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We studied the topical preferences of social media campaigns of India’s two main political parties by examining
the tweets of 7382 politicians during the key phase of campaigning between Jan - May of 2019 in the run up to
the 2019 general election. First, we compare the use of self-promotion and opponent attack, and their respective
success online by categorizing 1208 most commonly used hashtags accordingly into the two categories. Second,
we classify the tweets applying a qualitative typology to hashtags on the subjects of nationalism, corruption,
religion and development. We find that the ruling BJP tended to promote itself over attacking the opposition
whereas the main challenger INC was more likely to attack than promote itself. Moreover, while the INC
gets more retweets on average, the BJP dominates Twitter’s trends by flooding the online space with large
numbers of tweets. We consider the implications of our findings hold for political communication strategies
in democracies across the world.
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1 INTRODUCTION
Following the lead of Barack Obama’s historic 2008 election victory in the US, politicians across
the world have leveraged social media to reach out to the electorate. In recent years, this trend
has extended to bypassing the filters of the mainstream press. Heads of state including Donald
Trump and Jair Bolsonaro have moved to communicating primarily on social media, partly by
demonizing the mainstream media as biased, instead referring to social media as a reflection of
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true public sentiment. In India, the phenomenon of social media use by politicians had a major
boost following the landslide victory of Narendra Modi’s Bharatiya Janata Party (BJP) in the 2014
elections, a campaign which had a critical online component.
India is a parliamentary democracy, and has since its independence in 1947, primarily had one

dominant political party - the Indian National Congress (INC). However, the INC has slowly declined
in its parliamentary seat share, and since the 1984 general elections, no party secured an outright
majority, relying instead on pre-poll agreements and coalitions for government formation. This
was changed with the BJP’s 2014 victory, the biggest single party performance in three decades.
Much work has argued that the 2014 campaign was highly personality-centric [11], and that
campaigns were fundamentally metamorphosized in India by Modi’s aggressive use of social media
[13], marked in particular by his exclusive use of direc online missives, primarily on Twitter, to
communicate with the professional journalist corps [36].
The 2014 election was also important for its aftermath, which saw new technology-mediated

campaigns turning into the norm. While the parliamentary system had meant that parties tradition-
ally campaigned on party symbols and ideology rather than individual leaders, the success of Modi
created an industry of social media campaign specialists joining politicians and parties[28]. The
move towards social media enabled elections was strengthened by the litmus test of the 2017 Uttar
Pradesh elections, which saw massive use of social media propaganda and online misinformation
[32]. Uttar Pradesh, the country’s largest state, is also one of the poorest and most backward, and
the widespread use of social media, in particular WhatsApp, underlined parties’ acceptance that this
was no longer an elite phenomenon and that it had become a central weapon of election campaigns.
In Modi’s own pre-2019 elections diktat to his party, he required that anyone looking for a ticket to
contest elections for the BJP needed to show a minimum threshold of followers online [47, 51]

A consequence of these changes has also been much discussion over whether the political speech
has itself moved towards more polarized rhetoric with unmediated online debates increasingly
central to the overall shaping of political communication [33]. Our work seeks to systematically
examine digital outreach across parties, through a large-scale snapshot of the topics and scope of
online political speech in the 2019 elections.

We built a database of over 18500 Indian politicians on Twitter, and studied a selection of subject
matters addressed in their output during the 2019 general elections. We based our analysis on the
choice of hashtags posted by politicians of India’s ruling Bharatiya Janta Party (BJP) and main
opposition Indian National Congress (INC) party. We restricted our study to tweets containing
hashtags due to the critical affordances they presented to the author: networking beyond their
followers [6, 14] and participating in a collective effort to promote a cause [10].
Our findings indicate marked differences between the issues each party focused on and their

success in securing traction on Twitter for their narrative.
In section 2, we discuss prior work that used hashtags to gauge partisanship and model tweet

topics. In section 3, we describe the dataset and the hashtag typology we have used. Section 4
lists the results of our analysis. In section 5, we probe the implications of our study for political
communication on social media. Finally, we discuss the limitations and potential future directions
of work using this dataset.

