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ABSTRACT
With the rapid deployment of cloud platforms, high service reliabil-
ity is of critical importance. An industrial cloud platform contains a
huge number of disks, and disk failure is a common cause of service
unreliability. In recent years, many machine learning based disk fail-
ure prediction approaches have been proposed, and they can predict
disk failures based on disk status data before the failures actually
happen. In this way, proactive actions can be taken in advance to
improve service reliability. However, existing approaches treat each
disk individually and do not explore the influence of the neigh-
boring disks. In this paper, we propose Neighborhood-Temporal
Attention Model (NTAM), a novel deep learning based approach to
disk failure prediction. When predicting whether or not a disk will
fail in near future, NTAM is a novel approach that not only utilizes a
disk’s own status data, but also considers its neighbors’ status data.
Moreover, NTAM includes a novel attention-based temporal compo-
nent to capture the temporal nature of the disk status data. Besides,
we propose a data enhancement method, called Temporal Progres-
sive Sampling (TPS), to handle the extreme data imbalance issue.
We evaluate NTAM on a public dataset as well as two industrial
datasets collected from millions of disks in Microsoft Azure. Our
experimental results show that NTAM significantly outperforms
state-of-the-art competitors. Also, our empirical evaluations indi-
cate the effectiveness of the neighborhood-ware component and the
temporal component underlying NTAM as well as the effectiveness
of TPS. More encouragingly, we have successfully applied NTAM
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and TPS to Microsoft cloud platforms (including Microsoft Azure
and Microsoft 365) and obtained benefits in industrial practice.
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1 INTRODUCTION
In recent years, plenty of software systems have been migrated to
cloud platforms (such as Amazon Web Service, Microsoft Azure,
and Google Could Platform) and deployed as online services [2, 9,
10, 23, 24, 40]. As cloud platforms are required to serve customer
workloads on a 24/7 basis, high service reliability is extremely
critical [5, 17]. A typical industrial cloud platform like Microsoft
Azure uses a huge number of hard disk drives [44]. It has been found
that disk failure is one of the most frequently failing component
among IT equipment failures [3, 32] and has become one of the
most important factors that contribute to the service downtime [28,
30, 37]. Service downtime can adversely affect customer experience
and even cause huge financial loss [21, 26]. For example, it has been
found that every minute of downtime costs about $9,000 [12].

In order to minimize the impact caused by disk failures, over
the years many approaches [3, 11, 19, 35, 37, 42, 44, 46, 49, 50] have
been proposed to predict disk failures before they actually happen.
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These approaches predict disk failures mainly based on disks’ in-
ternal status data, which is also called SMART (Self-Monitoring,
Analysis, and Reporting Technology) data [1]. The SMART data
records important safety indicators at the lifetime of a disk, and
is hardware-level sensor data provided by firmware embedded in
disk drives [37]. Furthermore, a recent study [44] also found that
using system signals can empower the disk failure prediction task
to achieve better performance. The problem of disk failure predic-
tion is usually treated as a binary classification problem in machine
learning: given data about a disk, predict whether this disk will fail
or not in near future. If a disk is predicted to fail, proactive actions,
such as replacement of the disk and live migration [27], can then
be taken in time. The cloud platform can also transfer important
data from failure-prone disks to the healthy ones in advance. In
this way, the reliability of cloud platform could be improved.

In current practice, existing disk failure prediction approaches
treat each disk individually and only consider each disk’s own
status data. However, it is well recognized that, in large-scale cloud
platforms, a number of disks are installed in the same computing
server. For each disk in a server, all the other disks in the server
can be regarded as its neighbors. Since the computing environment
is shared among neighboring disks, they would have similar failure
patterns. Moreover, the neighboring disks would work together and
interact with each other when completing a variety of computation
and storage tasks on the server. As a result, the status data of
those neighboring disks placed in the same computing server is
strongly related, which can be utilized for improving the practical
performance of disk failure prediction.

Furthermore, in large-scale cloud platforms, it is apparent that
the number of healthy disks is much greater than that of the failed
ones, which causes the extreme data imbalance problem for disk
failure prediction. In order to mitigate this problem, existing ap-
proaches [3, 35] usually adopt under-sampling methods to select a
subset of healthy disks rather than using the whole set of healthy
disks in the training process. However, under-sampling methods
could drop some useful information about the healthy disks, which
would degrade the prediction performance in practice.

In this paper, we propose a novel deep learning based approach
for disk failure prediction, dubbed Neighborhood-Temporal At-
tention Model (NTAM). Our NTAM approach includes two new
components, i.e., the neighborhood-aware component and the tem-
poral component. Compared to existing approaches which only
use a disk’s own status data, the neighborhood-aware component
underlying NTAM also takes neighborhood information into con-
sideration, i.e., encoding the status data of that disk’s neighbors
by a soft attention mechanism [43]. Furthermore, in contrast to
existing approaches, NTAM can better capture the temporal infor-
mation through an attention-based component (i.e., the temporal
component).

In order to deal with the extreme data imbalance problem, we
also propose a general and effective method named Temporal Pro-
gressive Sampling (TPS). Our TPS method can be treated as a data
enhancement method, and is able to generate multiple failed sam-
ples for each failed disk. Compared to under-sampling methods
utilized by existing disk failure prediction approaches, the advan-
tage of TPS is that TPS not only retains all the characteristics of

healthy disks, but also brings more failure patterns. In this way, TPS
can help push forward the state of the art in disk failure prediction.

To evaluate the effectiveness of our proposed NTAM approach,
we conduct extensive experiments to compare NTAM against 10
state-of-the-art disk failure prediction approaches on two industrial
datasets; both industrial datasets include the status data of millions
of disks and are collected from Microsoft Azure, which serves huge
amount of customer workloads. The experimental results on both
industrial datasets present that NTAM significantly outperforms all
its competitors, which indicates that NTAM considerably advances
the state of the art in disk failure prediction. Further experiments
on a public dataset demonstrate the robustness of NTAM. More
encouragingly, NTAM and TPS have been successfully applied to
Microsoft cloud platforms (includingMicrosoft Azure andMicrosoft
365), and improved the reliability of Microsoft cloud platforms.

The main contributions of this paper are as follows:
First, we propose a neighborhood-temporal attention model

based approach dubbed NTAM, which is a novel approach for disk
failure prediction. Through the neighborhood-aware component,
our proposedNTAM approach utilizes not only the disk’s own status
data, but also considers the status data of its neighbors. Extensive
experiments on industrial datasets show that NTAM considerably
advances the state of the art in disk failure prediction.

Second, besides the neighborhood-aware component,NTAM also
incorporates a novel temporal component to capture the temporal
nature of the disk status data. Our extensive empirical evaluations
present that the temporal component underlying NTAM performs
much better than existing LSTM and temporal CNN based meth-
ods, which indicates the effectiveness of the temporal component
underlying NTAM.

