
Transfer Learning Approaches for Streaming End-to-End Speech Recognition
System

Vikas Joshi, Rui Zhao, Rupesh R. Mehta, Kshitiz Kumar, Jinyu Li

Microsoft Corporation
vikas.joshi, ruzhao, rupesh.mehta, kshitiz.kumar, jinyli@microsoft.com

Abstract
Transfer learning (TL) is widely used in conventional

hybrid automatic speech recognition (ASR) system, to transfer
the knowledge from source to target language. TL can be
applied to end-to-end (E2E) ASR system such as recurrent
neural network transducer (RNN-T) models, by initializing the
encoder and/or prediction network of the target language with
the pre-trained models from source language. In the hybrid
ASR system, transfer learning is typically done by initializing
the target language acoustic model (AM) with source language
AM. Several transfer learning strategies exist in the case of
the RNN-T framework, depending upon the choice of the
initialization model for encoder and prediction networks.
This paper presents a comparative study of four different TL
methods for RNN-T framework. We show 10%−17% relative
word error rate reduction with different TL methods over
randomly initialized RNN-T model. We also study the impact
of TL with varying amount of training data ranging from 50
hours to 1000 hours and show the efficacy of TL for languages
with a very small amount of training data.

Index Terms: speech recognition, transfer learning, end-to-end
systems, low resource learning, adaptation

1. Introduction
Speech enabled applications are increasingly gaining popular-
ity across the world. This has initiated a need to build accurate
automatic speech recognition (ASR) system across different
languages. Also, End-to-End (E2E) ASR systems are emerg-
ing as a popular alternative to conventional hybrid ASR sys-
tems. They replace the acoustic model (AM), language model
(LM) and pronunciation model with a single neural network
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Recurrent neural network trans-
ducer (RNN-T) [1] is one such E2E system that allow streaming
input and is suitable for real-time ASR applications. Therefore
there is a lot of interest in building accurate RNN-T models for
different languages spoken across the world.

There is often disparity in the availability of transcribed
data for different languages. In most cases, a lot more data is
available for American English than other languages. The qual-
ity of ASR model depends on a number of factors including,
the training data quantity and diversity, acoustic model struc-
ture, and optimization algorithm. Furthermore, training data
diversity spans a number of factors in adults, kids, speaking
rate, accents, near-field, and far-field acoustic conditions. A
low-resource locale has limited ASR training data, and may not
meet the acoustic diversity needed to train a robust model that
can generalize to above acoustic factors. To overcome the low-
resource constraint, transfer learning has been widely used in
the hybrid ASR system to transfer the knowledge from a well
trained source locale to a low-resource target locale that bring

significant acoustic robustness for the target locale. In our re-
cent work, we applied TL from a large scale en-US conventional
hybrid model to the corresponding models in en-IN and it-IT lo-
cales, and achieved over 8% word error rate relative reduction
(WERR). Motivated by the success of the TL methods in the
hybrid ASR system, we explore TL methods to improve low-
resource RNN-T models.

Besides improving the target model acoustic robustness, TL
is also crucial for training large and complex deep learning ar-
chitectures. RNN-T models are difficult to train [12] and also
require significantly large amount of data to jointly train the
acoustic as well as language model attributes. In our study we
have noted weaker convergence or significant parameter tun-
ing requirements for desirable E2E training outcome for low-
resource locale. Therefore we expect TL techniques to be even
more relevant for E2E systems to stabilize training and improve
ASR accuracy.

In the hybrid ASR system, transfer learning is typically
done by initializing the target AM with the source AM. In the
RNN-T framework, several transfer learning strategies exist de-
pending upon the choice of the initialization model for the en-
coder and prediction networks. In this paper, we compare dif-
ferent transfer learning strategies in the RNN-T framework. We
propose two-stage TL, by first training a target initialization
model bootstrapped with a pretrained source model. Subse-
quently, this model is used to initialize the target RNN-T model.
The two-stage TL approach shows 17% WERR reduction and
faster convergence in the training loss as compared to randomly
initialized RNN-T model. We also study the effect of TL with
different amount of training data and show the importance of
transfer learning in the case of low-resource languages.

2. Relation to prior work
Several methods have been proposed to improve the perfor-
mance of low-resource ASR models [13, 14, 15, 16, 17, 18,
19, 20, 21, 22]. Successful strategies include transfer learning
[17, 18], that leverage a well trained AM from high-resource
language to bootstrap the low-resource AM; multi-task training
[19, 20] and ensemble learning [21, 22] that aim to utilize multi-
lingual data and share the model parameters. However, most of
these methods are studied in the context of hybrid ASR system.

