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Figure 1: The system comprises four main components: (a) A focus+context timeline shows a specific time frame in detail while keeping
the context part of the timeline covering the entire range of all the click actions; (b) The clock displays the current timestamp explicitly; (c)
Animated bubbles in different sizes demonstrate different numbers of clicks, while different colors represent different types of click actions;
(d) An animated stack graph represents the accumulation of video clickstream data.

Abstract

Video clickstream data are important for understanding user be-
haviors and improving online video services. Various visual ana-
lytics techniques have been proposed to explore patterns in these
data. However, those techniques are mainly developed for analy-
sis and do not sufficiently support presentations. It is still difficult
for data analysts to convey their findings to an audience without
prior knowledge. In this paper, we propose to use animated nar-
rative visualization to present video clickstream data. Compared
with traditional methods which directly turn click events into ani-
mations, our animated narrative visualization focuses on conveying
the patterns in the data to a general audience and adopts two novel
designs, non-linear time mapping and foreshadowing, to make the
presentation more engaging and interesting. Our non-linear time
mapping method keeps the interesting parts as the focus of the an-
imation while compressing the uninteresting parts as the context.
The foreshadowing techniques can engage the audience and alert
them to the events in the animation. Our user study indicates the
effectiveness of our system and provides guidelines for the design
of similar systems.
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1 Introduction

Video clickstream data depict a large number of users’ interac-
tion events with online videos, such as play, pause, and seek ac-
tions. Through the exploration of video clickstream data, data
analysts discover users’ reactions to both video content and real
world events. As a typical kind of temporal data, video clickstream
data are usually analysed by adopting time series data visualization
[Aigner et al. 2007]. Most of them show these data with exploratory
visualization systems [Shi et al. 2015]. Data analysts find temporal
patterns and trace the causes of the patterns through exploring the
elaborate analytical visualization.

To communicate insights, data analysts need to demonstrate the vi-
sualization to an audience. However, a general audience who have
no knowledge of the visualization designs may find it difficult to un-
derstand data stories through exploratory visualization. To support
temporal pattern analysis, analytical visualization usually encodes
“time dimension” into 2D visual displays. When data become in-
creasingly complex, the design of data visualization systems tends
to become too complicated. Novel visual forms, multiple linked
views, hierarchical zooming, and interactions are usually used to
help data analysts recognize temporal features from different per-
spectives. To present findings, data analysts need to either demon-
strate the visual analytics system in person or display screenshots
with further explanations. However, static figures or visual data
stories can rarely be created straight out of interactive exploratory
tools [Gratzl et al. 2016]. Analysts need to collect artifacts, such as
screenshots, to compose a well-structured data story so that users
can understand the evolution and composition of temporal data,
which is time consuming.
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In contrast, animation is a simpler and more attractive visual form
to show temporal development and stories behind data. In 2010,
Hans Rosling presented an animated bubble chart to illustrate how
200 countries developed in 200 years in 4 minutes. This revealed
the story of the world’s past, present, and future development, and
attracted more than 7 million views [Rosling 2009]. In this exam-
ple, animated visualization is edited, guided, and explained by the
presenter, making the data come to life, while emphasizing critical
results from the analysis [Robertson et al. 2008].

Although animated visualization has clear advantages, there are
two drawbacks when the animation is directly generated from real-
world temporal data without any editing: (1) When the anima-
tion contains rich information in a long time span, it may become
too long for the audience to stay focused. Viewers can lose pa-
tience if they fail to extract meaningful information from it [Tversky
et al. 2002]; (2) Real-world data can be irregular and unpredictable.
When watching the animation, users may be disappointed when no
patterns occur in a long period and can eventually give up.