Finally, we propose a general and effective method called TPS
to deal with the extreme data imbalance problem in disk failure
prediction. Our experimental results clearly demonstrate that TPS is
a general method for handling the extreme data imbalance problem
and can consistently improve the practical performance of various
disk failure prediction approaches.

The remainder of this paper is structured as follows. Section 2
summarizes the related work for disk failure prediction. Section 3
proposes NTAM for disk failure prediction and TPS for handling the
extreme data imbalance problem. Section 4 reports and analyzes
experimental results to demonstrate the effectiveness of NTAM
and TPS. Section 5 introduces the application of NTAM and TPS in
practice. We conclude this paper in Section 6.

2 RELATEDWORK
Because of the importance of disk failures, many approaches have
been proposed for disk failure prediction. Existing approaches
mainly treat disk failure prediction as a binary classification prob-
lem in the area of machine learning. These approaches can be
categorized into two classes: traditional machine learning based
ones and deep learning based ones.

Traditional machine learning based approaches predict disk fail-
ures based on SMART data using support vector machine [46] and
tree-based machine learning models [3, 11, 19, 35, 44]. In real-world
applications, disks usually fail gradually rather than abruptly [46].
Nevertheless, it is difficult for traditional machine learning based
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approaches to process the temporal information effectively [37], so
their performance is relatively moderate on real-world datasets.

In contrast to traditional machine learning based approaches,
deep learning based approaches leverage deep neural networks,
including recurrent neural network (RNN) [42], long short-term
memory (LSTM) [46] and temporal convolutional neural network
(TCNN) [37], and thus are able to make better use of the temporal
information. Hence, deep learning based approaches can gener-
ally achieve performance improvement over traditional machine
learning based ones for disk failure prediction. In industrial prac-
tice, a number of disks are located in the same computing server
and interact with each other during daily usage. Hence, the status
of neighboring disks is highly correlated. However, in previous
works on disk failure prediction, existing deep learning based ap-
proaches do not consider any neighborhood information, therefore
using only limited information, which is an issue in our perspective
and would degrade the practical performance (as evidenced by our
experimental results in Section 4).

Compared to existing approaches for disk failure prediction,
our NTAM approach introduces a novel neighborhood-aware com-
ponent to incorporate the neighborhood information. Moreover,
NTAM integrates a new temporal component to capture the tempo-
ral information, to further improve the practical performance.

In practice, disk failure prediction approaches suffer from the
extreme data imbalance problem [3, 11, 35, 37, 44, 46], since the
number of failed disks is greatly smaller than that of healthy disks.
To handle the extreme data imbalance problem in disk failure pre-
diction, one common solution is to use under-sampling methods,
such as clustering-based sampling method [3] and latest sampling
method [35]. In particular, clustering-based sampling method [3]
partitions healthy samples in the training set into a number of
groups and uses the center sample of each group to represent the
whole group, while latest sampling method [35] uses the latest
samples in the training set of each healthy disk. However, such
under-sampling methods would lose some characteristics of healthy
disk samples. Another type of solution to handling the extreme
imbalance data problem is the cost-sensitive method, including
weight adjusting based one [19] and new loss function based one
[37]. Particularly, weight adjusting based cost-sensitive method
[19] changes the probability distributions of healthy and failed
samples by adjusting their weights, while new loss function based
cost-sensitive method [37] derives a new loss function by multi-
plying the basic binary cross-entropy with different coefficients to
address the data imbalance problem.

Compared to existing methods for handling the imbalance data
problem, our proposed TPSmethod is an effective data enhancement
method, which can generate multiple failed samples for each failed
disk. More particularly, TPS is able to deal with the extreme data
imbalance and can improve the practical performance of various
approaches for disk failure prediction.

3 OUR PROPOSED APPROACH
In this section, we present our proposed approach in detail. First, we
introduce the problem definition of disk failure prediction. Then, we
give the overview of our proposed approach dubbed Neighborhood-
Temporal Attention Model (NTAM). After that, we describe the

technical details of NTAM. Finally, we present an effective data
enhancement method called Temporal Progressive Sampling (TPS),
which is able to improve the practical performance of NTAM.

3.1 Problem Definition
This paper is devoted to proposing a deep learning based approach,
which can predict whether a disk will fail or not, based on that
disk’s status data and neighborhood information. Before introduc-
ing the problem, we first give the definitions of a disk’s status data
and neighborhood information. In practice, a feature vector of 𝑛 at-
tributes of a disk’s status is recorded at each timestamp (e.g., hourly
or daily). For a disk 𝑑𝑖 , 𝑑𝑖 ’s status data is a set consisting of 𝑑𝑖 ’s ℎ
consecutive feature vectors recorded from timestamp 𝑡𝑖 to times-
tamp 𝑡𝑖 +ℎ−1 (𝑡𝑖 is the beginning timestamp). As introduced before,
in cloud platforms, a computing server usually contains more than
one disk; hence, two different disks are neighbors when they are lo-
cated in the same computing server. For a disk 𝑑𝑖 , 𝑑𝑖 ’s neighborhood
information is a set of the status data of 𝑑𝑖 ’s all neighbors.

The training set is a collection of 𝑁 training samples, and is
denoted as 𝐷 = {(𝑋1, 𝑦1), . . . , (𝑋𝑁 , 𝑦𝑁 )}. For each training sample
(𝑋𝑖 , 𝑦𝑖 ), 𝑋𝑖 represents the corresponding disk 𝑑𝑖 ’s status data and
neighborhood information, i.e., 𝑋𝑖 = (𝐴𝑖 , 𝐵𝑖 ), where 𝐴𝑖 ∈ Rℎ×𝑛
represents 𝑑𝑖 ’s status data and 𝐵𝑖 is denoted as 𝑑𝑖 ’s neighborhood
information (it is clear that 𝐵𝑖 is a subset of unions of all𝐴𝑖 , i.e., 𝐵𝑖 ⊆
∪𝑁
𝑖=1𝐴𝑖 ); 𝑦𝑖 ∈ {0, 1} is a label: 𝑦𝑖 = 1 means that the corresponding

disk will fail in near future, and 𝑦𝑖 = 0 means ‘healthy’. Hence, our
objective is to minimize the binary cross-entropy loss [29] on the
training set. The binary cross-entropy lossL is formally formulated
as follows:

L = − 1
𝑁

𝑁∑
𝑖=1

[𝑦𝑖 · log (𝑦𝑖 ) + (1 − 𝑦𝑖 ) · log (1 − 𝑦𝑖 )] (1)

where 𝑦𝑖 is the predicted probability of the sample being positive
(i.e., predicted failure probability) for sample (𝑋𝑖 , 𝑦𝑖 ).

3.2 Overview of NTAM
As briefly introduced before, NTAM can predict disk failures by
exploiting the neighborhood information and making the better
use of the temporal information. The main technical challenges
are as follows: 1) how to effectively incorporate neighborhood
information and 2) how to better capture the temporal information.