2 RELATEDWORK
There is a large body of literature on Twitter political campaigns [9, 20, 22, 25, 29, 35, 49, 50].
Hemphill et al. presented a framework to study partisanship of political campaigns on Twitter
through hashtags [18, 19] and used it to study political framing [18] and partisan messaging in US
Congressional elections [3, 21]. Hashtags have been used to analyse Twitter activity of political elite
in Sweden [30] and links between politicians’ Twitter messaging and their coverage by journalists on
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Twitter in Norway [14] and the mainstream media in the US [46]. Lunde [31] used hashtags to study
political humour on Russian Twitter while Mirko et al. analysed polarization [27] among followers
of members of US congress and Governors. Researchers have used thematic typologies to study
insults [38], negative messaging [8], and topical preferences [1, 5, 53] in political communication.
Prior literature has considered hashtag use by national leaders, members of parliament and

provincial Governors. We build upon these works by conducting the first large scale study of Indian
politicians’ hashtag usage during a national election campaign. The scale of our study is much
larger than what prior studies have attempted and fills a void that has hitherto escaped researchers
attention.
Within the CSCW community, researchers have studied online political communication at

length. Grevet et al. [16] looked at the correlation between political homophilly and weak ties
on Facebook and suggest measures to connect politically distant users to reduce polarization.
Borge-Holthoefer[4] et al. studied polarization on Twitter in Egyptian political discourse whereas
Semaan[45] et al. recommended measures to reduce the same using a qualitative study of 21 US
citizens. Furthermore, Kulshreshtha[26] et al. have quantified political bias in searches on Twitter
while Park[40] et al. attempted to predict orientation of news stories based on sentiment patterns of
comments posted by viewers. In addition, existing literature has considered collaborative political
blogging[2], political activists’ organization practices online[44] and the use of storytelling in social
movements on new media[12].

Our work dovetails into this extant body of work in that it focuses not on the tweet patterns of
individual political actors, but the collective output of collaborative propaganda efforts by members
of political organizations. In large and diverse political systems like India, creating and enforcing
message discipline in national election campaigns is a difficult feat. However, social media platforms
have afforded organizations new ways of collaborative action. The size and diversity of our sample,
therefore, provides a unique snapshot of nationwide campaigns, divided by a diverse, multi-lingual
polity but unified in their messaging towards the shared goal of winning elections.

3 DATA
We defined a politician on Twitter as a public figure holding a position within a political party.
This included elected members of the union parliament, state legislatures and local governing
bodies. We also included unelected party officials like national, state and district party presidents
and vice-presidents, spokespersons, general secretaries. Lastly, we included youth-wing (IYC for
the INC and BJYM for the BJP) and student-wing (NSUI for the INC and ABVP for the BJP) office
bearers.
We built the database of Indian politicians using NivaDuck [39] 1 - an ML-based classification

pipeline that we have developed to identify political actors on Twitter in a given country. It leverages
Twitter profile description text and tweet content of known politicians to identify new politicians.
So far, NivaDuck has identified over 18500 Indian politicians and over 8000 US politicians - the
largest such archive to our knowledge. These accounts have been manually verified and annotated
with their party and state. The most significant contribution of NivaDuck is its ability to find
politicians that are not listed in official data sources like the Federal Election Commission (FEC) in
the US or the Election Commission of India (ECI) in India, especially in the nations of the Global
South.
We built this database by iteratively collecting the list of politicians, starting with a random

sample of 1700+ manually curated Twitter handles of Indian politicians - members of parliament,
state leaders and grass-root activists from 42 major national and state parties. We use these to

1Marathi word for ‘selector’
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Fig. 1. NivaDuck’s classification pipeline

train NivaDuck’s classifiers. Figure 1 shows the two-stage classification pipeline. The primary
classifier considers only the Twitter profile description text whereas the secondary classifier is
trained on tweets. For both classifiers, we trained machine-learning Logistic Regression models
[41] with unigrams, bigrams and trigrams of the profile description and tweet text2 as feature
vectors respectively. We used GridSearchCV to optimise for the regularization parameter and the
precision-recall curve to select classification thresholds that yielded a high recall output from the
primary classifier and a high precision set from the secondary classifier. Overall, NivaDuck had a
precision score of 90 percent and recall score of 65 percent on the test set. We prioritized precision
over recall to reduce false positives.

To find new politicians, we used four different sources - friend-network and list-network of known
politicians, election commission database, and users who tweeted trending political hashtags. These
accounts were fed to NivaDuck to identify new politicians. Every classified politician was manually
verified to remove false positives. NivaDuck’s precision on the predicted set of politicians varied
between 85pc to 93pc, depending on the source. The limitations of this archive are threefold. First, it
may exclude accounts that are not well networked to other politicians through friend/follower links.
Second, we observed a bias toward politicians of the two national parties - BJP and INC - in finding
new politicians. We mitigated this by manually adding missing politicians from major regional
parties in our database. Lastly, given that it is trained to be precise, it may exclude politicians that
have very few tweets and those whose tweets do not match the training sample.