A few multi-lingual approaches are recently proposed in the
E2E framework [23, 24, 25]. Authors in [23] propose the multi-
lingual RNN-T model with language specific adapters and data-
sampling to handle data imbalance. Audio-to-byte E2E system
is proposed in [24] where bytes are used as target units instead
of grapheme or word piece units, as bytes are suitable to scale
to multiple languages. A transformer based multi-lingual E2E
model, along with methods to incorporate language informa-
tion is proposed in [25]. Although multi-lingual methods are
attractive to address the problem of low-resource languages, the
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Figure 1: The RNN-T model.

transfer learning methods, besides being simple and effective,
have the benefit of not needing the high-resource language data,
but only the models trained on them. In many practical scenar-
ios, trained models are available, however the original corpus
is not. Given the simplicity and effectiveness of TL, we ex-
plore transfer learning approaches to improve the performance
of low-resource RNN-T models.

The rest of this paper is organized as follows: In Section
3, we briefly discuss the RNN-T model. The transfer learning
methods for RNN-T are described in Section 4 and experimen-
tal setup in Section 5. Next, we discuss results in Section 6,
followed by conclusions in Section 7.

3. RNN Transducer model
The RNN-T model was proposed by Alex Graves [1]. The
RNN-T model architecture has three components; an encoder,
prediction network and joint network as shown in Fig. 1. The
encoder maps the input acoustic feature, xt, to a high level
representation, ht

enc, where t represents the time index. The
prediction network receives the previously predicted non-blank
symbol, yu−1 and maps it to a high level representation, hpred

u .
The joint network is a feed forward network that combines the
encoder and prediction network outputs. The posterior prob-
ability over all the targets, p(y|t, u) is obtained after softmax
operation on the output of joint network. The whole network is
trained jointly to minimize the RNN-T loss [1]. In our imple-
mentation, the encoder consists of 6 long short-term memory
(LSTM) [26] layers and the prediction network has 2 LSTM
layers along with the input embedding matrix. During infer-
ence, beam search decoding is used to find the most likely label
sequence.

4. Transfer learning methods for RNN-T
The RNN-T models are difficult to train and are often initialized
with the pretrained models. Initializing the encoder with con-
nectionist temporal classification (CTC) model [2] or cross en-
tropy (CE) model [12], and the prediction network with LSTM
language model (LM) is proven to be beneficial [27]. Transfer
learning can also be used to overcome the RNN-T training dif-
ficulty by initializing the low-resource (target) RNN-T models
with the models trained on high-resource (source) languages.

A number of choices exist in selecting the initialization
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Figure 2: en-US RNN-T initialization.

model for encoder and prediction network in the context of TL
the RNN-T model. Authors in [12] have shown that CE initial-
ized RNN-T models perform better than CTC initialized mod-
els, and hence, we only explore CE models for initialization.
The following choices exist for encoder/prediction network ini-
tialization of the target RNN-T model: a) Source RNN-T en-
coder/prediction networks b) Pretrained networks used to ini-
tialize the source RNN-T model c) Pretrained models trained
only on the target language. Therefore several combinations are
possible depending upon the choice of the initialization model
for encoder and prediction network.

In this paper, we explore TL methods in the context of Hindi
as the target language and American English as the source lan-
guage. The goal is to improve Hindi RNN-T model by lever-
aging models trained on American English, which has approx-
imately ten times more data than Hindi. ‘en-US’ prefix is used
to refer to models trained with American English and ‘hi-IN’
prefix is used to refer to models trained with Hindi data. We
next discuss different transfer learning strategies in detail.

4.1. en-US RNN-T initialization

The hi-IN RNN-T encoder is initialized with en-US RNN-T en-
coder as shown in Fig.2. The hi-IN RNN-T model is trained
with hi-IN acoustic data and grapheme targets. The en-US
RNN-T model is trained with en-US acoustic data and the corre-
sponding word piece targets. The encoder of the en-US RNN-T
model is in turn initialized with a pretrained en-US CE model.
Note that the prediction network of both hi-IN and en-US RNN-
T models are randomly initialized. After initialization, all pa-
rameters of the RNN-T model are trained to minimize the RNN-
T loss. In all the figures, layers initialized with pretrained net-
works are represented by cross lined blocks and randomly ini-
tialized layers are represented with plain blocks. The details of
how we develop en-US RNN-T model can be found in [28].

