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Abstract— Remote physiological measurement has great po-
tential in healthcare and affective computing applications. Imag-
ing photoplethysmography (iPPG) leverages digital cameras to
recover the blood volume pulse from the human body. While
the impact of video parameters such as resolution and frame
rate on iPPG accuracy have been studied, there has not been
a systematic analysis of video compression algorithms. We
compared a set of commonly used video compression algorithms
(x264 and x265) and varied the Constant Rate Factor (CRF)
to measure pulse rate recovery for a range of bit rates (file
sizes) and video qualities. We found that compression, even at
a low CRF, degrades the blood volume pulse (BVP) signal-to-
noise ratio considerably. However, the bit rate of a video can
be substantially decreased (by a factor of over 1000) without
destroying the BVP signal entirely. We found an approximately
linear relationship between bit rate and BVP signal-to-noise
ratio up to a CRF of 36. A faster decrease in SNR was observed
for videos of the task involving larger head motions and the
x265 algorithm appeared to work more effectively in these cases.

I. INTRODUCTION

Remote measurement of physiological signals has a number
of advantages over traditional contact methods. It allows the
measurement of vital signals unobtrusively and concomitantly.
In recent years, a number of approaches for imaging-based
measurement of physiology using digital cameras have been
proposed. Imaging photoplethysmography (iPPG) captures
variations in light reflected from the body due to blood
volume changes in microvascular tissue [1]. Verkruysse et
al. [2] demonstrated that sub-pixel variations in color channel
measurements from a digital single lens reflex (DSLR)
camera, when aggregated, could be used to recover the blood
volume pulse. Subsequently, researchers have shown that
iPPG methods can allow accurate measurement of heart
rate [3], heart rate variability [4], breathing rate [4], blood
oxygenation [5] and pulse transit time [6]. McDuff et al. [7]
provide a comprehensive survey of approaches to iPPG.

A number of parameters influence the accuracy of iPPG
measurements. These include the imager quality [8], and the
frame rate and resolution of the images [9]. Sun et al. [8]
compared remote physiological measurement using a low cost
webcam and a high-speed color CMOS and showed similar
signals were captured from both cameras, further supporting
that iPPG is a practical method for scalable applications
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Fig. 1. We present a systematic analysis of the impact of video compression
on physiological measurements via image photoplethysmography. We
compare compression types and levels on over four hours of video from
twenty-five participants performing stationary and random head motion tasks.

such as telemedicine. Blackford and Estepp [9] found that
reducing frame rate from 120Hz to 30Hz and/or reducing
image resolution from 658x492 pixels to 329x246 pixels had
little impact on the accuracy of pulse rate measurements.
Video compression is an important parameter that has not
been systematically studied with regard to iPPG.

There are a number of methods for video compression
that aim to reduce the bit rate whilst retaining the important
information within a video. However, video compression
algorithms are not designed with the intention of preserving
photoplethysmographic data. On the contrary often compres-
sion algorithms make assumptions that small changes in pixel
values between frames are not of high visual importance and
discard them, influencing the underlying variations on which
iPPG methods rely. We present a comparison of iPPG blood
volume pulse (BVP) signal-to-noise ratios and pulse rate (PR)
measurements from videos compressed using popular current



and next-generation codecs (x264 and x265).
In real-life applications motion tolerance of iPPG mea-

surement is likely to be important. Previous work has
proposed methods for reducing motion artifacts in iPPG
measurements [10], [11], [12], [13], [14], [15], [16]. Due to
the nature of inter-frame compression, compression is likely
to have different impacts on physiological signal recovery
depending on the level of head motion. Therefore, we evaluate
results on videos for stationary and motion tasks.

Finding compression configurations that preserve valuable
physiological data would allow new applications for iPPG
measurement. For example, methods used for video record-
ing/streaming through a web browser in video conferencing
could be adapted to preserve iPPG data for analysis as part
of a telehealth system. Additionally, alleviating the burden
of storing raw video could enable sharing research datasets.