We chose an ML-based procedure for three reasons. Firstly, per our knowledge, there are no large
public repositories of social media handles of politicians for India. Prior work has only considered
major parties, their senior politicians and other members of parliament. While the ECI publishes
social media handles of candidates, these are often outdated as politicians change parties and do not
account for those who have not contested national or state elections. Secondly, manual collection of
these accounts is error-prone and tedious, making it hard to replicate over time. Moreover, the large,
multilingual and multi-party Indian political system makes human effort even more inefficient and
ineffective. An ML-based procedure allows for a large scale study like the one we pursued here.
Thirdly, we intend to repeat this study for other large democracies, especially in the Global South.

2Tweet text was featurized using Google’s Universal Sentence Encoder [7]

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. CSCW1, Article 53. Publication date: May 2020.



Topical Focus of Political Campaigns and its Impact: Findings from Politicians’ Hashtag Use during the 2019 Indian
Elections 53:5

Fig. 2. Weekly tweet output per user by BJP and INC

NivaDuck’s scalability and adaptability make it a suitable method to build large corpora of political
figures on Twitter worldwide.
For all accounts thus collected, we manually added party and state annotations. We verified

each handle and marked their state as follows: (1) if they were an elected representative, (2) if
they were un-elected and had a location or reference to a location in their description or screen
name (eg. @MumbaiCongress, @AAPKarnataka). Their location was marked accordingly. For the
remaining handles we marked the location as ‘Unknown’. For party labels, we used the Twitter
profile description, screen name and the latest official ECI database of candidates in national and
state elections.
For this study, we selected BJP and INC politicians from our database who had at least 100

followers. This yielded 4280 BJP politicians that posted 400724 original tweets and 3102 INC
politicians that posted 208483 original tweets between Jan-May 2019 - the general election campaign
period. We selected hashtags that appeared in at least 100 original tweets for our study. This
produced a sample of 1208 unique hashtags, after merging those with different case structure (eg.
#ModiAgain, #Modiagain, and #MODIAgain).

Figure 2 gives a broad view of weekly Tweet activity of BJP and INC politicians, normalized for
the number of users. Notably, even on a daily basis, BJP posts more tweets than the INC (T=5.449,
p-value < 0.001).

3.1 Hashtag typology
We identified four categories of issues for our analysis - Nationalism, Development, Corruption
and Religion. While Corruption is a perennial issue of Indian politics [23], INC’s #Chowkidar
hashtags made it a focus of their campaign. Religion and Nationalism have been recurring
campaign themes for the BJP since the 1990s [15, 52] and took center stage with controversies
around the Ayodhya Ram Temple-Babri Mosque dispute and the Pulwama terror attacks and Balakot
air-strikes respectively. As both parties aggressively promoted their social welfare proposals like
the INC’s NYAY and BJP’s Ayushman Bharat, we added Development to our typology.

The first two authors independently encoded hashtags into one of the four categories, as per the
definition in table 1. The categories were mutually exclusive. For hashtags that could be matched
to multiple categories, the coders were asked to select the most suitable category. As an example,
#ChowkidarNahiRozgarChahiye (We want jobs not gatekeeper) relates to both Development and
Corruption3, but was annotated as Development due to the direct mention of jobs. We labeled
hashtags that did not fit into any category and those which could not be confidently classified
/ strongly associated into the typology as Other. The inter-coder reliability of our annotations,
3The phrase ‘Chowkidar’ (gatekeeper) has been used by both sides in relation to corruption allegations
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Category Definition Examples

Nationalism References to Pulwama, surgical strikes, Bal-
akot, Pakistan, Indian armed forces, CRPF, mar-
tyrs or freedom fighters

#BJPFailedNationalSecurity, #Balako-
tAirStrike, #CRPFJawans, #Congress-
PakistanUnited

Call to boycott ‘anti-national’ actors #ExposeDeshDrohis (traitors)
Development Govt. programme / policy proposal #MakeInIndia, #NYAYforIndia

Economy, health, unemployment, farmers #Modinomics, #AyushmanBharat
Corruption Reference to corruption related controversies #ModiScamCentury, #RafaleGrandEx-

pose
Religion Issues, events about religion #AyodhyaHearing, #INCMinorityCon-

vention
Religious festivals, personalities from religious
/ spiritual organisations

