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ABSTRACT
We contribute a method to automate parameter configurations
for chart layouts by learning from human preferences. Existing
charting tools usually determine the layout parameters using pre-
defined heuristics, producing sub-optimal layouts. People can re-
peatedly adjust multiple parameters (e.g., chart size, gap) to achieve
visually appealing layouts. However, this trial-and-error process is
unsystematic and time-consuming, without a guarantee of improve-
ment. To address this issue, we develop Layout Quality Quantifier
(LQ2), a machine learning model that learns to score chart lay-
outs from paired crowdsourcing data. Combined with optimization
techniques, LQ2 recommends layout parameters that improve the
charts’ layout quality. We apply LQ2 on bar charts and conduct
user studies to evaluate its effectiveness by examining the quality
of layouts it produces. Results show that LQ2 can generate more
visually appealing layouts than both laypeople and baselines. This
work demonstrates the feasibility and usages of quantifying human
preferences and aesthetics for chart layouts.

CCS CONCEPTS
• Human-centered computing → Visualization design and
evaluation methods; Visualization toolkits.
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1 INTRODUCTION
Data visualizations have been ubiquitous in everyday life, such as
social media, magazines, and websites. They are widely used by
the general public to express complex data in an intuitive, concise,
and visually appealing manner. However, creating effective and
elegant visualizations is a challenging task even for professions [52].
Individuals usually need to engage in a time-consuming process to
craft designs that clearly convey information and insights, while
satisfying the aesthetic goals. As such, there have been huge efforts
from both industry and research communities to aid the design
process by automated approaches.

Existing approaches have predominantly focused on studying
and optimizing performance metrics for data analytics concerning
usability and utility. For example, commercial software such as Ex-
cel automatically recommends chart types based on selected data.
Besides, much recent research proposes automated visualization
systems that retain data integrity [28], highlight interesting data
facts [37], and recommend effective visual encodings [14, 29, 47].
Nevertheless, those systems utilize pre-defined heuristics to gen-
erate visual styles, which could be sub-optimal (Figure 1). This
paradigm results in a quasi-automated process where individuals
need to manually adjust the visual style of the automatically gener-
ated charts (e.g., [63, 70]). However, performingmanual adjustments
can be unsystematic and difficult, especially for lay users without
design backgrounds [73]. Users might be unaware of guidance or
find it tedious to adjust multiple parameters simultaneously. To
address this problem, we aim to propose a systematic data-driven
approach that recommends parameter configurations by learning
from crowdsourcing human preference data. Particularly, we study
layouts because it is a fundamental element of chart design [61].
We focus on bar charts which are one of the most common chart
types [2].

Despite the increasing acknowledgement of the importance of
visual styles in charts [9, 24, 33, 46, 54], little work has attempted to
understand and quantify layout qualities through large-scale user
studies. Research in graphical design has provided various layout
metrics such as alignment and segmentation [49], but they are not
readily applicable to charts that are data-driven and yield different
visual perception [7, 66]. There is a lack of empirical studies to
understand metrics for chart layouts. This is challenging due to
the subjective nature of layout qualities, which requires a large
number of participants to score charts. The scores, however, might

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Visualization tools such asMicrosoft Excel utilize a
default heuristic to generate layouts: (A) the chart with five
bars; (B) increasing the number of bars results into a chart
with the same size but different bandwidths. Those layouts
have room for improvements through manual refinement.

not be precise since participants might be hesitant and feel difficult
to give an accurate score [55, 64]. Besides, the scoring scales can
be inconsistent among participants [21]. Those limitations con-
strain the reliability of utilizing the scores as benchmarks for ma-
chine learning models. To that end, our approach is inspired by the
successful applications of pair-wise ranking for assessing natural
image qualities [35]. We propose a two-alternative forced-choice
experiment [17], asking participants to select a better chart layout
between two candidates. This data acquisition method allows us to
obtain more precise and consistent results [6, 55].

We propose a novel approach, called Layout Quality Quantifier
(LQ2), for learning to score and rank the chart layout configurations
from human preference through crowdsourced pair-comparison
experiments. LQ2 utilizes neural networks to predict the score of an
individual chart by taking comparison pairs as training data. LQ2

predicts the pair-wise ranking with the accuracy of 78%, showing
that it could reasonably learn human preference for layout configu-
rations. We further interpret the trained model by investigating the
impact of layout parameters on human preference, thereby summa-
rizing rule-of-thumb for layout configurations in bar charts. Finally,
quantitative user studies demonstrate that LQ2 could recommend
more visually appealing layouts than manual results by laypeople
and default styles in Excel and Vega-Lite [57]. Overall, our work
demonstrates the possibility of quantifying human aesthetics for
charts. We open source all our code and experimental material1. In
summary, our contributions are as follows:

• Anovel approach for quantifying human preference for chart
layouts through crowdsourced paired comparison

• A machine-learning method, LQ2, for ranking and scoring
layout configurations in bar charts

• A set of qualitative and quantitative evaluations as well as
two user studies that demonstrate the effectiveness and use-
fulness of LQ2

2 RELATEDWORK
Our work is related to aesthetics for visualizations, automated
visualization designs, as well as data collection and training for
visualization research.

1https://github.com/shellywhen/LQ2

2.1 Aesthetics for Visualizations
In a broader sense, our work is related to the aesthetic qualities
of data visualizations. In the book Information is Beautiful, Mc-
Candless [45] lists aesthetics as one of the four criteria for a good
visualization. However, aesthetics were traditionally considered as
an add-on feature that was typically implemented at the very end of
the design process. Already 13 years ago, Cawthon and Moere [9]
argued for increased recognition for visualization aesthetics, by
demonstrating the relationships between aesthetics and usability in
data visualizations. Since then, many empirical studies have shown
that the aesthetics of data visualizations could contribute to various
factors such as first impressions [24], memorability [5], emotional
engagement [33], and task performances [54].