In cinematography, there are clever tactics to catch viewers’ atten-
tion. We try to enable data analysts to present more engaging data
stories by adapting two representative tactics, namely, time remap-
ping, and foreshadowing, to generate better animated narrative vi-
sualization. To reduce the temporal duration of the animation, we
introduce dynamic compression in the time dimension of the ani-
mated visualization. In particular, we remap physical real-time to
animation time based on the existing experience of cinematogra-
phy. However, varying temporal compression may cause confusion
of how to interpret the pace of the animation. Hence, we design
an animated timeline to show the time compression rate and pro-
vide visual foreshadowing cues to indicate the elapse of time and
highlight key events. Moreover, we design a foreshadowing stacked
graph to show past and future events to keep users’ attention. The
major contributions of this paper can be summarized as follows:

• We explore time remapping and foreshadowing techniques
and apply them to the compression of animated visualization
to make it more compact and engaging;

• We design a focus+context animated timeline to help users
understand the context of the evolution and aggregation of
temporal data;

• We conduct user studies to validate the design and measure
the users’ level of engagement with a real world dataset.

2 Related Work

Clickstream Visualization Clickstream data generated from vari-
ous online activities exist in various forms, such as web browsing
behavior [Lee et al. 2001][Montgomery et al. 2004], online shop-
ping navigation [Wei et al. 2012], interaction with videos [Beal and
Cohen 2008], and so on. Among different kinds of clickstream data,
video clickstream data has long been explored to analyze users’ in-
teraction with online videos. Some video interaction analysis fo-
cuses on users’ play and pause activities [Chorianopoulos 2013]
and others on video content [Hou and Zhang 2007]. Video inter-
action is also visualized [Aguiar et al. 2015] to understand the au-
dience and to predict their engagement. However, existing studies
mostly focus on the analysis of clickstream data to reveal user be-
havioral patterns. There lacks an engaging form to communicate
findings to a general audience. Moreover, existing visualization
forms cannot clearly demonstrate how the clickstream patterns ap-
pear, develop, and disappear over time in a dynamic way.

Animated Transition Abundant research has been conducted on
animated transition. This technique is often used to show changes
with graphics, such as statistical data charts and the evolution of

graphs [Heer and Robertson 2007][Bach et al. 2014]. Tradition-
ally, animated transitions have been frequently used to show spatial
change. When the changes are complex and disordered, animation
can help users find the differences between consecutive frames of
visualization. For example, many researchers have focused on de-
signing animated transitions to provide a smooth transition between
the before and after states of dynamic graphs [Bach et al. 2014].
The design goal of animated transitions is to provide a smooth tran-
sition and explain how data changes between two separate states.
By contrast, we accelerate less important frames in animated visu-
alization and introduce traditional narrative tactics to create com-
plete and engaging data narration.

Animation and Data Storytelling Animation is among the seven
genres of narrative visualization summarized by Segel and Heer
[Segel and Heer 2010]. Film, video, and animation form a genre of
narrative visualization with which designers can show the changes
in data through motion change. Readers or viewers usually need to
follow the order of the film, video or animation set by the design-
ers. When presented in animation, data changes become attractive
to users [Thomas et al. 1995]. Amini et al. studied more than fifty
professionally designed data videos to understand the structure de-
signers commonly use to construct narrative visualization [Amini
et al. 2015]. Recently, more and more researchers have tried to use
animation to convey information and ideas. Visual sedimentation
is a design metaphor that uses falling object animations, inspired
by the physical process of sedimentation, to show data streams
[Huron et al. 2013]. Sigovan et al. [Sigovan et al. 2013] uses an-
imation to illustrate dynamic communication patterns and analyse
large datasets in parallel application execution to make them easy
to understand. Animation can also be used to highlight critical in-
formation. For example, Wander et al. studies how to guide users’
attention through a flicker in dynamic visualization[Waldner et al.
2014]. In this paper, we utilize the advantages of animation and
adapt traditional narrative tactics to create more engaging animated
data stories.