The overview of our NTAM approach is illustrated in Figure 1.
According to Figure 1, NTAM consists of three components, i.e.,
the neighborhood-aware component, the temporal component and
the decision component. We briefly overview each component as
follows, and introduce the technical details of all components in
the following subsections.

• Neighborhood-aware component: the input of this com-
ponent consists of two parts, i.e., the status data (𝐴𝑖 ) of the
corresponding disk 𝑑𝑖 , and 𝑑𝑖 ’s neighborhood information
(𝐵𝑖 ). This component utilizes a soft attention mechanism [43]
to encode the neighborhood information 𝐵𝑖 based on𝐴𝑖 , and
then fuse the status data and the encoded neighborhood in-
formation together, resulting in a set of neighbor-encoded
vectors.
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Figure 1: The overview of Neighborhood-aware Attention
Model (NTAM).

• Temporal component: this component takes the set of
neighbor-encoded vectors generated by the neighborhood-
aware component as its input. It introduces and utilizes a
proposed, novel attention based neural network to encode
and incorporate the temporal information, resulting in a
temporal-encoded vector.

• Decision component: this component takes the temporal-
encoded vector generated by the temporal component as
its input, and calculates the failure probability of the cor-
responding disk. Then the decision component utilizes the
failure probability to decide whether the corresponding disk
will fail or not.

NTAM is an end-to-end deep learning based approach, and mini-
mizes the binary cross-entropy loss (Equation 1) using the Adam
optimizer. The model parameters of NTAM are updated through
the back-propagation algorithm during the training process.

3.3 Neighborhood-aware Component
In contrast to existing approaches which only utilize a disk’s own
status data, NTAM introduces a novel neighborhood-aware compo-
nent that can encode and incorporate the neighborhood informa-
tion. The architecture of the neighborhood component underlying
NTAM is illustrated in Figure 2. The input of the neighborhood
component includes a disk 𝑑𝑖 ’s status data 𝐴𝑖 and its neighborhood
information 𝐵𝑖 . Recall that 𝐴𝑖 is a set of ℎ feature vectors (ℎ is the
number of timestamps), i.e., 𝐴𝑖 = {𝑎 (1)

𝑖
, . . . , 𝑎

(ℎ)
𝑖

}, where 𝑎 (𝑡 )
𝑖

de-
notes 𝑑𝑖 ’s feature vector at timestamp 𝑡𝑖 + 𝑡 − 1. Also, recall that 𝐵𝑖
is a set of status data of 𝑑𝑖 ’s all neighbors, i.e., 𝐵𝑖 = {𝐵𝑖,1, . . . , 𝐵𝑖,𝑚𝑖

},
where 𝑚𝑖 = |𝐵𝑖 | represents the number of 𝑑𝑖 ’s neighbors, and
𝐵𝑖, 𝑗 ∈ Rℎ×𝑛 represents the status data of 𝑑𝑖 ’s 𝑗-th neighbor; in fact,
𝐵𝑖, 𝑗 can be expressed as 𝐵𝑖, 𝑗 = {𝑏 (1)

𝑖, 𝑗
, . . . , 𝑏

(ℎ)
𝑖, 𝑗

}, where 𝑏 (𝑡 )
𝑖, 𝑗

denotes
the feature vector of 𝑑𝑖 ’s 𝑗-th neighbor at timestamp 𝑡𝑖 + 𝑡 − 1. Also,
𝐵
(𝑡 )
𝑖

is denoted as 𝐵 (𝑡 )
𝑖

= {𝑏 (𝑡 )
𝑖,1 , . . . , 𝑏

(𝑡 )
𝑖,𝑚𝑖

} which represents 𝑑𝑖 ’s
neighborhood information at timestamp 𝑡𝑖 + 𝑡 − 1.

It is arguable that, for a disk 𝑑𝑖 , each neighbor of 𝑑𝑖 has different
impact on 𝑑𝑖 ’s healthy status. As a result, it is advisable to design an
effective mechanism to distinguish the influence of each neighbor.
Hence, we leverage a soft attention mechanism [43] to capture the
effect of each neighbor on the corresponding disk’s healthy status,
as shown in Figure 2.

Actually, our neighborhood-aware component will activate the
soft attention mechanism for the input at each timestamp (i.e., 𝑎 (𝑡 )

𝑖

keys
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Figure 2: The architecture of the neighborhood-aware com-
ponent underlying NTAM.

and 𝐵 (𝑡 )
𝑖

). An attention function is to obtain an output, on the
basis of a query and a collection of key-value tuples (the query,
keys, values and the output are all vectors) [39]. The output vector
is a weighted accumulation of value vectors, where each value
vector’s weight is calculated based on the query vector and the
corresponding key vector. In the neighboring-aware component
underlying NTAM, the query vector is 𝑞 = 𝑄 (𝑎 (𝑡 )

𝑖
), the key vector

for 𝑗-th neighbor is 𝑘 𝑗 = 𝐾 (𝑏 (𝑡 )
𝑖, 𝑗

), and the value vector for 𝑗-th

neighbor is 𝑏 (𝑡 )
𝑖, 𝑗

, where both𝑄 and 𝐾 are fully connected networks.
The weight 𝑤 𝑗 associated to each value vector is computed as
follows, using the softmax function:

𝑤 𝑗 =
exp(𝑞 · 𝑘 𝑗 )∑𝑚𝑖

𝑧=1 exp(𝑞 · 𝑘𝑧)
(2)

Then the weighed accumulation of the neighborhood information
at each timestamp can be represented as 𝑐 (𝑡 )

𝑖
=
∑𝑚𝑖

𝑗=1 (𝑤 𝑗 · 𝑏 (𝑡 )𝑖, 𝑗
),

where 𝑐 (𝑡 )
𝑖

∈ R𝑛 .
Finally, for each timestamp 𝑡𝑖 +𝑡−1, we can construct a neighbor-

encoded vector 𝑟 (𝑡 )
𝑖

for disk 𝑑𝑖 based on 𝑑𝑖 ’s own feature vector (i.e.,
𝑎
(𝑡 )
𝑖

) and the weighted accumulation of 𝑑𝑖 ’s neighborhood informa-
tion (i.e., 𝑐 (𝑡 )

𝑖
): 𝑟 (𝑡 )

𝑖
= 𝑎

(𝑡 )
𝑖

+𝑐 (𝑡 )
𝑖

, where 𝑟 (𝑡 )
𝑖

∈ R𝑛 . In this way, since
the neighbor-encoded vector 𝑟 (𝑡 )

𝑖
incorporates the neighborhood in-

formation, 𝑟 (𝑡 )
𝑖

is more informative than the original feature vector
𝑎
(𝑡 )
𝑖

; using the neighbor-encoded vector could achieve performance
improvement.

