The results for this deployment over a 7 day period are shown
in Figure 8(a). Irrespective of the number of cabs selected (i.e., the
budget), Modulo consistently outperforms O’Kee�e et al. Further,
as deployment size increases, the quantum of improvement that
Modulo o�ers over O’Kee�e et al. also increases. Due to budget
limitations, we retro�tted around 20 cabs with the optical PM2.5
sensor (Figure 8(b)). We have been regularly monitoring the pol-
lution values since December 15, 2019 and intend to release the
dataset once every quarter starting June 2020. A snapshot of our
coverage is shown in Figure 8(c).

8 RELATEDWORK
8.1 Urban drive-by sensing deployments
Several papers have looked at drive-by sensing as an e�ectivemethod
for collecting data for various use-cases [18, 19, 21–23, 29, 30, 39].
The applications provide a promising overview of how drive-by
sensing can be used in di�erent urban environments. Although
these are exciting applications, a detailed study on the city-scale
viability of their approach using drive-by sensing is not discussed.
Anjomshoaa et al. provided an empirical evaluation on the street
coverage obtained from �xed-route and random-route vehicles.
However, beyond a few statistical results, this work does not present
a complete strategy on selecting an optimal set of vehicles based on
their study. Ali et al. [10] looked at the application of pothole detec-
tion and modeled the sensor deployment as a maximum coverage
problem. However, they only looked at vehicles having prede�ned
routes and do not consider the extensions needed for serving sev-
eral use-cases for all kinds of drive-by sensing application. Liu et
al. presented a detailed survey on a broader topic of mobile crowd-
sensing [27]. They also talk about several works using drive-by
sensing. But the sensor selection problem for drive-by sensing is not
discussed. A recent work by O’Kee�e et al. [35] show interesting
statistical results on cabs registered on ride-sharing and city taxis.
However, they do not go beyond the random selection of taxis.

8.2 Air Quality sensing
An exciting use-case of drive-by sensing is for air quality monitor-
ing. This application has several unique challenges, such as on-�eld
calibration of the gas and PM sensors, localized phenomena of pol-
lution, etc. Several papers have utilized sensors deployed on moving
vehicles to collect pollution data [20, 21]. Air quality monitoring
is a perfect application for drive-by sensing as pollution is a local
phenomenon, and there are signi�cant variations from one place
in the city to the other. Interestingly, Fu et al. have looked at the
optimal placement of expensive monitors to make low-cost sensors
k-hop calibrable [20]. They formulate the problem as a set cover
problem. However, these results on k-hop calibrability apply only to
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Figure 5: Colocation query time Figure 6: Query time vs Area Figure 7: Query time vs Points found

(a) Percentage Coverage for NCR (b) PM Sensor Deployed

(c) Coverage obtained for NCR on Jan 3, 2020

Figure 8: Case study with OLA-owned �eet in Delhi/NCR

�xed routes vehicles. Saukh et al. also looked at the route selection
problem to achieve coverage for �xed-route vehicles [40].

8.3 Feasibility of drive-by sensing
Drive-by sensing approach necessitates the use of low-cost sensors
that raises a few questions on the reliability and accuracy of the
data generated. Recent works have shown that maintaining sensor
accuracy is easier through drive-by sensng [20, 28] using on-�eld
mobile calibration. Further, a recent work explores the idea of sensor
reliability at a large scale using a sensor’s output voltage-based
primitive called the “Fall-curve” [15]. However, there are privacy

concerns when using drive-by sensing data. In our case, we ensure
that the vehicle data is anonymized. However, one can follow the
approach presented by Hoh et al. to evaluate and ensure privacy in
GPS traces while maintaining su�cient data accuracy.

9 CONCLUSION AND FUTUREWORK
Drive-by sensing is an upcoming way of sensing the physical phe-
nomena around us with �ne-granularity at a city. But for city-scale
deployments to be successful, the vehicle �eet used for the deploy-
ment needs to be carefully selected so that it ful�ls all the require-
ments of the sensing application like coverage at a speci�ed spatial
and temporal granularity, colocations for calibration, dynamism in
the deployment, etc. In this paper, we proposed Modulo – a novel
approach to the deployment of vehicles for drive-by sensing that
is generalize to multiple sensing applications. We expose a Python
library that enables sensor network operators to use this approach
for selecting the optimal set of vehicles from a �eet of candidate
vehicles. We also propose variations of our algorithm to suit spe-
ci�c needs like budgeted deployment and weighted coverage. We
compare our approach against a couple of baseline algorithms on
three kinds of datasets: all cabs, all buses, a mix of cabs and buses.
We see that our algorithm outperforms the other baseline methods.
Speci�cally, for a drive-by sensing application in the city of San
Francisco, we obtained 40% coverage using just 39 public transport
buses. We also conducted a real-world case study where we used
Modulo to select vehicles for an air pollution sensing application.

As part of our experiments and the real-world deployment, we
observed that speci�c locations in a city could be underserved
or inaccessible (large parks, etc.) by almost all the transportation
services (both public and ride-sharing services). Thus, we intend to
incorporate features in Modulo to allow a budget for static monitors
for opportunistically placing them in such parts of the city. Such a
feature would allow sensor network operators to study the impact
of allocating di�erent budgets for static and mobile monitors on the
overall coverage. Moreover, any o�ine vehicle selection algorithm,
such as Modulo, cannot guarantee real-time coverage. As part of
our future work, we plan to study the role of incentives for drivers
to take minor detours to improve the overall spatial coverage to
cover spatiotemporal holes in sensing. A well-designed incentive
scheme can empower Gig workers, such as food delivery agents
and driver of ride-sharing vehicles, to earn extra income in the
post-COVID-19 world.
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