Timeline Visualization Timeline is an effective and widely used
tool to present temporal events. A well-designed timeline provides
useful context and insights into temporal patterns. For example,
Google News Timeline 1 aggregates and organizes news stories
chronologically. TimeZoom is an interactive timeline widget pro-
viding different time levels [Dachselt and Weiland 2006]. TimeS-
lice supports comparison and exploration of multi-dimensional
event data by presenting structured event data in multi-faceted time-
lines [Zhao et al. 2012]. SchemaLine allows analysts to group notes
along compact timeline visualization and helps users to examine
chronological events [Nguyen et al. 2014]. TimeLineCurator is
an authoring tool for journalists to identify the extent of time re-
ferred by a document and combine timelines with multiple docu-
ments [Fulda et al. 2016]. Based on previous studies, which tend
to use a static timeline, we design an animated timeline to replay
how the data comes into being and reflects user behaviors within
the time span. Making use of the visual saliency of animation, the
temporal changes in data become more noticeable for the viewers.

3 Requirement Analysis

Compared to exploratory interactive visualization, animated visu-
alization provides a more engaging way of data storytelling. Based
on the characteristics of video clickstream data, we first analyse the
requirements of the design :

• R1: The animated visualization should be simple enough for
a general audience. The goal for the animated visualization is

1http://news.google.com/



to tell the data story and convey it to a broader audience. Thus,
the visual form to encode the aggregation of clickstream data
should avoid possible clutter and be easy to read.

• R2: The system should provide a temporal background of the
data. To understand the animation and the data, viewers need
the overall temporal information about the data, which can
help both the data analysts and viewers understand when and
why a temporal event happens.

• R3: The animated visualization should be able to emphasize
the critical events. There might be several important moments
that key events happen within the time span. The animated
visualization should be able to guide users’ attention to the
upcoming key events.

• R4: The animated visualization should be able to engage
users. The encoding of the animated visualization should be
able to keep users attention throughout the time. As users
may easily lose patience for a long animation, the animation
should be informative but not too long. Meanwhile, it should
not place too much cognitive burden and tire users out. The
design of animated visualization should support both long and
short time ranges.

4 Time Remapping and Foreshadowing

One straightforward way to present the temporal clickstream data is
to record, compress and replay the click actions to the users. How-
ever, when temporal events are too sparse, users may be tired and
lose patience; when temporal events are too frequent, users cannot
see the events clearly. To address this problem, we adopt and extend
two successful storytelling tactics in traditional narratives: (1) we
introduce time remapping which is widely used in the traditional
filming and narrative field; (2) we use foreshadowing to make the
animation more engaging and coherent.

4.1 Pacing and Time Remapping

Pacing is a commonly used tactic in fiction, cartoon, and film when
composing traditional narratives. The pace of a narrative relies on
plot, setting, genre of the story, and so on. A fast action forwards
plot moments one right after the other, making the pace of the story
faster. A slower pace contains more details, helping the audience to
understand the story more easily. A well-designed story often in-
cludes narratives that move at varying speeds to keep the audience’s
attention [McKee 1997].
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Figure 2: The mapping from physical time to the time in an anima-
tion. (a) Time Lapse, (b) Time Editing, and (c) Time Remapping.
We choose to use time remapping to compress the temporal length
of our animation.

In filmmaking, many styles of editing and compression are used
to transform videos into more compact and engaging ones [Riedl
and Young 2010]. Figure 2 shows three common techniques, which
can be adapted to the editing and compression of long animated
visualization [Mediacollege 2016].

• Time Lapse compresses time range proportionally. This tech-
nique is usually used to show long processes that are subtle,
such as the motion of the sun, stars in the sky, and so on.

• Time Editing, a.k.a. Montage, extracts the important seg-
ments of the time series and concatenates the segments. Edit-
ing cuts involves careful planning to skip from one shot to a
later shot, but it may make the video more fragmental.

• Time Remapping varies the speed of the animation from time
to time, rather than limiting it to a single speed for a video clip.