We analyzed a large dataset of uncompressed, raw videos
with both stationary subjects and random head motions [13]
in order to test the impact of video compression on the
accuracy of remote physiological measurements. Participants
(n=25) engaged in two, 5-minute tasks and were recorded
using an array of cameras. Gold-standard electrocardiogram
(ECG) measurements were captured alongside contact PPG
measurements from the finger-tip. Figure 1 shows a summary
of our study and examples of frames from the two tasks.

II. BACKGROUND

A. Video Compression

Raw video requires enormous amounts of storage; for
example, each raw, uncompressed 5.5-minute video file
collected in this study was 11.9 GiB in size. Collecting data
from multiple cameras (9), numerous trials (12), and subjects
(n=25) resulted in a total size of 31.50 TiB for the 247.5
hours of standard definition video. The inherently large size
of raw video make its use infeasible outside of research and
archival video storage. Herein we seek to better understand
the trade offs related to iPPG derived measurements made
from videos with varying levels of compression. The results of
this evaluation will inform the final dataset which is planned
to be made available to researchers working in this area.

Owing to the large file sizes imposed by raw video,
compression is an essential element of almost every video
system. Video encoding schemes typically employ similar
methods in order to reduce the amount of data required
to store or transmit video. Increasing the complexity of
such methods improves coding efficiency and relies on
advances in computational resources to allow the video to be
decoded. These methods may be lossless and utilize principles
of information theory to reduce data rates while allowing
identical reproduction of the source video or lossy and discard
less visually important information. Some of these methods
include color space conversions, reducing inter-frame and
intra-frame (motion) redundancy, and entropy coding of the
data to produce an efficient binary representation.

Video is typically recorded from image sensors outfitted
with a red, green, blue Bayer color filter array, where each
pixel records light transmitted through a single filter. The

resulting image may then be interpolated to derive a full
color image with RGB values for each location, increasing
the amount of data by a factor of three. Alternatively,
images may be stored using alternate colorspaces, such
as YUV. The YUV colorspace represents data as a single
luma (Y), or achromatic brightness, component and two
chrominance components, U/Cb and V/Cr representing blue-
luma and red-luma differences, respectively. A popular use
of the YUV colorspace, YUV420p, capitalizes on the visual
system’s greater perception of luminance differences over
color or chrominance differences. Each image pixel location
is represented by a luminance value while the chrominance
values are subsampled every other row and column. As a
result, a given block of 4 pixels requires 6 bytes of data
(12bits/pixel) in the YUV420p colorspace rather than 12
bytes (24bits/pixel) in the RGB colorspace.

Intra-frame or image compression methods reduce spatial
redundancy/correlation within the image. To do so, the image
is subdivided into groups of pixels, sometimes referred to as
macroblocks or coding units. Larger and more complicated
block compositions can provide better visual appearance and
greater coding efficiency at the expense of additional compu-
tational complexity. The blocks are then transformed from
the spatial domain, often using the discrete cosine transform
(DCT). The DCT is then divided by a quantization matrix
and rounded. This process eliminates smaller coefficients and
greatly reduces the number of values required to express the
image. This process is also used in JPEG image coding.

Similarly, inter-frame compression reduces temporal redun-
dancy/correlation between successive images in a group of
pictures (GOP). A reference, I-frame (intra-) is encoded inde-
pendently using intra-frame compression, as described above,
and requires the most data to express. Between I-frames are P-
frames (predicted), and B-frames (bi-directionally predicted).
P-Frames require less data to express and consist of motion
vectors describing changes from previous I- or P-frames. B-
frames require the least amount of data and describe motion
vectors using both past and future frames. The difference,
or residual, between predicted frames and original frames
are then transformed and quantized. This process reduces the
coding for regions of little to no change between frames.

More advanced encoding schemes rely on more sophisti-
cated techniques for determining I-, P-, and B-frames, their
order and frequency for more efficient encoding via greater
complexity. Similarly, adaptive quantizers, such as a constant
rate factor (CRF) may be used to maintain video quality
across frames with different amounts of motion content and
image complexity. Finally, inter- and intra- frame compression
are utilized in tandem for even greater efficiency.