In practice, the number of neighbors varies from one disk to
another, and it is difficult for deep learning models to deal with the
input samples with different sizes. We use a padding mechanism
[39] to address this challenge: first, we use the notation𝑀 to denote
the maximum number of disk neighbors, i.e., 𝑀 = max𝑁

𝑖=1{𝑚𝑖 };
then, for each disk 𝑑𝑖 , the dimension of 𝐵𝑖 is padded from𝑚𝑖 + 1 to
𝑀 ; the newly extended neighborhood information is filled with 0,
and all weights of those newly padded neighborhood information
are masked out (by setting to −∞) in the input of the softmax
function (in Figure 2) due to the useless padding information.

3.4 Temporal Component
Besides incorporating the neighborhood information, our NTAM
approach also introduces a new temporal component to capture the
temporal information, since utilizing the temporal information can
improve the practical performance in disk failure prediction [37, 46].



NTAM: Neighborhood-Temporal Attention Model for Disk Failure Prediction in Cloud Platforms WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

si

𝑟௜
(ଵ)

𝑟௜
(ଶ)

𝑟௜
(௛)

time
ti ti+1 ti+h-1

…

Encoder of Transformer

+
+

+

FC

⭙ ⭙ ⭙

∑

FC

One-Hot

Positional Embedding

Time-aware Aention

somax

Temporal-encoded vector

Figure 3: The architecture of the temporal component un-
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In the context of disk failure prediction, different from the existing
deep learning based approaches that utilize RNN [42], LSTM [46]
and temporal CNN [37], the temporal component underlyingNTAM
is based on the attention mechanism.

The architecture of the temporal component underlying NTAM
is demonstrated in Figure 3. The input of the temporal compo-
nent is a sequence of neighbor-encoded vectors (ordered by their
timestamps), which are the outputs of the neighborhood-aware
component, i.e., 𝑅𝑖 = {𝑟 (1)

𝑖
, . . . , 𝑟

(ℎ)
𝑖

}. According to Figure 3, the
temporal component consists of three key parts: positional embed-
ding layer, encoder of Transformer, and time-aware attention layer.
Each key part of the temporal component is described as follows.

Positional embedding layer:To leverage the order of the input
sequence 𝑅𝑖 , it is advisable to embed the position information of
each element in 𝑅𝑖 . We do so by applying the positional embedding
network [7]. As indicated in Figure 3, for each element 𝑟 (𝑡 )

𝑖
in the

sequence 𝑅𝑖 , the positional embedding network can generate a
new vector (whose dimension is the same to 𝑟 (𝑡 )

𝑖
) based on 𝑟 (𝑡 )

𝑖
’s

positional index and then add this new vector to 𝑟 (𝑡 )
𝑖

, resulting in
𝑟 ′ (𝑡 )
𝑖

. In this way, we can obtain 𝑅′
𝑖
= {𝑟 ′ (1)

𝑖
, . . . , 𝑟 ′ (ℎ)

𝑖
}.

Encoder of Transformer: In this stage, it is necessary to per-
form sequence modeling to encode the temporal information. It is
well acknowledged that the Transformer-based models [39] achieve
the state-of-the-art performance in many application scenarios
of sequence modeling [31], such as natural language processing
[47, 48] and speech recognition [20]. The standard Transformer
is an encoder-decoder structure [39]. However, our task is to en-
code the temporal information (related to encoder of Transformer),
but does not need to do generation (related to decoder of Trans-
former). Therefore, we adopt the encoder of Transformer to map
𝑅′
𝑖
to 𝑅′′

𝑖
= {𝑟 ′′ (1)

𝑖
, . . . , 𝑟 ′′ (ℎ)

𝑖
}. In this way, each element in 𝑅′′

𝑖
integrates information from other temporal feature vectors.

Time-aware attention layer: For a disk 𝑑𝑖 , the impact of the
feature vector on 𝑑𝑖 ’s healthy status varies from one timestamp to
the other. In order to better incorporate this information, we employ
the position-based attention mechanism [6, 18, 41] to compute the
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Figure 4: The design of the Temporal Progressive Sampling
(TPS) method.

weight associated with each element 𝑟 ′′ (𝑡 )
𝑖

in 𝑅′′
𝑖
. The computation

of each weight uses the softmax function and is presented as follows:

𝑣𝑡 =
exp(FC (𝑟 ′′ (𝑡 )

𝑖
))∑ℎ

𝑧=1 exp(FC (𝑟 ′′
(𝑧)
𝑖

))
(3)

where FC is a fully connected network. Then we can construct a
temporal-encoded vector 𝑠𝑖 =

∑ℎ
𝑡=1 (𝑣𝑡 · 𝑟 ′′

(𝑡 )
𝑖

) for disk 𝑑𝑖 , where
𝑠𝑖 ∈ R𝑛 .

Remarks: Through the neighborhood-aware component and
the temporal component underlying NTAM, the output vector (i.e.,
temporal-encoded vector 𝑠𝑖 ) is able to incorporate both the neigh-
borhood information and the temporal information.

3.5 Decision Component
The decision component takes the temporal-encoded vector 𝑠𝑖 as
input, which is the output of the temporal component. Based on 𝑠𝑖 ,
the decision component calculates the failure probability 𝑦𝑖 of the
corresponding disk 𝑑𝑖 via a fully connected network, where hidden
layers use ReLU [8] as their activation functions, the output layer
uses sigmoid as its activation function, and between each two layers,
a dropout mechanism [36] is added to improve the robustness [14].
In the final step, NTAM utilizes the predicted failure probability 𝑦𝑖
to decide whether disk 𝑑𝑖 will fail or not.

3.6 Temporal Progressive Sampling (TPS)
In the context of disk failure prediction for cloud platforms, since
the number of healthy disks is much greater than that of the failed
disks, both traditional machine learning based approaches and deep
learning based approaches suffer from the extreme data imbalance
problem [16, 33, 45]. In order to address this problem, a number of
under-sampling methods [3, 35], which collect less healthy samples,
have been proposed. Intuitively, since there are too many healthy
disks, we can sample and use a subset of those healthy disks. The
under-sampling process can group the healthy disk set into several
clusters through a clustering algorithm, and then select a few sam-
ples from each cluster as representatives for the respective healthy
disk cluster. However, this kind of under-sampling process would
lose some useful information about healthy disks, which could
result in a high false alarm rate.
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Table 1: Introduction to all attributes of feature vector in
Dataset-1 and Dataset-2.

Name Description

Timestamp The timestamp 𝑡 of the feature vector recorded.
Disk ID The unique ID of disk 𝑑𝑖 .

Node ID
The unique ID of each computing server (i.e.,
node) which current disk is on. It can be used
to find all neighbors of each disk.

SMART
Attributes

The SMART attributes of disk 𝑑𝑖 recorded at
timestamp 𝑡 , which contains useful informa-
tion such as the Current Pending Sector Count,
Seek Error Rate, Soft Read Error Rate, etc.