Among the above three techniques, Time Lapse can be used when
the data are regular and the scale is small. However, it may not
be suitable for real-world data where user behaviors change sig-
nificantly because there is no single suitable speed throughout the
entire time span. With an increase in compression rate, critical in-
formation may pass too quickly for an audience to catch, which
might even cause substantial loss of valuable details. Time Edit-
ing can be used to show important parts of the temporal data. But
it also has drawbacks: By cutting off insignificant segments, the
audience may not understand how the data develops over time. It
becomes harder for them to understand the differences between the
usual and unusual characteristics of the data without the context
of the commonly seen data. Moreover, some viewers may seek
particular information they are interested in. Therefore, it is still
important for the users to access the entire time series. In the fi-
nal design, we adopt time remapping tactic, which is extensively
used in traditional video productions to make duration shorter than
in real time [Bordwell et al. 1997], providing more understandable
temporal connections of the whole story. Specifically, we adopt an
inverse ratio for the data volume and the compression rate. More
click actions in a time range correspond to a lower compression
rate.

4.2 Foreshadowing

Foreshadowing is a narrative element that hints at what is to come
and is thus widely used to engage the readers. By using foreshad-
owing in storytelling, the authors can add tension to a story by
building anticipation about what might happen next.

Existing foreshadowing tactics can be divided into several types
(Fig. 3): (a) explicitly show future events with a flash-forward
jump; (b) implicitly forecast with some elements used in the later
story, such as a gun hidden in a drawer; and (c) signify future events
with the characters or symbolizing the events with metaphors, such
as a mirror breaking, or a black cat crossing [Foreshadowing.org
2016]. These tactics in the literature or cinematography usually
aim at building suspense, so as to leave a deep impression on the
audience. However, storytelling for real data and real events needs
to consider the facticity. We need to establish anticipation of the
users for future events based on real data to keep the audience’ at-
tention on our animated visualization. Therefore, we design visual
foreshadowing as visual cues to facilitate the audience’ preparation
for the upcoming moments when critical events happen.

Figure 3: Three styles of foreshadowing. (a) explicit, (b) implicit,
and (c) signified.



5 Animated Visualization Design

Although there have been applications for animated visualization,
there is still a lack of design guidelines for generating animated nar-
rative visualization. Therefore, our system is created in an iterative
refinement process. Based on the initial requirements we outline in
Section 3, we implement a preliminary design, work closely with
data analysts to gain direct feedback, and then refine it in multiple
rounds.

We integrate all the components into the interface of the system.
The top of the system shows a focus+context timeline, on which we
show the accumulation of the video clickstream over time (Fig. 1a).
With animated bubbles to symbolize click events (Fig. 1c), a clock
is provided to show certain moments when click events happened
(Fig. 1b). Below, a stacked graph gradually filled with bubbles indi-
cates the accumulation of past events in dark colors and data events
to come in the future in light colors (Fig. 1d).

5.1 Designs for Animations

There are three kinds of information in clickstream data: the times-
tamp of each click action, the video time of each click action, and
the type of click action (e.g., “play” and “seek”).

Figure 4: Design alternatives to show the video clickstream data.
(a) Bubbles flicker along the video time bar; (b) Curves move up-
ward in the line chart , showing the accumulation of click events;
(c) Bubbles fall towards the time bar.

Click Event Representation To show click events along the
video progress bar, we use small bubbles moving downward as time
goes and colors representing different types of click events. The
clock starts from the time the video was released. When the clock
starts to run, small bubbles in different colors start to fall, repre-
senting how people interact with this video throughout a time range
(Fig. 4c). Fig. 4 shows three potential designs to represent click
events: (a) A simple design is to directly show the video progress
bar with bubbles flickering in different colors, indicating the types
of the click action. This design gives users a direct impression of the
distribution, and the amounts of different types of click events over
time. However, when the animation is compressed, quickly flicker-
ing small dots causes severe memory problem. Users may forget the
pattern immediately after they see the dots. (b) Line charts are com-
monly applied to show continuous changes over time. Animating
line charts by enabling them to move upwards from the baseline is
another straightforward design to indicate the accumulation of click
actions with time. However, this may raise visual clutter issues and
users cannot easily figure out the changes of different types of click
events. Therefore, we adopt the third design (c) to keep the design
simple and legible. When the bubbles fall on the screen, users can
compare and trace patterns around certain timestamps more easily.