B. Consequences of Compression for iPPG Signal Recovery

Various stages of video compression are likely to have
detrimental effects on iPPG measurements. For example, the
chroma subsampling to the YUV colorspace reduces the
number of samples used to represent chromaticity, where
the BVP predominately resides [17]. Furthermore, the BVP
is an imperceptible color change that often occurs at sub-



noise levels for individual pixels and may be only measured
after averaging over a region. An otherwise imperceptible
change in the video, such as this, could easily be deteriorated
or eliminated by spatial or motion compression. That is,
relatively spatially-homogeneous regions may be quantized
jointly. This will limit the subsequent benefits derived from
averaging across regions, as frequently performed in iPPG
signal processing. Additionally, the time-evolution of the
BVP may be quantized and discarded as it is an otherwise
imperceptible change between video frames. Given these
potential effects, it is important to understand the potential
consequence of video compression on iPPG measurements.

C. Video Compression Standards

Numerous and varied codecs exist implementing variations
of the methods described above. Some of the most popular
have been developed as standards of the Moving Picture
Experts Group (MPEG) and International Telecommunication
Union Telecommunication Standardization Sector (ITU-T).
These include MPEG-2 Part 2/H.262, utilized for DVD video
and over-the-air, digital-TV broadcasts [18]. MPEG-4 Part 10,
AVC/H.264 a current-generation standard, utilized by Blu-ray
video and various high definition (HD) video providers, which
achieved an approximate doubling in encoding efficiency
over H.262 and enabled network video streaming [19], [20].
Finally, next-generation standards such as MPEG-H Part 2,
HEVC/H.265 utilize increasingly complex encoding strategies
for an approximate doubling in encoding efficiency over
H.264 [21], [22]. H.265 is designed to handle ultra-high
definition video and provide improved mobile and Internet
video streaming. Other next-generation standards, have similar
efficiency goals and employ analogous techniques to achieve
them. Other standards vying for the role of leading next
generation codec include VP9 and its successor AV1, both
open source and royalty free.

Modern video coding standards typically represent a
compressed video format and the necessary operations to
decode a compliant video. This ensures a uniform output from
a given video while providing flexibility in the operations and
compression methods used. Various frameworks may then be
used to generate compressed videos.

D. Codec Evaluations

Various groups have published systematic evaluations of
video codecs within the three-dimensional trade-off space
of encoding efficiency, video quality, and computational
complexity. Encoding efficiency is typically assessed using
average bit rate. Computational complexity is typically as-
sessed using a benchmark processing time. The gold standard
for video quality is human subjective perception assessed by
a Mean Opinion Score (MOS). Alternatively, video quality
may be assessed using one of numerous automated metrics
including Peak Signal-to-Noise Ratio (PSNR), Multi-Scale
Structural Similarity (MS-SIM), and PSNR with contrast
Masking of DCT basis functions based on the Human
Visual System (PSNR-HVS-M). PSNR-HVS-M adapts PSNR
measurements with a contrast sensitivity function which takes
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Fig. 2. Imager array and lighting setup used for data collection. Arrows
indicate light sources. Cameras were positioned at the subject’s eye level.
Recordings were collected with nine cameras; however, previous work
showed BVP recovery with the central five cameras was comparable, or
better, to that with all nine [13]. To reduce excess computation only images
from the central five cameras (shown in black) were used in this analysis.

into account the maximal non-perceptible distortion between
DCT coefficients for the macroblocks of an image. This
adaptation allows PSNR-HVS-M to correlate well with MOS
values [23]. PSNR-HVS-M was evaluated in this work using
the EPFL Video Quality Metric Tool (VQMT) [24].

Evaluations conducted by Moscow State University [25],
[26] and Netflix [27] assessing these tradeoffs have shown the
strengths of x264 as a current-generation codec and x265 as
a next-generation codec. These evaluations helped guide our
methods while particularly focusing on effects of compression
on physiologically relevant signals derived from iPPG.

In this work, open-source tools including FFmpeg and
codecs compliant with H.264 (x264) [28] and H.265
(x265) [29] were used. Particular attention was paid to
maintaining video compatibility with MATLAB (R2016b
on Windows 10), due to the popularity of the MATLAB
environment for data and video processing in this area of
research. The resulting encoded videos were assessed on basis
of average bit rate of the video, video quality assessed by
PSNR-HVS-M, pulse rate measurement accuracy, and BVP
signal-to-noise ratio.