#HappyHoli, #ModiInKumbh, #Jumma-
Mubarak

Table 1. Definition of issue-based categories for hashtags used by BJP and INC in the 2019 election campaign

measured using Cohen’s kappa statistic, was 0.72. The disagreements between the two coders were
resolved by the third author. In all, we labelled 131 hashtags as Nationalism, 96 as Development,
55 as Corruption and 53 as Religion. There were 859 ‘Other’ hashtags.
Apart from this typology, we also labeled each hashtag as ‘BJP-related’ or ‘INC-related’ if it

contained a reference to the respective party, affiliated organisations or its politician(s).

4 ANALYSIS
4.1 Issue-based preferences of campaigns
We estimated the topical focus of the campaigns of BJP and INC using two methods. Firstly, we
report the likelihood of the two parties using hashtags relating to our typology. We modeled the
number of tweets of each category by each party on a daily basis as a binomial variable and used a
mixed random effects model to estimate the odds that a party will post tweets about that category.
The regression formula was as follows: 4

𝑐𝑏𝑖𝑛𝑑 (𝑁𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑁𝑜𝑡ℎ𝑒𝑟 ) ∼ (1|𝑑𝑎𝑦) + 𝑝𝑎𝑟𝑡𝑦 + 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 + 𝑝𝑎𝑟𝑡𝑦 ∗ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (1)

As we wanted to study the relative preference of the two parties in posting tweets about a
particular subject, say corruption, we used log-odds ratio to model this metric. Table 2 shows that
the BJP is more than twice as likely to tweet about nationalism and religion than the INC but
less than half as likely to tweet with corruption related hashtags. On development, the difference
between the parties is relatively small.
Secondly, we consider the total number of politicians that used these hashtags throughout the

study period. Hemphill et al. [19] defined partisan score of each hashtag as the Chi-Squared statistic
of dependence between number of users that used a hashtag and their party. Using their method,
we report the mean partisan score for the four categories.

We categorized all hashtags within 0.5 standard deviation of the mean as ‘non-partisan’, between
0.5 to 1.5 standard deviations as ‘leans-bjp/inc’ and those beyond 1.5 standard deviations as ‘strong-
bjp/inc’. Figure 3 shows themean partisan scores for the four types of hashtags. They are color-coded
as per our typology and the respective bands indicate the mean partisan score of the four respective
categories. The x-axis shows the partisan score on a log scale and partitions labeled at the top show
4We used R to model the regression [43]
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Fig. 3. Average partisanship scores for nationalism, religion, development and corruption (Bands indicate
the mean log score of partisanship, y-axis plots the number of states that had at least 5 politicians using the
hashtag)
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Type Odds ratio Std. Err. p-value Total tweets posted
(BJP/INC) BJP INC

Corruption 0.419 0.00620 <0.0001 3964 12674
Development 1.114 0.00978 <0.0001 15787 12037
Nationalism 2.170 0.02044 <0.0001 10493 3907
Religion 2.511 0.05036 <0.0001 6923 2103

Self-Promotion 4.874 0.05648 <0.0001 237423 64223
Attacking-Opponent 0.484 0.05648 <0.0001 13824 52247

Table 2. Likelihood ratio of parties’ typological preferences

Fig. 4. Sample of hashtags with negative partisnaship scores that refer to Narendra Modi or Rahul Gandhi

the partisan category of the hashtag. The results corroborate those from table 2. For an interactive
visualization of all hashtags, please see our GitHub repository listed in the appendix.

We then considered the references to ‘BJP’ and ‘INC’ by the two parties. We defined tweets
with hashtags that referred to the same party as ‘Self-promotion’ and to the opposing party as
‘Attacking-opponent’. The BJP is 4.8 times more likely to promote itself than the INC does while
the odds that the INC will attack the BJP are more than twice the odds of BJP attacking INC. Within
the parties, the BJP very rarely attacked the INC as against promoting itself (odds ratio = 0.11,
p-value<0.0001) whereas the INC was more likely to attack than self-promote (odds ratio = 1.10,
p-value<0.0001).
Figures 4 and 5 show samples of hashtags that referred to Modi and Rahul Gandhi used by the

INC and BJP respectively. We included English hashtags that used direct references to their names
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Fig. 5. Sample of hashtags with positive partisnaship scores that refer to Narendra Modi or Rahul Gandhi

or to fan-names like ‘NaMo’ and ‘RG’. The BJP used twice as many leader-centric hashtags as the
INC, with all of the ‘Strong-BJP’ hashtags being about Modi, while the ‘Strong-INC’ hashtags refer
to both. This is reinforces our claim that the BJP promotes itself (and its leadership) way more than
attacking its opponents, while the INC is split between the two.