Figure 5: Design alternatives for the bubbles. (a) Each bubble
shows one click; (b) The size of each bubble shows the number of
clicks in a small time interval; (c) The opacity of each bubble shows
the number of clicks in a small time interval; (d) The video progress
bar is equally divided and each pie chart bubble shows the number
and percentage of clicks within a certain time range.

Event Aggregation When the number of bubbles increases, there
is a higher cognitive burden on the users. Therefore, we aggregate
the number of click actions by small time intervals, and use the
size of bubbles to encode the click counts of videos (Fig. 5b). We
consider four design options:

• Fig. 5a uses small bubbles of the same size, with each bub-
ble representing a unit number of clicks. Users perceive the
number of clicks through the density of tiny bubbles. How-
ever, with this design, bubbles at the same time stamp could
overlap, causing visual ambiguity.

• Fig. 5b uses bubbles of different sizes, with larger bubbles
representing more click counts. Users can easily observe the
larger bubbles, with the event time and the position over the
video progress bar.

• Fig. 5c depicts bubbles of different opacity: the more opaque
the bubbles, the more click counts. Unfortunately, this design
does not scale well when a burst of click events happens in a
short period of time.

• Fig. 5d involves a combination of bubbles and pie charts (or
other glyphs). We equally split the time of the video progress
bar into N segments and aggregate the information in each
segment. The ‘pie bubbles’ represent the numbers of differ-
ent types of click actions. The aggregation further reduces the
number of bubbles. However, we do not adopt this design be-
cause: (1) Using pie charts is not very intuitive and may add
a cognitive load to the users. (2) The performance of this de-
sign relies heavily on the proper choice of N. The aggregation
along the video progress bar risks losing valuable information
and missing potential patterns.

5.2 Designs for Time Remapping

As discussed in Sec. 4.1, we edit the animated visualization us-
ing time remapping to make it more compact and engaging. In
traditional films and cartoons, which record motions in the real
world, the speed changes do not affect humans’ perception of the
story because the internal logic of the plot and human knowledge
about the real world motion make it easier for an audience to un-
derstand the passage of time. However, for abstract and complex
InfoVis, it is much more difficult for humans to identify the play
rate changes. For example, when the number of falling bubbles
suddenly increases, viewers may consider two potential causes: (1)
the play rate of the animation increases, and (2) the number of click
events increases. To tackle the problem, we design visual cues to
indicate time and speed of our animation.



Rate Changes To reduce the ambiguity problem, we redesign the
motion of falling bubbles. We adopt force-based animation by mod-
elling the physical movement of falling bubble in the air. There-
fore, there are two main forces for each bubble: Their weights
(the force of gravity) pulls them down while they also experi-
ence an upward dragging force, air resistance. According to New-
ton’s second law, the acceleration of each bubble becomes, a =
(mg−0.5CdrV 2A)/m, where Cd is the drag coefficient, r is the den-
sity of air, V is the speed of the object relative to the air, A is the
cross sectional area, m is the mass of the object, and g is the grav-
itational acceleration. Therefore, when the play rate of animation
increases, not only does the occurrence of new bubbles increase,
but also the acceleration of each bubble. Through the falling speed
of the bubbles, users can more easily distinguish the changes in the
rate of the animated visualization.

Focus+Context Timeline To build logical connections, raise users
expectations, and keep their attention, we design an animated time-
line to give an overview of the click events data. Timeline is a com-
monly used method to represent a time dimension. The audience
can build visual anticipation and avoid short-term memory prob-
lems through the intuitive visual summary. We combine a simple
bar chart design with the timeline.

(a) (b)
(c)

(d)

Figure 6: Different styles of focus+context timeline design. (a)
The context and focus view are placed side by side; (b) The focus
window is moved from left to right; (c) The focus window is put in
the center and the context moves from right to left; (d) The focus
window with a fish eye design. The context moves from right to left.