Nevertheless, little work has studied what makes a data visu-
alization visually appealing. Moere et al. [46] demonstrated that
the visual styles could lead to different comments regarding aes-
thetics. Quispel et al. [53] found that laypeople were attracted to
designs they perceived as familiar and easy to use. However, they
investigate aesthetics as a qualitative reflection of personal judg-
ment rather than a quantifiable and comparable entity. Human
preferences for aesthetics in the context of charts are still not me-
thodically quantifiable from a data-driven perspective, and seem
underrepresented in large-scale empirical studies. We address this
gap by proposing a systematic machine learning approach for rank-
ing and scoring layout qualities from crowdsourcing experiment
data. Besides, we propose our approach for interpreting the trained
model, whereby summarizing speculative hypotheses that warrant
future empirical research to confirm.

2.2 Automated Visualization Design
Recently, there have been growing interests in applying machine
learning methods for automated visualization designs. Researchers
have proposed many systems [14, 29, 44, 47] that recommend vi-
sualizations based on data structures and characteristics. Those
systems focus on deciding the effective chart type, visual encoding,
and data transformation. In addition to effectiveness, much research
has been devoted to optimizing visualizations from other aspects.
For example, VisuaLint [28] addresses the data integrity by surfac-
ing chart construction errors such as truncated axes. DataShot [70]
and Calliope [59] focus on generating visualizations with inter-
esting data-related facts from tabular data. Dziban [41] attempts
to balance automated suggestions with user intent by preserving
similarities with anchored visualizations. Different from them, our
work studies to improve the aesthetic quality of chart layouts.

Researchers have also recently proposed many approaches for
improving the visualization layout. Several work automatically
extracts reusable layout templates from visualizations [11, 12] and
infographics [43]. Nevertheless, they do not propose metrics for
extracted layouts. Other systems optimize the layout according
to various metrics such as mobile-friendliness [71], similarities
with user-input layouts [63] and graph features [23, 69]. However,
their metrics are not derived from empirical studies and therefore
might not reflect the overall perceived quality [3]. Therefore, our
work studies how to quantify and optimize layout qualities from
crowdsourcing experiments.

https://github.com/shellywhen/LQ2
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Figure 2: The layout parameters in Experiment 1 and 2. The table displays the sampled values of each parameter. Experiment 1
concerns 3 parameters with 1,575 possible combinations, while Experiment 2 includes 6 parameters with 87,360 combinations.

2.3 Data Collection and Training for
Visualization Research

Recent years have witnessed a growing recognition of data collec-
tion to facilitate research in machine learning for visualizations.
Many efforts have been made to collect real datasets of charts from
websites [2, 29, 50] and scientific literature [10, 39]. Those datasets
include annotations or original data as ground-truth labels and
assume that those charts share the same quality. Therefore, another
line of research conducts crowdsourcing user studies to obtain qual-
ity metrics such as task completion time and accuracy [56] as well
as attentions [34], which can be measured objectively by devices.
However, it is much more challenging to generate a reliable dataset
for subjective metrics, as participants might not share a reliable and
consistent scoring scale [21, 55, 64]. To that end, Saket et al. [56]
extended their experiment by asking participants to rank five dif-
ferent visualization types in the order of preference and found a
positive correlation between user preference and task accuracy.
However, the collected data is for statistical analysis instead of
machine learning tasks.

To generate dataset for machine learning, Luo et al. [44] pro-
poses a pair-wise comparison approach, i.e., to ask participants to
choose which chart is better from two candidates, which yields
more precise results. They subsequently compute the overall order
from pair-wise comparison, and choose the top-ranked ones as
training data. However, their approach is limited for two reasons.
First, it is inefficient as they only obtained 2,520/30,892 good/bad
charts after 285,236 comparisons. Second, they formulate the prob-
lem as a classification task, neglecting the subtle differences among
charts. To that end, we propose LQ2 which predicts a numerical
score of a single chart through regression neural networks, while
directly taking paired comparisons as the training input. LQ2 is
built on similar learning frameworks for image assessment [68],
but integrates a parameter module and two sampling strategies to
learn the visualization-specified features.

3 OVERVIEW
Data visualizations represent data with graphical elements accord-
ing to visual specifications. Specifications can be classified into
two types: visual encodings that map data to visual properties (e.g.,
color, position, size) of graphical elements, and visual styles that
specify the remaining visual properties irrespective of data (e.g.,
label rotation, bar bandwidth). Our work aims to automate the
parameter configurations for the latter, i.e., visual styles, which
are largely neglected in existing automated charting tools. Con-
cretely, we focus on the layout properties in bar charts, since this
is one of the first work that attempts to rank and recommend pa-
rameter specifications of visual styles leveraging machine-learning
approaches. In this section, we describe our experiments, the design
considerations, and the problem formulation.

3.1 Experiments
Different from visual encodings that are typically described as
discrete mappings, visual styles usually have greater cardinality and
continuous values that increase their complexity. To keep this study
complexity manageable, we select two concrete yet underexplored
experiments (Figure 2).