System-related
Attributes

The system-related attributes [44] include
Windows Event 154, the error when Windows
creating a paging file., etc.

Driver-related
Attributes

The driver-related attributes are gathered from
disk driver, and contain Flush Count, IO La-
tency, Controller Reset, etc.

In order to address the extreme data imbalance issue, we propose
an effective method called Temporal Progressive Sampling (TPS) to
generate more failed samples to complement the data distribution
of failed disks. Hence, TPS can be regarded as a data enhancement
method. Through generating more failed samples by TPS, the ratio
between the number of healthy samples and that of failed samples
would achieve a better balance.

Before describing TPS, we would like to first introduce leading
time, which is an important concept in TPS. For a given failed
disk, assuming that the disk failure occurs at timestamp 𝑡 and the
prediction action occurs at timestamp 𝑡 − 𝑙 , then the time period
with length 𝑙 between the occurrence of prediction action at 𝑡 − 𝑙
and the occurrence of the disk failure at 𝑡 is denoted as the leading
time 𝑙 .

We illustrate the design of TPS in Figure 4. As shown in Figure
4, during model training, for each failed disk, TPS collects more
failure data samples within the leading time period progressively
(i.e., leading time 𝑙 ranges from 1 to 𝐿, where 𝐿 is a hyper-parameter
for TPS, and its effect will be analyzed and discussed in Section 4.5).
In this way, TPS not only generates more failed samples which can
help mitigate the extreme data imbalance issue, but also captures
more failure patterns, which records the gradually failing process
and thus can enhance the learning process of our approach.

TPS is a general data enhancement method for dealing with the
extreme data imbalance issue, and is able to improve the perfor-
mance of various disk failure prediction approaches. Our experimen-
tal results (shown in Section 4.5) demonstrate that TPS can improve
the performance of various disk failure prediction approaches.

4 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the
effectiveness of our NTAM approach by comparing it against 10
state-of-the-art competitors for disk failure prediction. First, we in-
troduce the competitors, the experimental setup, and the industrial
datasets adopted in our experiments. Then, we report and analyze
the experimental results of NTAM and its 10 state-of-the-art com-
petitors, in order to demonstrate the effectiveness of our proposed

Table 2: Summary of Dataset-1 and Dataset-2.

Dataset Training Set Testing Set
#Positive #Negative #Positive #Negative

Dataset-1 5,644 6,836,491 6,768 6,768,000
Dataset-2 5,352 5,451,237 5,196 5,196,000

NTAM approach. After that, additional empirical evaluations are
performed to demonstrate the effectiveness of the neighborhood-
aware component and the temporal component underlying NTAM.
Also, more experiments are performed to study the effectiveness of
different combinations of disk attributes. Subsequently, we conduct
extensive empirical evaluations to test the performance of various
disk failure prediction approaches equipped with TPS, so as to ana-
lyze the effectiveness of TPS. Finally, to confirm the effectiveness
of NTAM and TPS, we perform further empirical analysis to study
the performance of NTAM and TPS on a public dataset.

4.1 Competitors
In our experiments, we compare NTAM against 10 recent and state-
of-the-art competitors, which are listed as follows and indicated in
boldface. Support Vector Machine (SVM) [50], Decision Tree
(DT) [19], Random Forest (RF) [35] and Gradient Boosting De-
cision Tree (GBDT) [11] are influential machine learning algo-
rithms, and have been successfully applied to disk failure prediction.
Regularized Greedy Forest (RGF) [15] is a high-performance en-
semble approach, and has achieved good performance in disk failure
prediction [3]. Cloud Disk Error Forecasting (CDEF) [44] is a
cost-sensitive ranking approach and have already shown its success
in disk failure prediction. In order to show the effectiveness of the
temporal component underlying NTAM, we also include deep learn-
ing based approaches, which can leverage temporal information,
into our comparisons. In particular, Recurrent Neural Network
(RNN) [42], Long Short-Term Memory (LSTM) [46] and Tem-
poral Convolution Neural Network (TCNN) [37] are adopted,
and actually all of them have already exhibited the state-of-the-art
performance in disk failure prediction. In addition, we also compare
our NTAM approach against a recently proposed approach for disk
failure prediction, called Convolutional Neural Network with
Long Short-Term Memory (CNN+LSTM) [22].

4.2 Experimental Setup
Following the existing work [3, 37, 46], for the industrial dataset,
we evaluate NTAM and its competitors by calculating their preci-
sion, recall and F1-score. In Tables 3, 4, 5, 6, 8 and 9, all competing
approaches’ precision, recall and F1-score are reported in percentile.
The results in boldface indicate the best performance for the corre-
sponding dataset. All experiments are carried out on a workstation
equipped with dual 16-core 2.30 GHz Intel Xeon E5-2673 CPUs,
425 GB RAM and 8 NVIDIA Tesla M40 GPUs (with 24 GB video
memory of each GPU), running the operation system of Ubuntu
Linux (16.04.5).
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Table 3: Comparative results of NTAM and its 10 state-of-the-art competitors as well as NTAM+TPS and all competitors
equipped with TPS on both Dataset-1 and Dataset-2. P, R, and F1 are referring to precision, recall, and F1-score, respectively.

Approach Dataset-1 Dataset-2 Approach Dataset-1 Dataset-2
P R F1 P R F1 P R F1 P R F1

SVM [50] 67.10 36.86 47.59 65.89 36.24 46.76 SVM+TPS 71.45 43.19 53.84 70.21 44.18 54.24
DT [19] 65.20 42.51 51.47 66.35 43.14 52.28 DT+TPS 69.16 48.98 57.36 70.13 49.02 57.71
RF [35] 68.72 43.20 53.05 70.06 43.69 53.82 RF+TPS 71.21 49.52 58.42 72.80 49.34 58.82

GBDT [11] 69.43 44.78 54.44 71.92 45.31 55.59 GBDT+TPS 72.95 51.52 60.39 73.58 51.04 60.27
RGF [3] 65.64 46.55 53.92 71.76 46.61 56.51 RGF+TPS 70.04 52.41 59.95 73.81 51.73 60.82

CDEF [44] 63.09 50.18 55.90 70.73 48.62 57.63 CDEF+TPS 69.32 53.76 60.56 72.65 52.76 61.13
RNN [42] 68.72 48.25 56.69 69.91 50.15 58.40 RNN+TPS 71.55 54.78 62.05 72.08 53.91 61.68
LSTM [46] 72.28 47.25 57.14 73.42 49.68 59.26 LSTM+TPS 74.67 54.13 62.76 75.92 53.80 62.97
TCNN [37] 73.36 47.97 58.01 72.87 51.27 60.19 TCNN+TPS 77.10 53.76 63.35 77.36 55.03 64.31