To make the users’ attention more focused, we design a fo-
cus+context timeline. The focus part of the timeline shows the spe-
cific time of the animation while the context part of the timeline
covers a long time range of all the click actions. Fig. 6 shows four
design alternatives. The first choice is to move the sliding window
from left to right and magnify the area inside the window (Fig. 6a).
However, after implementing the design, we find this could be very
distracting for the users, since they have to track the sliding win-
dow, the magnified area, and the falling of bubbles simultaneously.
The second design reduces the distractions by embedding the mag-
nified area into the timeline (Fig. 6b). However, users still have to
track both the sliding window and the falling bubbles. To minimize
users’ visual load, the third and the fourth designs move the time-
line instead of the window. In the third choice, the focus part is
magnified (Fig. 6c). Users have a fixed position to focus on, lib-
erating them from having to move their eyes along with the sliding
window. The fourth choice (Fig. 6d) is the same as the third one
except that it adopts a fish-eye focus. The fish eye further increases
the bar width near the center. However, the distortion may confuse
users about the true heights of the bars. Hence, we choose the third
design.

5.3 Designs for Foreshadowing

Foreshadowing is an essential hint about information to be shown
in a video. Specifically, our visual design of foreshadowing lies
in two aspects: (1) The overview timeline foreshadows the distri-
bution of click counts over the whole time span. (2) The stacked
graph foreshadows the final click counts for each type of click and
for each time stamp.

Figure 7: Timeline Design: (a) A timeline with time Spring and a
bar chart to give an overview of the animation; (b) Bubble icons.
Two example foreshadowing cues on the timeline. The video time-
line is divided into three parts. The three small dots shows the ap-
proximate distribution of different bubble colors (different colors
indicate different types of clicks).

Foreshadowing on Timeline Over a long time span, there might
be some key events with important patterns that users need to pay
attention to. Therefore, we want to alert the users so that they do not
miss those key events. Three foreshadowing visual cues are added
on the timeline:

• Overview bar charts: The bar chart on the timeline is an
overview of the clickstream over the entire time range to indi-
cate the number of clicks over time, as shown in Fig. 7a.

• Time Spring: We design a spring above the timeline to serve
as a visual cue for the play rate of the animation. As shown
in Fig. 7a, a tighter spring indicates a higher rate and a looser
indicates a slower rate. Usually before and during the emer-
gence of key patterns, the spring will get looser, meaning that
the play rate has been tuned down for users to take a close
look at the click events.

• Bubble icons: As shown in Fig. 7b, we use tiny bubbles on
the timeline to present the approximate distributions over dif-
ferent types of clicks. To make it simple to understand, we di-
vide the video timeline into three segments and use the color
of the majority bubbles in each segment as the representative
color.

We calculate the total number of click events in each time range
unit, and use a normal distribution model to mark the time ranges.
Many data mining techniques can also be used for pattern recog-
nition. Data analysts can further define the patterns based on their
own experience and domain knowledge about the video clickstream
data.

Foreshadowing on Stacked Graphs We use a stacked graph to
show the accumulation of video clickstream data. However, naively
showing the stacked graph growing over time could confuse the
users. To be more specific, since the baseline of one layer in the
stacked graph depends on all layers below it, both the baselines and
heights will vary over time in this design, compromising users’ per-
ception on the trends of each layer. In order to reveal the temporal
pattern and provide a review of both what has happened and what
will happen next, we design a stacked graph with filling effects. In
other words, we indicate the final number of click events by show-
ing a lighter color with small bubbles falling into the layers. The
bubbles gradually filling and melting into the stacked graph layers
are designed to indicate the past and future numbers of clickstreams
at different stages (Fig. 8).



Figure 8: The encoding of animated stacked graph design: the col-
ors represent different types of click actions and the size indicates
the number of click actions.

5.4 Implementation

The front-end of our animated visualization system is imple-
mented with D3.js, and we use the physics engine Box2DWeb
(http://box2d.org/) to manage force-based animation. We deploy
the back-end of the system into our server (with a 2.7GHz Intel
Core i7 CPU, 8GB memory PC). The data are stored in a local
database. We design the system as a web-based application, so that
the authors and audience can easily access the animated visualiza-
tion through a single web browser.