Our first experiment considers three basic layout-related param-
eters, i.e., the number of bars, the aspect ratio of the chart, and
the bandwidth. This is because we observe that existing charting
tools determine those values by predefined heuristics. For instance,
Microsoft Excel fixes the aspect ratio and computes the bandwidth
according to the number of bars (Figure 1). In this paper, we argue
and demonstrate that such default heuristics could result in sub-
optimal layouts. Individuals, therefore, need to repeatedly adjust
several parameters to achieve visually appealing layouts. However,
such manual adjustments are unsystematic and time-consuming,
without a guarantee of improvement. Therefore, we study how to
automatically configure those parameters by learning from human
preferences.
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Figure 3: The data collection process in an iterative manner: (A) Generating paired charts with same data and different layout
parameters; (B) Labelling the training data through crowdsourcing experiments; (C) Training the scoringmodels; (D) Utilizing
two offline adaptive sampling strategies to increase the representativeness of the training dataset.

The second experiment is extended with another three parame-
ters, namely, the chart’s orientation, the max length and rotation
degree of axis tick labels. This experiment is motivated by the prac-
tical needs for responsive visualization design, i.e., how to adjust
the chart layout to fit into different sizes. This is a challenging task
since chart creators need to manually examine and edit layouts for
multiple chart sizes [27]. Therefore, we add those three parameters
that are often subject to adjustments in responsive visualization
designs. This experiment extends existing automated responsive
visualization approaches [71] by considering the aspect ratio and
allowing rotating chart orientations.

3.2 Design Consideration
The problems above can be summarized as optimization problems,
i.e., to find values of visual styles that maximize the layout quality.
To guide the design of our solution, we summarize two primary
considerations:

C1: To quantify and score layout qualities. One of the primary
challenges in optimization problems is to define the objective func-
tion. Hence, our primary goal is to learn a loss function that maps
values of layout parameters onto a numerical score intuitively repre-
senting the layout qualities. This loss function can be subsequently
used for mathematical optimization.

C2: To learn the overall quality from human feedback. Since judg-
ments of layout qualities involve a wide range of factors, previous
work in graphic designs [40, 49] usually utilizes human-crafted
metrics (e.g., symmetry) to measure layout qualities. Their meth-
ods face challenges in the context of data visualizations since few
human-crafted metrics are available for chart layouts. Besides, it
is difficult to weigh different metrics to reflect the overall quality
perceived by users. Therefore, we aim to measure the overall quality
by learning from human feedback, and conduct post hoc analysis
to summarize rule-of-thumb from the trained model.

3.3 Problem Abstraction and Formulation
Guided by the design considerations, our main task is to develop a
machine-learning model that learns to predict a layout quality score

of the given parameters from human feedback data. We formulate
this task as a learning-to-rank problem [42], which purposes to
acquire a global ranking from partial orders. The ground truth of
partial orders is harvested from experimental data on human pref-
erence. Specifically, we conduct a paired comparison experiment,
asking participants to choose their preferred layout from two can-
didates. The results from paired comparisons contain partial orders,
which constitute the training data.

4 DATA COLLECTION
We describe our process of constructing the training dataset con-
taining ranked pairs of chart layout configurations. As shown in
Figure 3, the process is iterative and contains four steps. In this
section, we describe the step A, B, and D in Figure 3 in detail. Step
C will be introduced in section 5.

4.1 Generating Comparison Pairs
Our first step is to create paired charts for crowdsourcing compari-
son. We decide to synthesize charts since it is difficult to harvest
real-world chart pairs that are fairly comparable, that is, they are
controlled to represent the same data. Charts are created using
Vega-Lite [58], which allows specifying the aforementioned pa-
rameters in a declarative manner. For each pair, we choose data
from two popular real-world datasets, namely the Car dataset2 and
the Baseball dataset3, and randomly select entries according to the
number of bars. In Experiment 1, we replace the tick labels with
meaningless two-character tokens. In Experiment 2, the tick labels
are truncated according to the parameter of label lengths.

The remaining parameters are generated with different values
within a chart pair, including the aspect ratio, chart orientation,
bandwidth, and rotation of axis labels. It is expensive to conduct
controlled experiments for each parameter, since those parameters
may not be interdependent. Therefore, we choose to randomize
all parameters, intuitively intending to obtain a wide variety of
chart configurations. However, exhaustive enumeration of possible

2https://vega.github.io/vega-datasets/data/cars.json
3https://github.com/vincentarelbundock/Rdatasets/blob/
e38552ac3cb40a532941b09d7332b03d19409919/doc/plyr/baseball.html

https://vega.github.io/vega-datasets/data/cars.json
https://github.com/vincentarelbundock/Rdatasets/blob/e38552ac3cb40a532941b09d7332b03d19409919/doc/plyr/baseball.html
https://github.com/vincentarelbundock/Rdatasets/blob/e38552ac3cb40a532941b09d7332b03d19409919/doc/plyr/baseball.html


Learning to Automate Chart Layout Configurations Using Crowdsourced Paired Comparison CHI ’21, May 08–13, 2021, Online Virtual

values and combinations of parameters is infeasible due to their
continuous distributions. Thus, we decide to randomly sample from
uniform distributed values (e.g., the bandwidths range from 0.1 to
1.0 with a step of 0.15). We choose a relatively large step in order
to make the differences notable. While parameters are sampled
randomly, we make the sampled values evenly distributed to avoid
the data imbalance problem.

Figure 2 shows the sample values and the possible combinations
of parameter values in our experiments. We update the sampling
values in Experiment 2 according to our findings in Experiment 1.
For instance, we truncate the maximal aspect ratio to 2, since we
observe that larger aspect ratios are less favored. It should be noted
that the resulting design space is still considerably large that poses
challenges in solving the optimization problem.