CNN+LSTM [22] 72.12 48.55 58.03 74.01 50.06 59.72 CNN+LSTM+TPS 74.98 55.26 63.62 77.14 54.97 64.20
NTAM 78.16 56.28 65.44 81.07 57.58 67.34 NTAM+TPS 82.97 63.54 71.97 84.22 64.41 72.99

4.3 Industrial Datasets
We collect two industrial datasets, i.e., Dataset-1 and Dataset-2, from
Microsoft Azure, which serves huge amount of customer work-
loads. Both of them are HDD (hard disk drive) datasets. Particularly,
Dataset-1 contains two-month data (July 2019 and August 2019),
and similarly Dataset-2 includes two-month data (February 2020
and March 2020). Both datasets include the status data of millions
of disks over two months, and their sizes are several hundreds of
times larger than the size of the public dataset in the context of disk
failure prediction (the summary of the public dataset as well as the
empirical analysis on the public dataset will be presented in Section
4.6). Also, in both industrial datasets, the status data of each disk 𝑑𝑖
is recorded hourly, where each feature vector contains timestamp,
disk ID, node ID, SMART attributes, system-related attributes and
driver-related attributes, as illustrated in Table 1. In our work, for
each disk 𝑑𝑖 in each of our industrial datasets (i.e., Dataset-1 and
Dataset-2), the number of consecutive feature vectors in 𝑑𝑖 ’s status
data is set to 24 × 7 = 168 (i.e., ℎ = 168).

For both industrial datasets, the failed disks are labeled as Posi-
tive (P) samples, and the healthy disks are labeled as Negative (N)
samples. After necessary pre-processing, we divide each industrial
dataset into the training set and the testing set by time. For the
Dataset-1, we treat the data of July 2019 as the training dataset and
the data of August 2019 as the testing dataset. For the Dataset-2, we
adopt the data of February 2020 as training dataset and the data of
March 2020 as testing dataset. The number of positive samples (de-
noted as ‘#Positive’) and the number of negative samples (denoted
as ‘#Negative’) for each of our industrial datasets (i.e., Dataset-1
and Dataset-2) are demonstrated in Table 2. For each of our indus-
trial datasets (i.e., Dataset-1 and Dataset-2), the ratio between the
number of positive samples and the number of negative samples is
around 1:1,000.

4.4 Effectiveness of NTAM
We use both industrial datasets (i.e., Dataset-1 and Dataset-2 de-
scribed in Section 4.3) to evaluate the practical performance of our
proposed NTAM approach.

4.4.1 Comparisons against State-of-the-art Competitors. Table 3
presents the comparative results ofNTAM and its 10 state-of-the-art
competitors on both industrial datasets (i.e., Dataset-1 and Dataset-
2). As can be clearly seen in Table 3, on bothDataset-1 andDataset-2,
deep learning based approaches (i.e., RNN, LSTM, TCNN,CNN+LSTM
and NTAM) significantly outperform other approaches; this is not
surprising, because deep learning based approaches have the ability
to leverage the temporal information, which could make consid-
erable improvements to the practical performance in disk failure
prediction. When focusing on the comparisons among our NTAM
approach and its competitors, it is clear that NTAM stands out as
the best approach for solving both industrial datasets, and achieves
much better performance than its all competitors in terms of all
metrics (i.e., precision, recall and F1-score).

In particular, in terms of the metric of precision on Dataset-1 and
Dataset-2,NTAM achieves the precision values of 78.16% and 81.07%,
which are 4.80% and 7.06% greater than those achieved by the second
best approach for each dataset TCNN and CNN+LSTM, respectively;
in terms of the metric of recall on Dataset-1 and Dataset-2, the recall
values obtained by NTAM are 56.28% and 57.58%, which are 6.10%
and 6.31% greater than those obtained by the second best approach
for each dataset CDEF and TCNN, respectively; then we focus on
the metric of F1-score on Dataset-1 and Dataset-2, NTAM achieves
the F1-score values of 65.44% and 67.34%, which are 7.41% and 7.15%
greater than those achieved by the second best approach for each
dataset CNN+LSTM and TCNN, respectively.

4.4.2 Effectiveness of Neighborhood-aware Component. In order
to demonstrate the effectiveness of our proposed neighborhood-
aware component underlying NTAM, we modify NTAM to disable
the neighborhood-aware component, resulting in an alternative
approach called NTAM_alt1. We conduct an experiment to directly
compare NTAM against NTAM_alt1 on both industrial datasets
(i.e., Dataset-1 and Dataset-2), and the related experimental results
are presented in Table 4. According to Table 4, on both Dataset-1
and Dataset-2, NTAM can achieve much better performance than
NTAM_alt1 in terms of all metrics of precision, recall and F1-score,
which indicates the effectiveness of the neighborhood-aware com-
ponent underlying NTAM.
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Table 4: Comparative results of NTAM and its 3 alternative
version (i.e., NTAM_alt1,NTAM_alt2 andNTAM_alt3) on the
industrial dataset. P, R, and F1 are referring to precision, re-
call, and F1-score, respectively.

Approach Dataset-1 Dataset-2
P R F1 P R F1

NTAM_alt1 74.07 51.26 60.59 75.64 51.95 61.60
NTAM_alt2 74.84 53.90 62.67 76.98 54.28 63.67
NTAM_alt3 75.93 54.21 63.26 77.53 55.94 64.99
NTAM 78.16 56.28 65.44 81.07 57.58 67.34

In addition, wemodifyNTAM to replace the temporal component
underlying NTAM with LSTM and TCNN, resulting in other two
alternative approaches dubbed NTAM_alt2 and NTAM_alt3, respec-
tively. The experimental results of NTAM_alt2 and NTAM_alt3 on
both industrial datasets (i.e., Dataset-1 and Dataset-2) are also illus-
trated in Table 4. Experimental results show that, on both Dataset-1
and Dataset-2, NTAM_alt2 performs much better than LSTM (in
Table 3), and NTAM_alt3 obtains better performance than TCNN (in
Table 3), confirming that our proposed neighborhood-aware com-
ponent underlying NTAM can provide the significant performance
improvement in disk failure prediction.

4.4.3 Effectiveness of Temporal Component. As discussed in Sec-
tion 3, besides the neighborhood-aware component, the temporal
component is also an important component underlying NTAM.
Hence, we conduct experiments to confirm the effectiveness of
the temporal component in practice. According to the results re-
ported in Table 3, deep learning based approaches (including LSTM
and TCNN), which can capture temporal information, exhibit good
performance on the industrial dataset. Since NTAM_alt1 can be
treated as NTAM only using the temporal information, from Ta-
bles 3 and 4, NTAM_alt1 performs better than LSTM and TCNN
on both industrial datasets, indicating the effectiveness of the tem-
poral component. Moreover, NTAM_alt2 and NTAM_alt3 are two
alternative variants of NTAM by replacing the temporal compo-
nent with LSTM and TCNN, respectively. The comparisons among
NTAM, NTAM_alt2 and NTAM_alt3 demonstrate that NTAM can
obtain higher precision, recall and F1-score than NTAM_alt2 and
NTAM_alt3 on both industrial datasets, confirming the superiority
of our proposed temporal component underlying NTAM.