Transitions “Ease in and ease out” is a commonly used technique
in animation to give a smooth transition and provide better user
experience [Dragicevic et al. 2011]. We utilize this technique when
switching the play rate of the animation. Moreover, if the play rate
switches too frequently, the users may feel dizzy. Therefore, we
merge adjacent highlighted parts on the timeline. For example, if
two parts of the animation that are shown at slower speeds are too
close to each other, we will combine them.

Control Panel On the left side of the system, a control panel is
provided for users to choose the clickstream dataset and adjust the
parameter settings. We also support the author mode and the user
mode. Both authors (data analysts) and viewers (general audience)
can perform their own adjustments. Authors can highlight the most
important events and edit the animation iteratively while viewers
can fine-tune the overall speed of the animated visualization. The
control panel is hidden when not used.

6 Use Case

In this section, we demonstrate the system with a real dataset from
edX2. We obtain the user clickstream data of a course offered by
our university.

Emily, a hard-working TA of the online course, browses through
the clickstream data of the on-going course and tries to assess the
students’ performance, to see whether she can gain interesting and
valuable insights from the clickstream data. She starts by loading
the data for a lecture. Then, the system generates the clickstream
animation for the loaded lecture. In the animation, bubbles of var-
ious colors (indicating different types of click actions) fall down
from the timeline at the beginning of the course,. “It is difficult
to tell what types of clicks are most frequent,” she says. She no-
tices that there is a bubble icon on the timeline, so she waits for the
next event. Suddenly, a surge of green and yellow bubbles (‘play’
and ‘pause’ clicks) starts falling down (Fig. 9a). From the date and
time shown, she is reminded that the surge of clicks happened when

2https://www.edx.org/
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Figure 9: Cases: (a) The start of a course, with many play and
pause events, (b) concentrated emergence of stalled event, and (c)
a large amount of seek events.

the instructor was explaining about a rather obscure concept in the
course. She therefore marks down the reasons for the events. Emily
sometimes observes surges of red bubbles (Fig. 9b). Considering
that the ‘stalled’ states are often caused by heavy network traffic
and hence irrelevant to the course itself, she decides to ignore them.
Although most of the other colors in the stacked graph are nearly
filled up, the blue stream is still quite empty. She patiently watches
the animation and waits. In an instant, another bunch of blue bub-
bles (‘seek’ clicks) attracts her attention (Fig. 9c). Wondering what
the cause might be, Emily finds that the date of this phenomenon
is around the final exam date. She suspects that the high occur-
rence of the ‘seek’ clicks is due to this lecture video being closely
related to final exam, and therefore, students intensively review the
lessons. Again, after taking corresponding notes, Emily carefully
marks down the video positions that were frequently sought by the
students, since those video contents may need further emphasis dur-
ing class. On the next day, Emily takes the animation to the meet-
ing room, plays the animation in the user mode at a constant rate of
0.8, slower than the original rate to synchronize with her oral ex-
planation, and explains to the instructors what she had found. The
instructors and the fellow TAs are greatly impressed and decide to
discuss more about the difficult concepts found by the system in the
next term.



Figure 10: The scores of our designs (the bottom columns) wins
the baseline design (the top columns) in all the aspects of engaging
experience. Error bars show standard errors.

7 User Study

Our system is tailored to guide the general audience to understand
data in a more engaging way. Through manipulating time dimen-
sions based on the importance of temporal events recognized by
data analysts, we are able to provide a more intuitive form of repre-
sentation for the temporal data. To confirm this, we ran a pre-study
where we asked an expert data analyst to ensure that the events iden-
tified were reasonable from the viewpoint of their domain knowl-
edge. After that, a formal study was conducted to compare the ef-
fects of showing the animation of video clickstream data with and
without time compression and foreshadowing designs.