4.2 Effectiveness of issue-specific messaging
We estimated the impact of differing categorical preferences of the two campaigns using two metrics
- retweet count and trend value. The trend value was estimated as the cumulative number of hours
that a given hashtag trended on that day. The sum of the hashtags’ scores yielded the trend value
of the tweet. We excluded non-partisan tweets from our analysis. We used a mixed effects model
with the following regression formulae.

𝑟𝑒𝑡𝑤𝑒𝑒𝑡_𝑐𝑜𝑢𝑛𝑡 ∼ (1|𝑑𝑎𝑦) + (1|𝑝𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛) + 𝑝𝑎𝑟𝑡𝑦 + 𝑝𝑎𝑟𝑡𝑦 ∗ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
+𝑓 𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠_𝑐𝑜𝑢𝑛𝑡 + 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 + 𝑠𝑖𝑧𝑒 (2)

𝑡𝑟𝑒𝑛𝑑_𝑣𝑎𝑙𝑢𝑒 ∼ (1|𝑑𝑎𝑦) + (1|𝑝𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛) + 𝑝𝑎𝑟𝑡𝑦 + 𝑝𝑎𝑟𝑡𝑦 ∗ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
+𝑓 𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠_𝑐𝑜𝑢𝑛𝑡 + 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 + 𝑠𝑖𝑧𝑒 (3)

Tables 3 and 4 list show that the INC achieves higher retweets than the BJP across all types of
tweets. However, the BJP has a higher trend score for its tweets i.e. its hashtags trend more often
than those of the INC. We excluded results that were not significant.
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Table 3. Regression Results for retweets earned by BJP and INC politicians when they tweet about different
types of hashtags

Dependent variable: log_retweet_count

partyINC 0.261808∗∗∗
categoryDevelopment −0.205201∗∗∗
categoryReligion −0.117734∗∗∗
categoryOther −0.081895∗∗∗
categoryNationalism −0.150060∗∗∗
log_foll 0.462637∗∗∗
log_size 0.229264∗∗∗
partyINC:categoryReligion 0.198934∗∗∗
partyINC:categoryDevelopment 0.134827∗∗∗

Observations 229,556

Contrasts Estimate
Corruption::BJP−INC −0.262****
Development::BJP−INC −0.397****
Nationalism::BJP−INC −0.290****
Other::BJP−INC −0.309****
Religion::BJP−INC −0.461****

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; ∗∗∗∗p<0.0001

Table 4. Regression results for trend value of tweets by BJP and INC politicians when they tweet about
different types of hashtags

Dependent variable: log_trend_value

partyINC −0.23281∗∗∗
categoryDevelopment −0.217162∗∗∗
categoryOther −0.24841∗∗∗
log_foll −0.003289∗∗∗
log_size 0.023918∗∗∗
partyINC:categoryDevelopment 0.20975∗∗∗
partyINC:categoryNationalism 0.170008∗∗∗
partyINC:categoryOther 0.21528∗∗∗

Observations 229,556

Contrasts Estimate
Corruption::BJP−INC 0.2328****
Development::BJP−INC 0.0231****
Nationalism::BJP−INC 0.0628****
Other::BJP−INC 0.0175****
Religion::BJP−INC 0.1752****

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; ∗∗∗∗p<0.0001
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5 DISCUSSION
There are key differences between the two parties topical preferences that merit attention. The
BJP’s has many more tweets that focus on issues of Religion and Nationalism, which suggests
that it does appeal to its traditional right-wing base, as opposed to the past, when the party, and its
leadership made an explicit attempt to underplay religious or nationalistic tones in its campaign
[37].
Also, we find that in BJP politicians’ tweets, both ‘Modi’ and ‘BJP’ are much more widely

used especially alongside terms that imply the nation such as ‘Bharat’ or ‘India’ - for instance –
#modi4newindia, #VijayiBharat (victorious India), #BharatKaGarvModi (India’s pride Modi) and
#JitegaModiJitegaBharat (Modi wins, India wins).
In contrast, the INC framed Corruption through the viral #ChowkidarChorHai (Hindi - ‘the