4.2. en-US CE initialization

In en-US CE initialization, the hi-IN encoder is initialized with
en-US CE model which was used to initialize the en-US RNN-
T encoder, discussed in Section 4.1. The en-US CE model
is trained on en-US acoustic data and the corresponding word
piece targets. The frame level alignment with word piece tar-
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Figure 3: Two stage transfer learning.

gets (necessary for CE training), is obtained from word level
alignments as discussed in [12]. From the word alignments, the
start frame, end frame and total number of frames correspond-
ing to each word is known. The words are then divided into
corresponding word pieces, and equal number of frames are al-
located to each word piece within the boundary of the frames
corresponding to the word. In this scheme, the hi-IN RNN-T
prediction network is randomly initialized.

4.3. Two-stage transfer learning

Transfer learning can be done in two stages as shown in Fig.
3. In the first stage, hi-IN CE model is trained starting from
en-US CE model. Subsequently, the hi-IN RNN-T model is
trained by initializing the encoder with hi-IN CE model. The
hi-IN CE model can be trained either with senone and grapheme
targets as depicted in Fig. 3. The senone based CE model
can distinguish more finer acoustic classes as senones represent
much finer acoustic information than graphemes. However, the
grapheme based CE model is better aligned with the RNN-T
model as they both are trained with grapheme targets. The pre-
diction network is again randomly initialized.

4.4. Encoder and prediction network initialization

In the previously described transfer learning methods, only the
encoder is initialized with a pretrained model. In this section,
we will discuss initializing both encoder and prediction network
with pretrained models as shown in Fig. 4.

The prediction network is initialized with a pretrained
LSTM LM which is trained on an external text corpus as a lan-
guage model using grapheme units, referred to as hi-IN LM.
The sentence count (number of repetitions of the sentence or the
query) differ significantly from one source to the other. In order
to avoid biasing the LM towards the source with large sentence
counts, we only select unique sentences for LM training. After
selecting the unique sentences, the hi-IN LSTM LM is trained
on approximately 200 million words.

The encoder is initialized with either hi-IN or en-US CE
model as shown in Fig.4. For the purpose of compact repre-
sentation, hi-IN and en-US CE model training is shown in a
single block in Fig. 4. They do not share any parameters and
are trained independently. The hi-IN CE model is trained with
hi-IN acoustic data and grapheme targets, and en-US CE model
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Figure 4: Encoder and prediction network initialization. Two
transfer schemes are shown in this figure: a) hi-IN CE + hi-IN
LM initialization where the encoder is initialized with hi-IN CE
model b) en-US CE + hi-IN LM initialization where the encoder
is initialized with en-US CE model.

is trained with en-US acoustic data and word piece targets. The
configuration of initializing the prediction network with hi-IN
LM and encoder with hi-IN CE model is referred to as hi-IN
CE + hi-IN LM initialization. Similarly, the configuration of
initializing the prediction network with hi-IN LM and the en-
coder with en-US CE model is referred to as en-US CE + hi-IN
LM initialization.

We did not explore initializing the prediction network with
en-US LSTM LM, as en-US and hi-IN lexical units differ
(grapheme vs word piece), resulting in the input embedding ma-
trices being significantly different, and thereby initializing the
prediction network with en-US LSTM LM might not be ben-
eficial. We also did not experiment initializing encoder with
en-US RNN-T model in the context of encoder and prediction
network initialization, as our experiments suggested that en-US
CE initialization is better than en-US RNN-T initialization as
discussed later in Section 6.

5. Experimental setup
The hi-IN models are trained with approximately 4 million ut-
terances amounting to few thousand hours of speech data. The
speech data is distorted by noise to achieve robustness to noisy
conditions. The en-US models were trained with 65000 hours
of data. The hi-IN test set contains 17619 utterances consist-
ing of five different scenarios including phrasal, conversational
and code-mixed utterances. Training and test utterances are
anonymized to remove any personally identifiable information.

We use 80-dimensional log Mel filter bank features com-
puted every 10 milliseconds (ms). Eight vectors are stacked to-
gether to form 640-dimensional acoustic features fed to the en-
coder. The frames are shifted by 30ms. The hyper-parameters
such as number of layers, layer dimension, frame size was tuned
for en-US model [12] and we adopted the same parameters for
Hindi. All encoders have six LSTM layers with 1600 hidden di-
mension and 800 projection dimension. All prediction networks
have two LSTM layers with same cell dimension as encoders.
Such a model setup follows the en-US work in [28]. All models
are evaluated after training for 6 sweeps of the training data.



Experiment WER
Random initialization 26.53

en-US RNN-T initialization 22.97
en-US CE initialization 22.38

Two-stage initialization with senone targets 22.31
Two-stage initialization with grapheme targets 21.89

hi-IN CE + hi-IN LM initialization 24.29
en-US CE + hi-IN LM initialization 22.63

Hybrid model 22.32
Table 1: WER [%] on hi-IN test sets for random initialization,
different transfer learning methods and the hybrid model.

