
Representation Learning for Event-based Visuomotor Policies

Sai Vemprala
Microsoft Research

sai.vemprala@microsoft.com

Sami Mian*

University of Pittsburgh
sami.mian@pitt.edu

Ashish Kapoor
Microsoft Research

akapoor@microsoft.com

Abstract

Event-based cameras are dynamic vision sensors that
can provide asynchronous measurements of changes in per-
pixel brightness at a microsecond level. This makes them
significantly faster than conventional frame-based cam-
eras, and an appealing choice for high-speed navigation.
While an interesting sensor modality, this asynchronous
data poses a challenge for common machine learning tech-
niques. In this paper, we present an event variational au-
toencoder for unsupervised representation learning from
asynchronous event camera data. We show that it is feasible
to learn compact representations from spatiotemporal event
data to encode the context. Furthermore, we show that such
pretrained representations can be beneficial for navigation,
allowing for usage in reinforcement learning instead of end-
to-end reward driven perception. We validate this frame-
work of learning visuomotor policies by applying it to an
obstacle avoidance scenario in simulation. We show that
representations learnt from event data enable training fast
control policies that can adapt to different control capac-
ities, and demonstrate a higher degree of robustness than
end-to-end learning from event images.

1. Introduction

Autonomous navigation is an area that has received sig-
nificant interest over the years, but remains a challenging
task. As intelligent navigation is driven by a tight coupling
between perception and action, it is particularly challenging
for fast, agile robots such as unmanned micro aerial vehi-
cles (MAV) that are often deployed in cluttered and low al-
titude areas. For such reactive navigation applications such
as obstacle avoidance, low sensor latency is the key to per-
forming agile maneuvers successfully [1]. MAVs are also
limited in their size and payload capacity, which constrains
onboard sensor choices to small, low-power sensors, and
the computational load of the processing algorithms to be
minimal.

*Work done while interning at Microsoft Research.

Figure 1: Event cameras provide fast, asynchronous measure-
ments of per-pixel log luminance changes. We present a repre-
sentation learning technique that can encode context from such
spatiotemporal event bytestreams. Subsequently, we show these
low-dimensional representations are beneficial for learning visuo-
motor policies through a simulated UAV obstacle avoidance task.

Modern computer vision and machine learning tech-
niques for perception and navigation typically focus on an-
alyzing data from conventional CMOS based cameras, in
various modalities such as RGB images, depth maps etc.
While these cameras provide high resolution data, the main
drawback of these sensors is their speed, with most averag-
ing output at a rate of 30-60 Hz. This makes such sensors
unable to scale up to the perception data rate required by
agile navigation.

Inspired by biological vision, neuromorphic engineering
has resulted in a novel sensor known as the dynamic vision
sensor, or an event-based camera [2]. These cameras detect
and measure changes in log-luminance on a per-pixel basis,
and return information about ‘events’ with a temporal res-
olution on the order of microseconds. Due to the increased
sampling speed of these cameras and the minimal process-
ing needed to parse the data, perception using event cameras
can be much faster than traditional approaches. This can
allow for faster control schemes to be used, as enough rel-
evant environmental information can be collected quickly
in order to make informed control choices. Moreover, the
events are inherently generated by changes in brightness
typically arising from motion. This makes event cameras
natural motion detectors and a good fit for learning control
policies.

But the fundamentally different visual representation of

1

event cameras poses significant challenges to quick adop-
tion. Event cameras produce fast and asynchronous spa-
tiotemporal data, significantly different from synchronous
frame-based data expected by conventional machine learn-
ing algorithms. In addition, the quality of the data recorded
by an event camera is different from traditional perception
sensors; the sensors return low-level data that could vary
significantly based on the firing order of pixels, lighting
conditions, reflections or shadows.

Previous research has approached this modality through
two main classes of techniques. Some approaches [3, 4] ac-
cumulate event data over time into a two dimensional frame,
and use traditional computer vision/convolutional neural
network based techniques with these frame-based inputs.
Traditional CNN approaches combined with such accumu-
lation fail to exploit the true advantages of event cameras
such as the microsecond-scale temporal resolution, and may
prove to be too intensive for high-speed action generation
onboard constrained platforms. Another class of techniques
involves the usage of spiking neural networks (SNN) [5].
SNNs operate through spiking neurons to identify spatio-
temporal firings, making it a natural match for event cam-
eras. Yet, training spiking neural networks is hard, as they
do not use standard backpropagation, and often require spe-
cialized hardware to truly realize their efficiency [6, 7].