4.4.4 Effectiveness of NTAM with Different Combinations of At-
tributes. As described in Section 4.3, both industrial datasets con-
tain three main kinds of disk-related attributes: SMART attributes,
system-related attributes and driver-related attributes. Actually, in
the context of disk failure prediction, previous works [3, 11, 19, 35,
37, 42, 46, 49, 50] commonly use SMART attributes, and its effec-
tiveness is well demonstrated in the related experimental results.

Being complementary to previous works which study the ef-
fectiveness of SMART attributes, this work conducts empirical
evaluations to analyze the effectiveness of system-related attributes
as well as driver-related attributes. In order to achieve this, we
conduct more empirical evaluations of NTAM on the most recent
industrial dataset (i.e., Dataset-2) using 4 combinations of attributes,

Table 5: Comparative results ofNTAM on themost recent in-
dustrial dataset (i.e., Dataset-2) using different combinations
of attributes.

Attribute Combination Precision Recall F1-Score

SMART 71.29 52.26 60.31
SMART+System 77.53 55.68 64.81
SMART+Driver 75.68 55.10 63.78

SMART+System+Driver 81.07 57.58 67.34

i.e., SMART (only using SMART attributes), SMART+System (us-
ing SMART and system-related attributes), SMART+Driver (using
SMART and driver-related attributes) and SMART+System+Driver
(using all SMART, system-related, and driver-related attributes).
The related experimental results are presented in Table 5.

According to the experimental results in Table 5, both NTAM
using SMART+System and NTAM using SMART+Driver achieve
much better performance than NTAM using only SMART attributes
in terms of all metrics, which indicates that both system-related
and driver-related attributes can effectively contribute to the perfor-
mance improvement in disk failure prediction. Also, NTAM using
SMART+System+Driver in turn performs much better than NTAM
using SMART+System as well as NTAM using SMART+Driver in
terms of all metrics, indicating that leveraging more useful at-
tributes could lead to better practical performance in disk failure
prediction.

4.5 Analysis of TPS
Since our TPS method is proposed to address the extreme data im-
balance, in this section, we conduct empirical evaluations to analyze
TPS. In particular, we first study the effect of hyper-parameter 𝐿 for
TPS, and then evaluate the effectiveness of our TPS method.

4.5.1 Effect of Hyper-parameter 𝐿 in TPS. We equip NTAM with
TPS, resulting in an enhanced disk failure prediction approach
dubbed NTAM+TPS. As described in Section 3.6, TPS introduces a
hyper-parameter 𝐿, which determines the number of failed samples
generated for each failed disk. In order to study the effect of hyper-
parameter 𝐿 for TPS, we conduct the experiments of NTAM+TPS on
the most recent industrial dataset (i.e., Dataset-2) with 𝐿 ranging
from 2 to 32 with the increment of 2, and the related experimental
results are illustrated in Figure 5.

From Figure 5, we observe that, when the hyper-parameter 𝐿
increases from 2 to 16, the F1-score value achieved by NTAM+TPS is
consistently increased. Also, NTAM+TPS achieves the maximum F1-
score value of 72.99% with 𝐿=16, which is much better than the F1-
score value achieved by NTAM (as presented in Table 3). Similarly,
NTAM+TPS with 𝐿=16 achieves better precision and recall than
NTAM. The main reason why TPS works well is that TPS introduces
more variations of failure patterns, which makes NTAM learn with
more useful information.

When 𝐿 is increased from 16 to 32, the F1-score achieved by
NTAM+TPS degrades. Actually, this is not surprising – the larger
leading time means the longer time to fail, so the characteristics of
the failure are less obvious, which makes the given disk with such
large leading time be less divergent with the healthy disks.
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Figure 5: Experimental results of NTAM+TPS with different
hyper-parameter settings of 𝐿 on the most recent industrial
dataset (i.e., Dataset-2).

4.5.2 Effectiveness of TPS. To evaluate the effectiveness of TPS
comprehensively, besides NTAM+TPS, we equip NTAM’s all 10 com-
petitors with TPS using the same hyper-parameter setting (i.e.,
𝐿=16), resulting in 10 enhanced versions of NTAM’s competitors.
The experimental results of NTAM’s competitors equipped with
TPS are reported in Table 3. From Table 3, TPS is able to improve all
10 NTAM’s competitors in terms of precision, recall and F1-score.
The results demonstrated in Table 3 indicate that our proposed TPS
method is generally applicable to various disk failure prediction
approaches and is able to improve their practical performance.

4.5.3 Comparisons among TPS and State-of-the-art Methods for
Handling Data Imbalance Problem. To further evaluate the effec-
tiveness of TPS, we conduct an experiment to compare TPS against
existing state-of-the-art methods for handling data imbalance prob-
lem in disk failure prediction. In this comparative experiment, we
adopt 4 state-of-the-art methods that are widely used to deal with
the data imbalance problem in the context of disk failure prediction:
1) clustering-based method [3]; 2) latest sampling method [35]; 3)
weight adjusting based cost-sensitive method [19]; 4) new loss func-
tion based cost-sensitive method [37]. For the sake of simplicity, in
this work those 4 state-of-the-art methods for handling the data
imbalance problem in disk failure prediction are named𝑀1,𝑀2,𝑀3
and𝑀4, respectively. We note that𝑀1 and𝑀2 are under-sampling
methods, while𝑀3 and𝑀4 are cost-sensitive methods.

The comparative results of NTAM equipped with TPS and those
4 state-of-the-art methods for handling the data imbalance problem
on Dataset-2 are summarized in Table 6. From Table 6, it is apparent
that, in terms of the metrics of precision, recall and F1-score, the
performance NTAM+TPS is better than that of NTAM equipped
with all 4 competing methods for handling the data imbalance
problem. For instance, the precision, recall and F1-score achieved
by NTAM+TPS are 84.22%, 64.41% and 72.99%, respectively, which
are 1.39%, 4.67% and 3.58% greater than the precision, recall and F1-
score achieved by the second best approachNTAM+M4, respectively.

Table 6: Comparative results of NTAM equipped with TPS
and other methods for handling data imbalance problem on
the most recent industrial dataset (i.e., Dataset-2).

Approach Precision Recall F1-Score

NTAM+M1 82.41 59.65 69.20
NTAM+M2 82.12 58.93 68.62
NTAM+M3 81.04 58.52 67.96
NTAM+M4 82.83 59.74 69.41
NTAM+TPS 84.22 64.41 72.99

The comparative results in Table 6 clearly indicate that TPS achieves
the state-of-the-art performance for handling the data imbalance
problem in the context of disk failure prediction.