4.2 Obtaining Ground Truth
We harvest ground truths of ranked pairs of charts through a two-
step process.

Desk Reject. First, we “desk reject” charts that violate a set of
predefined rules and label them as negative in a pair. We discard
a chart pair if both charts violate rules. Specifically, two rules are
included in Experiment 2: the axis labels should not overlap with
each other, and the axis label should not rotate in a horizontal bar
chart. This approach allows us to train an ML model that learns
human-crafted rules during the training time and therefore better
reflect the overall quality. An alternative approach in visualization
recommendation systems is to utilize rules as hard constraints in
the optimization phase [47], which, however, poses challenges in
solving the optimization problem with the increasing number of
rules. This might be undesirable since it could prolong the execution
time and therefore degrade the usability.
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Which of the following layout do you prefer (in terms of aesthetics)?

Top Bottom

Figure 4: Illustration of the MTurk interface for crowd-
sourcing experiments: we propose a two-alternative forced-
choice design that makes it easier for participants to evalu-
ate the relative quality of paired charts than scoring a single
chart.

Crowdsouring Experiments. Second, we conduct crowdsourcing
experiments on Amazon Mechanical Turk (MTurk) to obtain experi-
mental data from human preference. Figure 4 illustrates the settings
of the MTurk experiment. We propose a two-alternative forced-
choice (2AFC) experiment, asking participants to choose “which of
the following two layouts do you prefer, in terms of aesthetics?”.
Two charts are placed vertically within a viewport since it is easy
to compare by moving eyes between side-by-side views [48]. We
choose a forced-choice method in an attempt to capture the subtle
differences [75]. Each MTurk HIT consists of 10 comparison tasks,
and each task (paired comparison) is assigned to 3 participants. For
quality control, we randomly duplicate one comparison task within
a HIT and swap the order of paired charts. We keep HITs where
participants offer consistent answers for duplicated tasks.

We measure the inter-observer reliability by the joint probability
of agreement. It is observed that three participants make the same
choices in 45.6% of pairs for two experiments. This observation
probability is much higher than that of the agreement by chance,
i.e., 25%, showing that human preference exhibits a fair degree of
agreement on layout qualities. This fair agreement can have several
reasons. First, the differences between the two charts in a pair
might be small and therefore cause uncertainties, since the layout
parameters are generated randomly. Second, individual participants
have different preferences. Third, it might be because of the noises
of MTurk experiments.

We select paired comparisons with full agreements among partic-
ipants as the training data to reduce noises [75]. Each pair consists
of two charts, denoted ⟨I+,I−⟩, where I+ is preferred over I−.

4.3 Adaptive Sampling
It is crucial to employ an effective pair sampling strategy to select
the most important pairs for rank learning [68]. Our uniform sam-
pling and random pairing strategy in subsection 4.1 is sub-optimal,
since we are interested in finding the most “optimal” chart con-
figurations. Therefore, we propose two offline adaptive sampling
strategies to improve the qualities and representativeness of the
comparison pairs. The term “offline” here is referred in the context
of machine learning, that is, we re-sample comparison pairs when
the initial training phase has finished.

Importance-based Sampling. We are interested in finding impor-
tant pairs that allow us to determine the “best” chart configurations.
Therefore, we borrow the idea of elimination tournaments, intu-
itively conducting a second round of comparisons among previous
winners. However, this is not readily applicable since our sample
size is much smaller than the huge number of possible parame-
ter combinations. Thus, we propose an important-based sampling
scheme, which intends to increases the probability of sampling
important charts with “good” parameter values.

Suppose each chartI is configured by a set of parameters 𝑝𝑖 ∈ P,
where the possible values of 𝑝𝑖 are 𝑣

𝑗
𝑖
∈ V𝑖 . Let 𝑤

𝑗
𝑖
denote that

number of times that the chart I whose configuration contains
𝑣
𝑗
𝑖
has won in paired comparisons in Figure 3(B). We update the

probability of sampling the value:

𝑃 (𝑣 𝑗
𝑖
) =

min {𝑤 𝑗
𝑖
,𝑇 }∑

𝑗 min {𝑤 𝑗
𝑖
,𝑇 }

, (1)
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where 𝑇 is a parameter responding the exploration-exploitation
trade-off by avoiding empty probabilities.

Gradient-based Sampling. Having a large step size in uniformly
sampling might cause the model to overlook a maximal. To address
this problem, we use a gradient-based sampling method to sample
important parameter values with a smaller step size. As gradients
are computed on a differentiable function, we refer to our scoring
model trained in Figure 3(C). This scoring model learns a regression
function 𝑓 (·) that maps the parameter vector 𝑝 = {𝑝1, 𝑝2 ..., 𝑝𝑖 } to a
numerical score. We compute the locations where the gradient of 𝑓
along with 𝑝 , ∇𝑓 (𝑝), is smaller than a given threshold. We sample
parameter values within those locations with a smaller step-size,
i.e., 1/3 of the original step-size.

In both experiments, we conduct each of the following adaptive
sampling strategies once, and merge the resulting dataset. This
procedure results in 1,177 pairs in Experiment 1 and 1,333 pairs
in Experiment 2. Overall, our data collection process involves 416
unique MTurk participants.

5 METHOD
With the obtained pairs D = {⟨I+,I−⟩}, LQ2 aims to quantify
the aesthetic scores of a given chart. Specifically, we formulate the
problem as a regression problem, that is, to output a numerical score
S for an input chart I. Our goal is to learn a regression function
𝑓 (·) that predicts a higher score for the preferred chart in a pair:

S+ > S−,∀⟨I+,I−⟩ ∈ D (2)

where S = 𝑓 (I).