The hi-IN grapheme targets contain all the unique
graphemes in the Hindi native script. We also include grapheme
targets with B prefix to be able to segment the grapheme se-
quence into word sequence. Some research works use <space>
symbol, however, we observed better accuracy with B pre-
fix based grapheme targets. A total of 130 grapheme targets
are obtained by combining the the original Hindi graphemes,
graphemes with B prefix and <blank> symbol. The word
piece targets for en-US model is obtained by using byte pair
encoding [29] algorithm as described in [12].

We also report the word error rate (WER) on hybrid ASR
model trained with same amount of data. The AM consists of 6
layers of latency-controlled bidirectional LSTM [30] with 1024
hidden dimension and 512 projection dimension. AM is CE
trained followed by EMBR training. The softmax layer has
9212 senone labels. 80-dimensional log Mel filter bank fea-
tures are computed every 10ms. Frame skipping [31] is done by
a factor of 2. Run-time decoding is performed using a 5-gram
language model.

6. Discussion of results
Table. 1 shows WER for different transfer learning methods
on hi-IN test sets. en-US CE initialization outperforms random
initialization with 15.6% relative WER (WERR) reduction. en-
US RNN-T initialization is better than random, while is slightly
inferior to en-US CE initialization. This could be because the
en-US RNN-T encoder representations are influenced by en-US
prediction network representations, as they are trained jointly.
However, en-US CE model is trained in isolation and could
serve as a better initialization model for the encoder. Two-stage
transfer learning with grapheme targets performs better than the
rest of the methods with 17.4% WERR reduction over random
initialization. The pretraining method, hi-IN CE + hi-IN LM
initialization improves over random initialization showing the
importance of pretraining. The en-US CE + hi-IN LM initial-
ization is better than pretraining, however, is inferior compared
to en-US CE initialization, contrary to our expectation. The
reason for such a behaviour is not known and we look to inves-
tigate this further in the future. With the improvements obtained
from transfer learning, the WER of hi-IN RNN-T model (with
transfer learning) is in parity with the hybrid model.

6.1. Efficacy of TL for different amount of training data

To study the efficacy of the TL with different amount of train-
ing data, we sample the original hi-IN data into smaller data-
sets consisting of 50 hours, 500 hours and 1000 hours. The
RNN-T models are trained with random initialization and en-
US CE initialization. The corresponding WERs on hi-IN test-
set are shown in Table. 2. en-US CE initialization shows 42.7%
WERR reduction for 50 hour training over random initializa-

50 hours 500 hours 1000 hours
Random initialization 83.77 69.32 51.56

en-US CE initialization 47.96 35.07 32.75
Table 2: WER [%] comparison on hi-IN test set between ran-
dom and en-US CE initialized RNN-T models trained with 50
hours, 500 hours and 1000 hours.
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tion. The large WER gains with smaller training sets could be
due to better RNN-T training convergence with TL as discussed
in the next section. The above results also show a need for larger
training data in RNN-T models.

6.2. RNN-T training convergence

The training loss with increasing epochs for random initializa-
tion, en-US CE initialization and Two-stage TL with grapheme
targets is shown in Fig. 5. Each epoch is trained with 60 hours
of non-overlapping speech data. The training parameters such
as learning rate, mini-batch size are identical for all three meth-
ods shown in Fig. 5. The training loss converges much faster
with the transfer learning methods than random initialized mod-
els. The Two-stage TL converges faster than en-US CE initial-
ization. It is also interesting to note that the first epoch training
loss is much lower for Two-stage TL than others, thereby indi-
cating the superiority of initialization models in Two-stage TL.

7. Conclusion
In this paper, we explore transfer learning methods for RNN-
T models. Our motivation is to leverage well-trained en-US
models to bootstrap hi-IN RNN-T models and also to stabilize
the hi-IN RNN-T model training. We evaluated the following
transfer learning methods: a) en-US CE initialization b) en-US
RNN-T initialization c) Two-stage transfer learning and d) En-
coder and prediction network initialization. Based on the WER
gains and training convergence, we propose Two-stage learning
approach with grapheme targets as the preferred transfer learn-
ing strategy. The experiments on smaller data-sets and training
loss convergence reveal the importance of transfer learning for
low-resource RNN-T models. The methods discussed in this pa-
per can be generalized to other low-resource languages as well.
In future, we plan to explore other transfer learning methods
and its extension to multi-lingual RNN-T models.
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