4.6 Empirical Evaluation on Public Dataset
To further empirically evaluate the robustness and the effectiveness,
we additionally adopt a public dataset called Backblaze1, which has
been widely used in existing works [3, 37, 46] and is a standard, well-
adopted benchmark for evaluating the performance of approaches
for disk failure prediction.

The public Backblaze dataset contains the timestamp, disk model,
serial number, SMART attributes and label of each disk. We use
its data from January 2017 to December 2018 as the training set,
and adopt its data from January 2019 to June 2019 as the testing
set. The training and testing sets contain the data of 58,586 disks
over 30 months. Also, the number of positive samples (denoted
as ‘#Positive’) and the number of negative samples (denoted as
‘#Negative’) for the public dataset are listed in Table 7. Since this
dataset is collected on a daily basis, we use consecutive 15 days
SMART data to represent each disk’s status following the standard
practice [46]. Therefore, for the number of consecutive feature
vectors in a disk’s status data, we set ℎ = 15 in the public dataset.

Table 8 summarizes the comparative results of NTAM and all
its state-of-the-art competitors on the public dataset. Also, Table
9 reports the comparative results of NTAM and all its state-of-
the-art competitors with TPS on the public dataset. The experi-
mental results in Tables 8 and 9 confirm that deep learning based
approaches exhibit better performance on disk failure prediction.
Table 8 presents that NTAM can achieve better performance in
terms of all metrics (i.e., precision, recall and F1-score) than the
second best approach (i.e., CNN+LSTM for precision and F1-score,
and TCNN for recall). Also, Table 9 demonstrates that NTAM+TPS
consistently achieves better performance in terms of all metrics
(i.e., precision, recall and F1-score) than the second best approach
(i.e., CNN+LSTM+TPS for precision, and TCNN+TPS for recall and
F1-score). It is not surprising that our proposed approaches (i.e.,
NTAM andNTAM+TPS) achieve better precision, recall and F1-score
results on the public dataset than those numbers on two industrial
datasets, because the ratio between positive samples and negative
samples is more balanced in the public dataset.

Since the public dataset does not record the disk neighborhood
information, we cannot directly assess the effectiveness of the
neighborhood-aware component on this dataset. Nevertheless, the
1https://www.backblaze.com/b2/hard-drive-test-data.html

https://www.backblaze.com/b2/hard-drive-test-data.html
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Table 7: Summary of the public dataset.

Dataset #Positive #Negative

Training set 1,642 47,708
Testing set 210 46,217

Table 8: Comparative results ofNTAM and its 10 state-of-the-
art competitors on the public dataset.

Approach Precision Recall F1-Score

SVM 63.12 59.78 61.41
DT 67.98 65.04 66.48
RF 71.72 68.16 69.89

GBDT 77.91 70.34 73.93
RGF 74.85 69.67 72.17
CDEF 78.01 72.83 75.33
RNN 78.76 73.15 75.85
LSTM 79.04 74.53 76.72
TCNN 79.58 74.92 77.18

CNN+LSTM 81.03 74.25 77.49
NTAM 84.01 76.43 80.04

results show that NTAM+TPS outperforms other approaches (espe-
cially those deep learning based ones) when the dataset does not
contain the neighborhood information, which confirms the effec-
tiveness of TPS and the temporal component underlying NTAM.

5 APPLICATION IN PRACTICE
We have successfully applied our proposed NTAM+TPS approach to
Microsoft cloud platforms (includingMicrosoft Azure andMicrosoft
365), in order to help improve the service reliability. Microsoft
cloud platforms have achieved global scales on worldwide networks
of data centers across many regions and serve huge amount of
workloads. It is critically important for cloud platforms to ensure
high service reliability [13].

In our industrial practice, the prediction task runs as an hourly
task, which collects the most recent signals from each computing
node. After collecting all necessary signals, feature engineering is
performed, including extracting useful attributes, concatenating
different type of attributes (i.e., SMART ones, system-related ones
and driver-related ones [34, 38]) by Disk ID, arranging the feature
snapshot to time series, appending neighbor information for each
disk, etc. Subsequently, the prepared feature vectors are fed to
NTAM+TPS and the failure probabilities are output. Finally, the
disks with high failure probabilities will be selected for follow-up
proactive mitigation actions, such as blocking new allocation on
risky servers, and live migrating existing virtual machines off the
risky servers.

We analyze the virtual machine interruption caused by disk
failure. Based on the data collected from Microsoft cloud platforms
(including Microsoft Azure and Microsoft 365) before and after the
deployment of NTAM+TPS, our proposed approach significantly
reduced the number of virtual machine interruptions for those
cloud platforms. Hence, our proposed NTAM+TPS approach has

Table 9: Comparative results of NTAM+TPS and its 10 state-
of-the-art competitors equipped with TPS on the public
dataset.

Approach Precision Recall F1-Score

SVM+TPS 67.55 65.81 66.67
DT+TPS 71.06 70.68 70.87
RF+TPS 75.33 73.36 74.34

GBDT+TPS 81.97 76.89 79.35
RGF+TPS 78.11 74.60 76.31
CDEF+TPS 81.72 78.13 79.88
RNN+TPS 81.04 79.08 80.05
LSTM+TPS 82.85 80.07 81.43
TCNN+TPS 83.41 80.24 81.79

CNN+LSTM+TPS 84.03 79.56 81.74
NTAM+TPS 87.37 82.86 85.05

considerably improved the service reliability of Microsoft cloud
platforms, and obtained benefits in industrial practice.

6 CONCLUSION
Disk failure is one of the major reasons that cause cloud platforms
unreliable. Predicting disk failures plays a crucial role in industrial
practice. In this paper, we propose a novel neighborhood-temporal
attention based approach dubbed NTAM for disk failure prediction.
Compared to existing approaches which only focus on that disk’s
own status data, NTAM is a novel approach which also considers a
disk’s neighbors’ status data. Moreover, NTAM introduces a novel
attention based temporal component to capture the temporal na-
ture of the disk status data. Our experiments on industrial and
public datasets demonstrate that NTAM achieves much better per-
formance than its 10 state-of-the-art competitors, indicating that
NTAM considerably advances the state of the art. Further evalu-
ations also confirm the effectiveness of the neighborhood-aware
component and the temporal component underlying NTAM. Fur-
thermore, we propose an effective method TPS to deal with the
extreme data imbalance problem in disk failure prediction, and the
related experimental results demonstrate that TPS can improve the
performance of various disk failure prediction approaches. More
encouragingly, NTAM and TPS have been successfully applied to
Microsoft cloud platforms (includingMicrosoft Azure andMicrosoft
365) and obtained benefits in industrial practice.

For future work, we plan to incorporate our approach with
the techniques of automated feature engineering [4] and positive-
unlabeled learning [25] to address the challenges of feature engi-
neering and label noise in disk failure prediction, respectively.
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