Model Architecture. LQ2 adopts a Siamese neural network struc-
ture, i.e., to work in tandem on two different inputs with the same
weights to compute comparable output [13]. As shown in Figure 5,
it consists of two identical scoring networks, and the loss func-
tion is defined on the combined output of scoring networks. The
scoring network takes the parameter values as input and outputs
a numerical score. We employ fully-connected neural networks
(NN), which have proven effective in handling features describing
design choices (i.e., parameters) in VizML [29]. Our NN contains 6
hidden layers, each consisting of different numbers of neurons with
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Figure 5: LQ2 utilizes a Siamese neural network structure to
work in tandem on a pair to compute comparable output.

ReLU activation functions and dropout layers. We perform min-
max normalization on the parameter values so that each parameter
contributes approximately proportionately to the results.

We also tried to take the graphical features (i.e., images) as the
training input with off-the-shelf Convolutional Neural Networks
(CNNs) models. However, this method did not bring about remark-
able performances despite the expensive training time. Our find-
ings conform to earlier work [20, 22] that CNNs might not readily
capture human perception in visualizations. Thus, we utilize the
parameter as the input, which serves as a compact and learning
representation that reduces the computational costs.

Loss Function. We adopt the Pairwise Ranking Loss as the loss
function, which explicitly exploits relative rankings of chart pairs [35]:

L(S+,S−) =𝑚𝑎𝑥 (0,S+ − S− +𝑚), (3)

where𝑚 is a specified margin hyper-parameter. This loss imposes
a ranking constraint by penalizing mistakes for assigning a lower
score to the preferred chart.

Implementation and Training. We implement LQ2 with Pytorch.
During training, we split the data by a ratio of 8:2 with the purpose
of training and validation. We tune several hyper-parameters by
diagnosing the learning curves so that the plots of training and
validation data converge to a good point of stability and have a
small gap. The model is trained with the Adadelta optimizer for 200
epochs. The learning rate is 1, and subsequently is reduced by half
per 30 epochs. We found that only the margin hyper-parameter𝑚
had a significant impact on the training performance, while weight
decay, optimizer, and dropouts had small effects.

6 EXPERIMENT
To evaluate the effectiveness of our method, we conduct experi-
ments with baseline approaches and perform qualitative analyses
with the trained scoring network across different layout parameters.

6.1 Performance
We compare the performance of our model with several baseline
approaches. For experiment reproducibility, we adapt aMonte Carlo
Cross-Validation strategy [72], that is, to randomly split the data
into training data and testing data with an 80-20 ratio, run the
experiment, and repeat the above process ten times.

Model Baseline. Our problem is formed as a learning-to-rank
problem. Therefore, we consider the Ranking Support Vector Ma-
chine (RankSVM) [31] as the baseline approach, which is a well-
established method for computing the overall ranking based on
pairwise preference. Similar to Draco [47], we use a linear SVM
model with hinge loss.

Scoring Baseline. We also compare our learned scoring network
with existing human-crafted metrics for layout qualities in graphi-
cal design [49]. We select four metrics that are mostly applicable
to the context of charts, including White Space, Scale, Unity,
and Balance. Those metrics are implemented according to instruc-
tions in the supplemental material. We discard Alignments and
Overlapping whose value does not vary among our charts. Besides,
Emphasis and Flow are not considered since they are mainly con-
cerned with key text or graphics, which are not well defined in
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Table 1: Comparison of the performances between our method and baseline approaches in terms of the prediction accuracy
(%) via Monte-Carlo Cross-Validation for 10 runs with an 80-20 training-testing split ratio.

Ours RankSVM White Space Scale Unity Balance All
Exp. 1 (N = 1,177) 76.60 70.83 57.28 56.26 52.00 56.08 60.81
Exp. 2 (N = 1,333) 78.27 64.48 58.24 61.72 56.21 63.18 68.73

Table 2: The Pearson correlation between predicted scores and each layout parameter in Experiment 1 and 2.

Number of Bars Aspect Ratio Bandwidth Max Label Length Label Rotation Orientation
Exp. 1 -0.38 0.20 0.27 - - -
Exp. 2 -0.09 0.37 -0.05 -0.09 -0.43 0.04
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Figure 6: Visualizing the predicted scores with (A) a single parameter by box-plots and (B) multiple parameters by heat-maps.

charts. We also combine those metrics (All). Each metric consists of
several features, which are fed into RankSVM to learn their weights.

Result. Table 1 shows the results of the performances. In both
experiments, our model outperforms the baseline RankSVM ap-
proaches. In particular, RankSVM performs much poorer in Exper-
iment 2, showing that the relations between the impacts of each
parameter on predicted scores tend to be non-linear. All scoring
baselines cannot achieve desired performances, suggesting that
those hand-crafted features for layout qualities in graphic design
cannot be readily applicable to charts.

6.2 Interpreting Models
To understand the impact of layout parameters on the perceived
layout quality, we conduct the quantitative and qualitative analyses
with the trained scoring model. Those analyses help relate our work
with prior knowledge about chart layout designs, inform design
guidelines, and provide qualitative support for our methods. Specif-
ically, we calculate the predicted layout quality score of different
combinations of parameters.

We study the relationships between the predicted score and each
parameter by computing the correlations and visualizing distribu-
tions. Our findings are summarized in the following text. Those
findings should be interpreted carefully since they are derived from
the black-box ML models. Thus, they should not be considered as
guidelines, but instead speculative hypotheses that warrant future
empirical research to confirm.

6.2.1 Quantitative Parameter Analysis. Table 2 shows the Pearson
correlations between the predicted scores and each parameter. We
first note the negative impacts of the number of bars in both experi-
ments, showing that it is more challenging to find good layouts with
more bars. The aspect ratio contributes positively to the overall
score, suggest that landscape layouts might be superior to portraits.