Study Design For the qualitative study, we recruited 12 participants
(7 males and 5 females) between the age of 21 and 29. Their edu-
cational background ranged from computer science, electrical engi-
neering, to arts. We started our user study by introducing the dataset
background and the encoding scheme of the proposed visualization.
Then, two animated visualizations with different datasets were pro-
vided to them. The participants could watch the whole animation
without pause and take notes on a white paper. Both animated vi-
sualization designs could be viewed only once. After that, they
were asked to finish four task-specific multiple-choice questions
(two for each video) about when and what happened on a certain
day regarding some patterns. We also gave the subjects a ques-
tionnaire with fifteen subjective questions to answer after watching
the video clickstream data with and without time compressing and
foreshadowing designs. These questions evaluated our system on a
7-point Likert scale. The questions covered two important aspects:
the workload analysis and engagement experience compared with
the baseline system. Additionally, we concluded every session by
asking semi-structured questions to collect detailed feedback and
suggestions for future improvements. The order of the evaluation
on our system and the baseline are also counterbalanced.

Results and Discussion Overall, all of our participants chose our
design with nonlinear time mapping and foreshadowing as their
preferred presentation style. Their responses were: “The visual de-
sign made observing the video clickstream data more engaging and
interesting.” In the questionnaire, participants were asked about
their workload when completing the tasks by watching the anima-
tion of video clickstream data with and without our designs. The
workload was further explained in terms of mental, physical, tem-
poral, effort and frustration. The average level of workload in our
design was 2.63 on a 7-point scale, and that of the baseline design
was 4.05 on average (Table 1). All participants were convinced that
our time compressing and foreshadowing designs would greatly re-
duce their perception load.

Task load Mean (a) Mean (b) SD (a) SD (b)

Mental load 2.92 4.08 1.68 2.15
Temporal cost 2.67 4.42 1.72 1.83
Efforts 2.42 3.92 1.73 1.93
Frustration level 2.25 4.08 1.29 1.51

Table 1: The scores of workload measurement from a 7-point Likert
scale questionnaire. (a) shows the rates of our design while (b)
shows the results of a baseline design

In addition to evaluating the perception stress and workload, we
also wanted to find out how much users engage in the animation
when watching the clickstream data. The engagement was refined
in the following aspects: awareness, excitement, enjoyment, curios-
ity, anticipation, attention, persistence, aesthetics, understandabil-
ity, and memorability on a 7-point scale ranging from the worst
(1) to the best (7) experience. Fig. 10 displays the results of our
measurement, which shows the participants found our designs more
engaging, especially in the case of excitement, enjoyment, anticipa-
tion, and aesthetics.

In the open-ended feedback session, participants particularly valued
the time-compressing design (spring) and also found the timeline
with foreshadowing designs, as well as the falling bubbles useful to
anticipate and stress patterns. They appreciated the overall aesthetic
design of our system. One participant said: “the system with time
compressing and foreshadowing design is better than the baseline
system in terms of its ability to draw my attention.” Regarding
the information obtained from the two animated designs, most of
the participants wrote down the dates they observed to help answer
the follow-up questions of the tasks after watching without much
detailed descriptions of the corresponding patterns. Compared with
the baseline system, most participants took about half the amount
of notes when using our system.

8 Conclusion

We have proposed an animated narrative visualization system to
present temporal video clickstream data, which enable the audience
to understand data and the underlying patterns in a more engaging
way. Specifically, we make use of the time remapping and fore-
shadowing techniques in the film field. To help users build up their
anticipation of the coming events, we design an animated timeline
and an animated stacked graph with foreshadowing visual cues. In
addition, we evaluate the system through a real world clickstream
dataset. To validate the perception of the temporal remapping and
foreshadowing cues, we design and conduct a user study to evalu-
ate the subjective engagement level of our design, showing that the
audience is engaged with the animation.

Our work opens up new possibilities for future work in animation-
based narrative visualization with data. Moreover, the animation
design should not just be limited to video data. They can also be
applied to general temporal data. In the future, we plan to conduct
a more detailed quantitative study for different visual elements. We
will expand our design choices by including considerations of more
possible narrative elements.
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