III. EXPERIMENT

A. Apparatus

Imager Array: A multi-imager array was used to collect
synchronized videos of the participant. Nine cameras spaced
every 20◦ across a semicircular arc (total of 160◦) were
used to collect videos. The video from the center most five
cameras was analyzed based on the results of [13]. The
cameras were positioned at the participant’s eye level. Figure 2
shows the arrangement of the cameras. Synchronization of the
image capture from the array was achieved using a PCIe-6323
data acquisition card (National Instruments, Austin, Texas,
USA) to generate a hardware-timed (120 Hz, 90% duty cycle)
trigger/exposure control signal, resulting in a capture rate of
120 (fps) and 7.5 ms exposures.

Imagers: Scout scA640-120gc (Basler, Ahrensburg, Ger-
many) GigE-standard, color, progressive-scan, CCD cameras
with external triggering and exposure control, capturing 8-bit,



658x492 pixel, raw BG Bayer-format images were used for
video capture. The imagers were equipped with 16 mm fixed
focal length lenses (HF16HA-1B, Fujinion, Tokyo, Japan) to
maximize the area of the participant’s face in each frame.

Lighting: Experimental lighting was provided by 10
SoLux, full color spectrum (5000K) bulbs (Solux MR-16,
Tailored Lighting, Inc., Rochester, New York, USA) equipped
with a frosted diffuser. The bulbs were mounted 0.5 m above
the imagers and positioned as shown in Figure 2.

B. Contact Physiological Measurements

Gold-standard physiological measurements were col-
lected and natively synchronized with the camera expo-
sure/acquisition trigger signal. PPG and ECG signals were
measured using a research-grade, biopotential acquisition
unit with peripheral-physiological and trigger signal inputs
(ActiveTwo, BioSemi B.V., Amsterdam, The Netherlands).
ECG was measured from the chest using three leads. BVP
was calculated via the PPG signal from the index fingertip on
the left hand (MLT1020FC IR Plethysmograph Finger Clip,
ADInstruments, Inc., Colorado Springs, Colorado, USA).

C. Participants

Twenty-five participants (17 male, 18 to 28 years, mean age
23.7 years) were recruited to take part in our experiment. The
experimental protocol was reviewed and approved by the Air
Force Research Laboratory Institutional Review Board and
performed in accordance with all relevant institutional and
national guidelines and regulations. All prospective partici-
pants received a study briefing and completed comprehensive
written informed consent prior to their voluntary participation.
Participants were compensated for their time. Nine individuals
were wearing glasses and eight had facial hair.

D. Tasks

Participants completed six, 5-minute tasks in front of two
different background screens resulting in one hour of video
per participant (6 x 5 x 2 = 60 minutes). Two of these tasks are
analyzed in this evaluation. We did not analyze all six tasks
due to the extremely time consuming process of producing
compressed versions of all the videos with many CRF levels.
The two tasks are representative of the data overall.
Stationary Task: Participants were asked to look forward
and remain still throughout the task.
Random Motion Task: Participants were asked to reorient
their head position once per second to a randomly chosen
imager in the array. Thus simulating random head motion
and imposing additional noise near typical, resting pulse-rate
frequencies (∼60 bpm). The random sequence was provided
to the participant via a pre-generated audio recording.

IV. VIDEO COMPRESSION ANALYSIS

The face videos were originally recorded in lossless, raw
image format. We tested a set of commonly used lossy
compression codecs on these videos in order to quantify
the impact of compression on physiological parameter esti-
mates. Compression was performed using the latest FFmpeg
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Fig. 3. Method used for recovering the blood volume pulse from the video
sequences. Spatial averages of the red, green, and blue channel frames are
calculated to form three observation signals. Independent component analysis
is used to recover three underlying source signals. The source signal with
the greatest peak energy in the frequency domain is selected as the blood
volume pulse estimate. The Fast Fourier Transform of the BVP signal is
used to calculate the pulse rate and signal-to-noise ratio.