The impacts of bandwidths differ between our two experiments.
Figure 6(A) visualizes the predicted scores versus bandwidths us-
ing box-plots. In Experiment 1, the average scores are relatively
higher when the bandwidth is between 0.6 and 0.95, with a subtle
peak at 0.8. However, in Experiment 2 where horizontal bar charts
are introduced, the “optimal” interval become between 0.5 to 0.85,
followed by a sharp drop after 0.9. Based on those observations, we
form hypotheses for future studies to confirm: first, as a rule-of-
thumb, the optimal bandwidth in vertical bar charts is 0.8; second,
the optimal bandwidth in horizontal bar charts is less than that
in vertical bar charts. Our second hypothesis conforms to existing
rule-of-thumb that suggests a bandwidth between 0.57 to 0.67 in
horizontal bar chart [19].

The label rotation has a moderate negative correlation (-0.43)
with the score. Figure 6(B) presents the combined effects of the
label rotation with other parameters on the predicted score. It is
observed that non-rotation (zero-degree) is acceptable when the
number of bars is small, when the aspect ratio is large, and when
axis labels are short. This is because axis labels are less likely to
overlap with each other under those conditions. Otherwise, the axis
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Figure 7: Heatmaps showing the predicted scores with different parameter combinations in Experiment 1. Our adaptive sam-
pling strategies allow us to obtain fine-tuned results.

labels need to rotate to avoid overlapping. In general, rotations by
45 degrees yield higher scores than rotations by 90 degrees.

We observe no correlation (0.04) between the orientation and
the scores, showing that both horizontal and vertical bar charts
have own advantages. As shown in Figure 6(B), vertical bar charts
achieve much fewer scores when the number of bars is large, when
the aspect ratio is small than 1, and when the length of axis labels
are large. On the other hand, the scores of horizontal bar charts
are less sensitive to the number of bars and the aspect ratio, while
horizontal charts seem strongly useful when axis labels are lengthy.

We also note that the score distributions are different between
two experiments (Figure 6(B)). The predicted scores in Experiment
1 vary between 0 to 0.39, while the range in Experiment 2 is 0.03
to 0.72. This might be due to the existence of comparison “dead-
locks” in Experiment 1, e.g., I1 > I2,I2 > I3,I3 > I1. This left
optimization constraints in Equation 3, i.e., S1 −S2 > 𝑚,S2 −S3 >

𝑚,S3 − S1 > 𝑚, without feasible solutions. In Experiment 1, we
observe 21 three-node, 23 four-node, 10 five-node, and 32 six-node
circles, and the value of𝑚 is 0.12.

6.2.2 Qualitative Ablation Analysis. We investigate the effective-
ness of adaptive sampling strategies by conducting ablation analysis.
Specifically, we train two models on the dataset before and after
the adaptive sampling process in Experiment 1, denoted BS and
AS. Two datasets are down-sampled to ensure the same data size.
Figure 7 presents two qualitative examples showing the learned
relationships between the predicted scores and different param-
eters. It is observed that the BS model yields a small region of
light colors (low scores) and a majority of dark colors (high scores).
That said, it learns to reject bad conditions but could not further
differentiate conditions scored “borderline and above”. On the con-
trary, the AS model is able to identify a small region of parameters
that yield higher scores, which accords with our goal to optimize
layout parameters. Besides, it identifies difficult conditions. For
instance, Figure 7(B) (right) suggests that the optimal aspect ratio
increases with the number of bars before it reaches 3. This implies
the difficulties in finding good layout parameters for charts with
an aspect ratio over 3, which are uncommon and less favored.

7 APPLICATION
To demonstrate the usefulness of LQ2, we present a novel appli-
cation, i.e., automatic optimization of layouts. Existing charting
tools typically generate layouts by predefined heuristics, which
requires tedious manual adjustments. It would therefore be use-
ful to automate this process by recommending layout parameters

that improve the quality. To that end, we propose an automatic
optimization approach and conduct two user studies.

7.1 Method
We present two user studies in line with our experiments. In User
Study 1, we propose a common real-world scenario - presentations,
where individuals usually wish to create charts to convey data in-
sights in an aesthetically pleasing manner. The task is to adjust
the aspect ratio and the bandwidth given the data. User Study 2
concerns adaptive visualization designs, where a maximal width is
posed as a hard constraint and the task is to adjust four parameters
including the aspect ratio, the bandwidth, the orientation, and the
label rotation. We create 50 and 80 design cases for two studies, re-
spectively, each case encoding randomly chosen data. We compare
our results (Ours) with those generated by laypeople (Human)
and default parameters (Default), and random values (Random).

Our Approach. Our optimization approach aims to find parame-
ter values that maximize the layout quality score predicted by LQ2.
For that purpose, we adopt a brute-force method that enumerates
combinations of values and selects the one with the highest pre-
dicted score. We choose brute-force methods since the maximal
enumeration size is 87,360 which computers could operate within
seconds. Advanced optimization techniques are desired to cope
with the expanding parameter space by avoiding enumeration [1].

Human Baseline. To obtain human baselines, we run an experi-
ment on MTurk. Participants are instructed to “adjust the parame-
ters until you are mostly satisfied with the layout” with a What You
See Is What You Get (WYSIWYG) editor implemented with Vega-
Lite. Akin to standard charting tools, participants are provided with
a slider and an input box for adjusting continuous values, and a
radio group for editing discrete parameters. We record their editing
history and the time used from the first editing to final submission.
Each participant is assigned to one and only one design task.