gatekeeper is the thief’), in response to Modi’s description of himself as the nation’s ‘Chowkidar’
in 2014. Till Feb 2019, #ChowkidarChorHai trended online [24], but in what may be the BJP’s
most successful counter-campaign, it was able to turn the negative connotation of Chowkidar with
"thief" into a term it owned. It did so by asking its followers to add the prefix "Chowkidar" to their
names, and trend the #MainBhiChowkidar (Me too gatekeeper) hashtag [24, 42] starting mid-March
2019. The #MainBhiChowkidar campaign underlines the importance of a broad user-base since
the retweet rates of specific messages may have some affective value, but the ability to move the
discourse a notch in one direction is driven by strength in numbers.

The INC’s strategy cedes the initiative to the BJP, potentially allowing it determine which topics
get discussed and how they are framed. This is corroborated by the finding that the ruling party’s
messaging was almost entirely self-centered while the opposition was split between promoting
itself and attacking the BJP. This has important implications for the nature of political discourse
and who shapes it, not just in India, but for democracies across the world that have experienced
personality centered right-wing parties gaining power on the backs of effective personality-driven
social media outreach [17, 34, 54].
In conclusion, this research shows empirically what has often been argued anecdotally by

commentators, that the election has seen a nationalistic shift by the BJP. It is important to situate
this within the larger context of Indian politics in the last decade, since the BJP came to power
eschewing its traditional right-wing Hindu-politics narrative and instead focusing on development
and anti-corruption. As a party in power, attempting to defend itself, the turn to nationalism
as well as religion underlines the party’s recognition of emotional sectarian appeals as valuable
at the votebanks. While there are nuances specific to Indian politics, the case of an incumbent,
being attacked on corruption and development, turning to nationalistic and sectarian politics holds
warnings for political movements worldwide. The successes in this lean towards a political enemy,
rather than a policy offering, are portentous in an international political environment in which
nation states increasingly see heightening amounts of polarization.

6 LIMITATIONS
In this work, we proposed a qualitative typology of issues focused by Indian politicians during
the general elections period from January to May 2019. We further compared how effective were
the politicians from the ruling and opposition parties in spreading the issue-specific messages we
identified. The major limitation of our work is that it does not consider the text of the tweet. Our
typology of issues and classification of tweets is based entirely on hashtags. The choice of hashtags
stems from the critical networking affordance that hashtags provide [6, 48] and the practice of co-
ordinated hashtag campaigns by political parties [24]. This method assumes convergence between
the topical attributions of the tweet text and its hashtags. But some tweets with hashtags of a
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specific category, say Nationalism, may not be related to the issue. For instance, classifying a
tweet containing the hashtag “#CRPFJawans” (translates to Central Reserve Police Force Soldiers)
as ‘Nationalism’ could be wrong if someone used it in a different, non-political context. However,
from the content of the tweets with this and other similar armed forces related hashtags, we
know that such references by politicians are invariably a call to nationalistic sentiment. Second,
‘meta-tweets’ may include hashtags of the tweets they report, but cannot be labeled as tweets
about that topic. Meta-tweets are tweets that talk about other tweets or just report statistics about
trending hashtags or popular issues. Third, a tweet may contain strong language pertaining to a
given subject without any hashtag used. Such tweets are not covered by our analysis.

7 FUTUREWORK
In the future, we would like to extend our work to address these limitations by using natural
language inference techniques to analyse the content of tweets. One important extension could be
to analyse the etymology and evolution of the different hashtags used by political parties in election
campaigns. For instance, the INC’s hashtags about Rahul Gandhi have greater liguistic diversity
than the BJP’s hashtags about Modi. Moreover, many hashtags are derived from rhymes, jingles and
slogans used in Indian political campaigns for decades, and are now reverberating virtually through
the affordances of social media. We also plan to study political speech in other large electoral
systems by leveraging NivaDuck to compile a representative dataset of politicians for those regions.
This would contribute to efforts in the CSCW community to understand collective communication
campaigns on social media. In addition, this methodology can be extended to study partisan framing
of key issues by politicians of specific locations, such as membership of the European Union in
European countries, healthcare reform in the US, and the contentious Citizenship Amendment Act
(CAA) in India.
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A ONLINE RESOURCES
We have included interactive visualizations of partisan scores all hashtags in our GitHub repository,
along with other useful information about our methodology. Please find it here: https://github.com/
anmolpanda/partisan_hashtags_india.
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