Windows 64-bit binary release (at time of testing: N-82324-
g872b358) [30]. FFmpeg provides an extensive command
line interface for video transcoding, filtering, and streaming
of video, images, and audio. FFmpeg is a versatile tool
supporting a great variety of formats and containers. An
example of the command structure used is shown below.

ffmpeg -i [input] -c:v [codec] -crf [x] ...
-pix_fmt yuv420p [output.mp4]

A. Codecs

x264: An open-source, current-generation codec producing
H.264 compliant videos [28].

x265: An open-source, next-generation codec built on the
x264 code base producing H.265 compliant videos [29].

We use the x264 and x265 codecs released under the terms
of the GNU General Public License and contained in the
FFmpeg release above [30].

B. Parameters

We chose to vary the Constant Rate Factor (CRF) for
both compression types in order to understand the trade-offs
between bit rate, video quality, and accuracy of pulse recovery.
CRF values control the adaptive quantization parameter to



TABLE I
SUMMARY OF THE BVP SNR AND PULSE RATE ESTIMATE ERROR FOR THE COMPRESSION ALGORITHMS COMPARED TO THE ECG MEASUREMENTS.

Stationary Task Random Motion Task Task
x264 x265 x264 x265

SNR PR Err. Bit Rate SNR PR Err. Bit Rate SNR PR Err. Bit Rate SNR PR Err. Bit Rate
CRF (dB) (BPM) (kb/s) (dB) (BPM) (kb/s) (dB) (BPM) (kb/s) (dB) (BPM) (kb/s)
Cont. -4.31 0.57 N/A -4.31 0.57 N/A -2.99 0.40 N/A -2.99 0.40 N/A
Raw -7.80 1.78 3.1*105 -7.80 1.78 3.1*105 -8.70 1.18 3.1*105 -8.70 1.18 3.1*105

1 -8.50 1.71 2.0*104 -9.66 2.65 3.8*104 -11.3 4.02 2.4*104 -9.66 4.26 4.3*104

3 -9.03 2.11 1.2*104 -9.88 3.89 2.4*104 -11.8 5.88 1.5*104 -11.2 4.27 2.8*104

6 -9.68 2.17 5.5*103 -10.1 3.32 1.1*104 -12.6 7.57 7.0*103 -11.2 4.62 1.3*104

9 -10.4 2.68 2.3*103 -11.8 5.94 4.2*103 -12.6 6.51 3.2*103 -12.0 6.34 5.5*103

12 -10.9 2.31 8.9*102 -12.6 7.25 1.6*103 -12.6 6.85 1.5*103 -12.6 6.85 2.5*103

15 -10.8 3.24 3.6*102 -13.1 7.84 7.5*102 -13.0 8.00 7.8*102 -12.7 6.85 1.3*103

18 -11.3 3.35 2.0*102 -13.9 7.49 4.1*102 -13.0 8.66 4.8*102 -13.2 8.26 7.8*102

24 -12.3 4.38 1.1*102 -13.9 9.51 1.7*102 -13.5 8.31 2.3*102 -13.9 9.90 3.6*102

30 -13.1 7.01 7.8*101 -13.9 10.95 8.9*101 -14.0 10.6 1.3*102 -14.1 9.48 1.9*102

36 -13.3 9.93 6.7*101 -13.7 8.87 5.8*101 -14.1 10.5 8.8*101 -14.4 9.29 1.0*102

42 -13.6 10.7 5.0*101 -13.8 9.29 4.1*101 -14.0 11.2 5.7*101 -14.2 11.5 6.3*101

48 -13.4 10.2 4.8*101 -13.8 11.8 3.3*101 -14.1 9.97 5.2*101 -13.7 10.5 4.5*101

51 -13.5 9.31 8.9*101 -13.8 9.85 3.4*101 -14.0 10.3 9.4*101 -14.1 12.1 4.6*101
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Fig. 4. Examples of the recovered blood volume pulse waves from the raw and compressed videos using the x264 method and CRF = 6, 12, and 18.

provide constant video quality across frames of varying
complexity and motion. CRF values range from 0 to 51, with
0 being lossless quality but requiring the greatest average
bit rate and 51 being the most lossy but producing the least
average bit rate. Decreasing the CRF value by six results in
an approximate doubling in average bit rate. For most videos
produced for strictly visual purposes, typically CRF values
are set in a range between 18 and 28. The implementations
of CRF in x264 and x265 are similar but not identical. For
completeness and anticipating effects on iPPG related signals
prior to degredations in visual quality, we varied CRF in the
range: {1, 3, 6, 9, 12, 15, 18, 24, 30, 36, 42, 48, 51} for
both codecs and compare with uncompressed (raw) videos.