Default Baseline. In User Study 1, we choose Microsoft Excel as
the default baseline. In order to keep the comparison fair, we remove
components that do not exist under other conditions, which include
the chart title and y-axis gridlines. Besides, the bars are filled with
the default color of Vega-Lite. In User Study 2, we compare our
method against the Responsive Bar Chart feature in Vega-Lite4.

4https://vega.github.io/vega-lite/examples/bar_size_responsive.html

https://vega.github.io/vega-lite/examples/bar_size_responsive.html
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Figure 8: Results of the user study: (A) displays the results of group-wise comparison among four groups in terms of percent-
ages of favored votes. An “ns” denotes no statistical significance via Wilcoxon signed-rank tests; (B) presents two box-plots
visualizing the time used and the number of edits by laypeople in configuring the chart layout.

RandomBaseline. The random baseline takes randomparameters,
which are sampled from values observed in the training data to
make the comparison fair.

7.2 Evaluation and Results
We run another MTurk experiment, asking participants to compare
the results among the above four groups. Similar to the labeling pro-
cess, we conduct pair-wise comparisons between every two groups.
Each between-group comparison includes 50 paired charts in User
Study 1 and 80 in User Study 2. Each paired chart is evaluated in a
two-alternative force decision (2AFC) paradigm by 10 participants.
There is one duplicate pair out of per 10 for quality control.

Figure 8(A) summarizes the results of group-wise comparisons in
terms of the percentages of preferred votes in the 2AFC procedures.
In User Study 1 (US1), our method outperforms Human, Default,
and Random (𝑝 < 0.05, Wilcoxon signed-rank tests). It is also
noted that while Human has a higher preference than Default, the
difference is not statistically significant. Similarly, Default has a
small yet not significant superiority over Random. However, Human
performs significantly better than Random. This said, laypeople
could only achieve a relatively small improvement in the layout
quality, although they spent notable efforts, i.e., 49.7 seconds and
8.9 adjustments on average (Figure 8(B)).

In User Study 2 (US2), both Ours and Human outperform Default
and Random (𝑝 < 0.05), while Default and Random are evenly
matched. This shows while Vega-Lite enables automatic adaptive
visualization, the generated layouts are sub-optimal. Our method
only achieves compatible results with Human, which might due
to three reasons. First, participants have spent more efforts, i.e.,
70.4 seconds and 17.2 adjustments on average (Figure 8(B)). It is
therefore expected that participants could achieve better results.
Second, US2 presents a much more challenging task than US1, since
the total number of possible parameter combinations is 1,575 in US1
and 87,360 in US2 (Figure 2). However, the training data size is only
1,333 in US2, which is far from fully representing the whole design
space and therefore could not find the “optimal” solution all the time.
Still, our results are positive as our method has achieved human-
level performances by leveraging a small training data, showing
the effectiveness of our sampling strategies. Future work could

further extend our work by augmenting the training data. Finally,
our sample size (80) is relatively small, considering the variety of
the parameter space and the random nature in task generation. In
the future, we plan to conduct larger-scale user studies to better
understand the scalability.

In summary, our results show that the default heuristics for
generating layouts in existing charting tools could result in sub-
optimal results. To improve the layout quality, laypeople need to
engage in a time-consuming process to adjust the parameters over
and again. Our automatic approach could achieve at least human-
level performance via small-sample learning, while removing the
heavy costs of manual adjustments.

8 DISCUSSION AND CONCLUSION
We reflect on the implications and future work of our research.

8.1 Implication
Do not trust the defaults. Charting tools and libraries provide

default settings for user-configurable parameters. Default settings
are proven to introduce a default effect that people would blindly
trust and stick with them [15]. However, default settings are de-
signed to be reasonable under most cases, i.e., to prevent stupid
mistakes. Thus, they are just acceptable but not good for all. We
provide empirical evidence that the default layout parameters for
bar charts in Excel and Vega-Lite are sub-optimal, which can be
significantly improved by manual or automatic fine-tuning. Those
results support the needs of increasing recognition for utilizing
default values prudently.

Augmenting empirical studies with a machine learning approach.
Our experiments can be considered as empirical studies aiming to
identify the “best” combinations of variables. This is challenging
due to the vast design space, i.e., 87,360 possible combinations,
making exhaustive enumeration and controlled studies infeasible.
In response, we propose a ML approach that learns to rank the
combinations from small samples (1,333 pairs), yielding notable
results. More importantly, we formulate hypothesises of optimal
variables via interpreting the ML model. Future work could verify
those hypothesises by conducting controlled experiments.
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Quantifying visualizations with subjective metrics. Recent years
have witnessed a growing research interest in quantifying and
benchmarking visualizations for machine learning (e.g. [30, 56]).
Those work has predominately focused on objective metrics such
as accuracy and effectiveness. Subjective metrics, however, are
relatively neglected, while they are considered more challenging to
measure. Our work extends this line of research by benchmarking
charts with subjective metrics, i.e., human preference over layouts,
through crowdsourcing experiments. We describe our procedures
and strategies for quantifying subjective metrics, hoping to inform
future research to measure and improve visualizations from more
diverse perspectives, e.g., understandability [60].

Improving aesthetic qualities of visualizations from a data-driven
perspective. A good visualization consists of four necessary ele-
ments: information, story, goal, and beauty [45]. In a broader sense,
our work addresses the beauty, that is, the aesthetic quality. We
propose a data-driven method to learn human preference for lay-
outs, which outperforms hand-crafted layout metrics. Our results
demonstrate the promising research possibilities of understanding
and improving the aesthetic quality via data-driven machine learn-
ing approaches. This research direction is supported by real-life
practical needs, i.e., existing charting tools generate sub-optimal
results, while laypeople tend to rely on default values [15] or need
to engage in a time-consuming process to tune the results until
they are satisfied with the result (Figure 8(B)). These needs call for
an increasing recognition for understanding what makes a chart vi-
sually appealing and proposing more advanced automatic methods
for improving the aesthetic quality.

8.2 Critical Reflection
We assess the quality of charts by asking participants “which do
you prefer?”. Compared with scoring a single chart, this paired com-
parison method is easier for participants and yields more precise
and consistent results. As such, we see potentials of adopting it for
various purposes in visualization research. To better inform future
research, we discuss our critical reflections on this method.

Combating decision paralysis. Decision-makings are not always
easy, especially when the differences between two charts are small.
It could cause analysis paralysis where individuals overthink the sit-
uation that makes decision-making “paralyzed” [38]. Subsequently,
individuals tend to choose an arbitrary decision hesitantly [64]. As
shown in Figure 8(B), some participants spent much more efforts on
editing the parameters than the average, showing that they seemed
subject to analysis paralysis. To alleviate this problem, future re-
search should propose more effective sampling strategies that avoid
over-subtle differences between paired charts. Besides, we might
borrow the idea of agile methodologies in software engineering to
overcome the anti-pattern of decision paralysis [8]. One promising
approach in the context of empirical research is to set time limits
for viewing visualizations and making decisions (e.g., [24]).

“Evils” can attract. Psychological studies reveal the physical at-
tractiveness stereotype that people tend to assume “what is beau-
tiful is good” [16]. In the context of data visualizations, this is
exemplified by chartjunk [18, 65], where laypeople are attracted by

elements that are visually appealing but usually at the expense of ef-
fectiveness. This contributes to the paradigm in charting tools that
“compromise” with such human preference. For example, Google
Sheets supports 3D pie charts despite their criticism by the visu-
alization research community. Google Sheets also offers a Smooth
Line Chart that improves the aesthetics but compromises the in-
tegrity of the underlying numbers. Future research should be aware
of this trade-off when designing the experiment settings.

Incorporating crowdsourced opinions with expert knowledge. Vi-
sualization researchers have increasingly leveraged crowdsourc-
ing experiments for the sake of scalability and diversity. However,
crowdsourcing experiments face challenges such as reduced control
in the assessment of participants’ capability that might harm the
validity [4]. Besides, we observe disputes in crowdsourced opinions.
To that end, we envision that expert knowledge could help increase
validity, resolve disputes, and reduce costs. For instance, one might
select expert-generated charts as positive and randomly-generated
charts as negative in pair [51]. However, it is worthy noting that
expert judgement could clash with crowdsourced opinions that
warrants deeper investigation [36].

8.3 Limitation and Future Work
Balancing human preference and perceptional effectiveness. Our

work takes only the first step in improving the visual quality of
data visualizations via a data-driven approach that learns from
human preference. In particular, we study six layout parameters
in bar charts. We do not conduct comprehension experiments to
evaluate their effects on perceptional effectiveness, because the
effect size of layouts on perceptions is typically small in standard bar
charts [62, 74]. How to balance human preference and perceptional
effectiveness is a clear next step for future work. This is critical
because layouts have proven to impose more influences in some
other charts (e.g., [25, 26]). A key challenge here is that human
preference and perception should be measured conjunctively in
order to obtain the training data for machine learning approaches.

Moving towards an more adaptive approach. Although we pro-
pose two sampling strategies that enable learning from small data
sets (Small Sample Learning), our model in Experiment 2 only
achieves human-level performance. This presents a significant chal-
lenge as the size of the design space grows exponentially with
the increasing number of parameters. Future work should propose
advanced sampling approaches to improve effectiveness. Recent
research in online adaptive sampling [32] that automatically up-
dates the sampling strategy during training is a promising method
to address this problem. An interesting research problem would be
how to dynamically adjust the sampling probabilities during crowd-
sourcing experiments. Moreover, we see research opportunities in
leveraging the authoring provenance (e.g., the editing histories) to
augment the training data and develop a ML model that adaptive
recommends design suggestions based on the current configuration.

Understanding the representations and models for visualization
research. In a broader sense, it remains an open challenge to choose
the feature representations and machine learning models for visu-
alizations. Similar with Draco [47] and VizML [29], LQ2 is trained
on the parameter features that are compact and computationally
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inexpensive, which, however, might not generalize to unobserved
parameter values (e.g., more than 30 bars) and different chart types
or require labour-intensive feature engineering. Although graphi-
cal features (i.e., bitmaps) might embrace generalisability, recent
studies [20, 22] suggest that CNNs, the most commonmodel for ana-
lyzing visual imagery [67], seem not currently capable of processing
visualization images. This underscores the research needs to explore
advanced ML models, e.g., VAE [20]. Furthermore, LQ2 does not in-
clude the underlying data distributions and non-layout parameters
(e.g., colors) in the training representations, which could influence
the perceived aesthetic qualities. To that end, future research should
study how to choose and fuse multiple representations including
the underlying data, parameters, and graphics.

Debating “what is beautiful is good”. Finally, we propose a re-
search agenda towards more understanding of the roles of aesthetic
qualities in data visualizations. This is critical since nowadays more
and more people are able to create visualizations, so does their ex-
posure to the greater masses. This phenomenon contributes to the
increasingly popular pursuits of aesthetic qualities. We even see ex-
treme cases where aesthetic concerns play a more crucial role than
usability and even usefulness, e.g., the Smooth Line Chart. How
should the research community respond to this shifting boundary?
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