V. RECOVERY OF THE BLOOD VOLUME PULSE
The BVP signal was recovered from the video sequences

using a blind source separation approach. A whole-frame,
spatial average of the color channel pixel values in each
frame was calculated to form time-varying observation signals.
The resulting signals, r1(t), g1(t), b1(t).., r5(t), g5(t), b5(t),
represent the amplitudes of the recorded RGB signals from
the five cameras at time point, t.

For the analysis, the 5-minute videos were broken into five,
one-minute sections. The observations were detrended using
a smoothness priors approach (λ=1000) [31]. Independent
component analysis (ICA), a blind source separation tech-
nique, was used to recover a set of three source signals from
the observations by maximizing the non-gaussianity of the
signals. The JADE ICA implementation was used [32].

The resulting source signals were filtered using a bandpass
filter with low and high frequency cut-offs at 0.75 Hz (45
BPM) and 3 Hz (180 BPM) respectively. The dominant
iPPG signal was selected from the set of source signals
based on the concentration of power in the frequency domain
using the method proposed in [33]. The resulting signal was
used as the BVP estimate. Figure 3 shows a summary of
our approach. Figure 4 shows some qualitative examples of
the recovered BVP waves using different CRFs. It is clear
how the BVP wave becomes considerably degraded with
greater compression. Pulse rate variability estimates on the
compressed videos would be much less accurate due to the
absence of clear peaks.

VI. RESULTS AND DISCUSSION
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x264 (blue) and x265 (red) codecs and the two tasks, stationary (left) and random motion (right), are shown.



To assess the impact of video compression on the perfor-
mance of the iPPG measurements, we calculate the absolute
error in pulse rate compared with measurement from the ECG
signal and the signal-to-noise ratio (SNR) in the recovered
blood volume pulse signal. The pulse rate error and SNR
were calculated for each one-minute non-overlapping window
from each session (excluding the first and last 15 seconds of
the session) for total of 125 minutes per task.

The pulse rate was calculated as 60/IBI , where IBI is the
mean of the inter-beat intervals. The SNR is calculated using
the method described by de Haan and Jeanne [17], where
the ratio of power within a template that includes the contact
sensor heart rate frequency and the first harmonic frequency
is divided by the power outside of the template region (from
0 to 240 BPM). This is represented in Figure 3.

Table I shows the numerical results for median SNR
and pulse rate error alongside the median bit rate for each
compression case. Figure 5 shows box plots of the BVP SNR
for the x264 (left) and x265 (right) compression algorithms.
In each plot we show the results for the stationary and random
motion tasks. For the uniform motion tasks, the SNR for the
raw video measurements was lower than for the contact BVP
measurements but the recovered waveform was still very
good. The median pulse rate error was 0.57 (contact sensor)
and 1.78 (raw images). As expected, increasing the CRF
steadily reduces the SNR of the resulting PPG measurement.
Above a CRF of 30, the SNR does not continue to decrease,
suggesting that the signal has been degraded sufficiently that
there is little physiological information remaining. This result
is also reflected in the pulse rate error that is consistently
around 10 BPM for CRF values below 30.

Figure 6 shows the trade-off between video bit rate and the
PPG SNR. Again, we show the results for the x264 (blue line)
and x265 (red line) compression algorithms and the stationary
(left) and random motion (right) tasks. Compression allows the
video bit rate to be reduced significantly. Videos compressed
at a CRF of 6 have a bit rate 100 times smaller than the raw
video. However, results clearly illustrate that at CRF values of
30 or above, the signal is severely reduced. This is worsened
in the presence of additional noise sources such as large head
movements. Video encoding is computationally intensive, but
may be performed more quickly and efficiently directly on
hardware. In many cases, constraints on bandwidth and/or
storage space will dictate whether compression is required,
in which case the reduction in signal will be accepted.

We also plot the relationship between the video quality (as
measured by the PSNR-HVS-M metric) and the BVP signal-
to-noise ratio. Figure 7 displays these results. The two values
are not highly correlated and the results provide evidence that
the degradation of the BVP signal begins before there are
deteriorations in image quality. Once image quality begins to
decrease rapidly (CRF > 36) the BVP signal has moreorless
been lost. In this case, BVP SNR is a preferred metric to
those assessing video quality.

It may also be worth considering that, when compressing
videos, it is often preferred to reduce the bit rate by down-
sampling the video resolution prior to encoding rather than

relying solely on significant amounts of lossy compression.
Visual artifacts related to upscaling the video after decoding
are perceived less harshly than strong compression artifacts.
Regarding videos collected for iPPG, a similar strategy may
be beneficial. Previously it was shown that large reductions of
either video resolution or frame rate did not strongly impact
iPPG pulse rate measurements [9]. A balanced approach
may yield better results than relying on one method alone to
reduce the video bit rate to acceptable levels.

VII. CONCLUSIONS

Remote physiological measurement, in particular imaging
photoplethysmography (iPPG), has received a lot of attention
in recent years due to the great potential of low-cost
measurement of vital signs. Compression methods enable
reduced video bit-rates whilst preserving visual content.
This enables web streaming and other bandwidth limited
applications; however, compression algorithms were not
designed with iPPG in mind. We performed a systematic
analysis of compression methods and parameters to evaluate
the impact on remote physiological measurement.

We tested popular compression methods (x264 and x265)
and varied the constant rate factor to obtain a range of average
bit rates and video qualities. Our results suggest a considerable
drop in SNR between raw and compressed videos (even
before visual quality becomes noticeably degraded). As the
compression constant rate factor is increased, the bit rate
and SNR drop linearly. Videos with a bit rate of 10Mb/s
still retained a BVP with reasonable SNR and the pulse rate
estimation error was 2.17 BPM. The results suggest the x265
compression method may be more effective than x264 on
videos featuring greater motion.

REFERENCES

[1] J. Allen, “Photoplethysmography and its application in clinical phys-
iological measurement,” Physiological measurement, vol. 28, no. 3,
p. R1, 2007.

[2] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmo-
graphic imaging using ambient light,” Optics express, vol. 16, no. 26,
pp. 21 434–21 445, 2008.

[3] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated
cardiac pulse measurements using video imaging and blind source
separation,” Optics Express, vol. 18, no. 10, pp. 10 762–10 774, 2010.

[4] ——, “Advancements in noncontact, multiparameter physiological
measurements using a webcam,” IEEE Transactions on Biomedical
Engineering, vol. 58, no. 1, pp. 7–11, 2011.

[5] A. R. Guazzi, M. Villarroel, J. Jorge, J. Daly, M. C. Frise, P. A.
Robbins, and L. Tarassenko, “Non-contact measurement of oxygen
saturation with an rgb camera,” Biomedical optics express, vol. 6, no. 9,
pp. 3320–3338, 2015.

[6] D. Shao, Y. Yang, C. Liu, F. Tsow, H. Yu, and N. Tao, “Noncontact
monitoring breathing pattern, exhalation flow rate and pulse transit
time.” IEEE Transactions on Biomedical Engineering, vol. 61, no. 11,
p. 2760, 2014.

[7] D. J. McDuff, J. R. Estepp, A. M. Piasecki, and E. B. Blackford, “A
survey of remote optical photoplethysmographic imaging methods,” in
2015 37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). IEEE, 2015, pp. 6398–6404.

[8] Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and
S. Hu, “Use of ambient light in remote photoplethysmographic systems:
comparison between a high-performance camera and a low-cost
webcam,” Journal of biomedical optics, vol. 17, no. 3, pp. 0 370 051–
03 700 510, 2012.



[9] E. Blackford and J. Estepp, “Effects of frame rate and image
resolution on pulse rate measured using multiple camera imaging
photoplethysmography,” in SPIE Medical Imaging. International
Society for Optics and Photonics, 2015, pp. 94 172D–94 172D.

[10] G. Cennini, J. Arguel, K. Akşit, and A. van Leest, “Heart rate
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