In this paper, we explore a way to interpret asynchronous
event camera bytestream data, and to learn visuomotor
policies from it using standard machine learning meth-
ods (Fig. 1). We propose learning representations from
event data in a way that allows for high temporal resolu-
tion as well as invariance to data permutations and spar-
sity, and achieve this by creating an event variational au-
toencoder (eVAE). The eVAE is equipped with an event
feature computation network that can process asynchronous
data from arbitrary sequence lengths, or in a recursive fash-
ion. Inspired by the recent success of Transformer networks
[8, 9, 10], the eVAE uses a temporal embedding method
that preserves the event timing information when comput-
ing latent representations. Next, we show that such rep-
resentations can be beneficial for reactive navigation, by
applying them as observations in a reinforcement learning
framework. Training policies over an existing representa-
tion allows the control policy to generalize to different data
rates, exploiting the invariances of the representation, and
has potential to reduce model size/search space. We de-
fine obstacle avoidance for UAVs as our task of interest and
demonstrate how event camera data can be effectively uti-
lized for avoidance at high control rates. Through an event
data simulator, we simulate scenarios where the UAV is as-
sumed to be controlled at up to 400 Hz, and show that the
ability of the representations to handle sparse data allows
the policy to adapt to high control rates. The key contribu-
tions of our work are listed below.

1. We present an event variational autoencoder for unsu-
pervised representation learning from fast and asyn-
chronous spatiotemporal event bytestream data.

2. We show that these event representations capture suf-
ficient contextual information to be useful in learning
reactive visuomotor policies.

3. We train policies over event representations using re-
inforcement learning for obstacle avoidance for UAVs
in simulation.

4. We discuss advantages of using bytestream representa-
tions for policies: such as adaptation to different con-
trol capacities, robustness to environmental variations.

2. Related Work

Vision-based representations and navigation

Variational autoencoders have been shown to be effec-
tive in learning well structured low-dimensional represen-
tations from complex visual data [11, 12, 13]. Leverag-
ing such methods, recent research has focused on the de-
coupling of perception and planning, showing that sepa-
rate networks for representation and navigation is effective
[14, 15]. As the representation is expected to capture rich
salient information about the world with a degree of invari-
ance, this combination allows for higher sample efficiency
and smaller policy network sizes [16].

Feature learning from Event Cameras

Some of the early work conducted on processing event
data resulted in computing optical flow using the asyn-
chronous data, focusing on high-speed computations with
minimal bandwidth [17]. Event representations included
histograms of averaged time surfaces (HATS), where tem-
poral data is aggregated to create averaged data points ca-
pable of being used as input for traditional techniques [18]
and hierarchy of event-based time surfaces (HOTS), another
representation for pattern recognition [19].

Learning from Sequences and Sets

Learning from event data can be treated as a case of
learning long, variable length sequences. While conven-
tional RNNs are found to be infeasible for such lengths,
approaches such as Phased LSTM [20] propose adding a
time gate to LSTM for long sequences. If the spatial and
temporal parts were decoupled, the problem can be refor-
mulated as permutation-invariant learning from sets. Qi et
al [21] present PointNet, which is a one such permutation
invariant approach aimed at learning from 3D point cloud
data. Similarly, Lee et al [22] present the Set Transformer,
an attention-based learning method for sets.

2

Event Cameras and Machine Learning

From a machine learning perspective, Gehrig et al [23]
introduced a full end-to-end pipeline for learning to repre-
sent event-based data, which discusses several variants such
as event data aggregated into a grid-based representation,
event spike tensors, and 3D voxel grids. Asynchronous ver-
sions of convolutional neural networks are also being devel-
oped to take advantage of the sparsity in data such as that
of event cameras [24, 25]. Stacked spatial LSTM networks
were used with event sequences for pose relocalization in
[4]. EV-FlowNet [26] is an encoder-decoder architecture for
self-supervised optical flow for events, which uses frame-
based inputs processed through convolutional layers. The
asynchronous nature of event data was handled through a
permutation-invariant and recursive approach in EventNet
[27]. Event camera based perception was used in other ap-
plications as well, such as self-supervised learning of opti-
cal flow [28], steering prediction for self driving cars [3].
Spiking neural networks were also used to examine event-
based data [29, 30, 31, 32, 33, 34].

Sensorimotor Policies with Event Cameras

Only very recently has there been work on combining
event camera data with sensorimotor policies. Event camera
data was coupled with control for autonomous UAV landing
in [35], [36]. EVDodge [37] creates an avoidance system
for UAVs by using event data to track moving objects and
infer safe avoidance maneuvers based on these measure-
ments, combining multiple modules such as homography,
segmentation, with the actions driven by a classical control
policy. Event camera data was also used to power a closed-
loop control scheme for a UAV in flight by tracking roll an-
gles and angular velocities in [38]. Reinforcement learning
using event camera data has also been explored recently,
using accumulated event frames fed into CNN-based pol-
icy networks for ground robots [39] and for UAV obstacle
avoidance [40].

3. Representation Learning for Event Cameras
3.1. Event-based camera

An event based camera is a special vision sensor that
measures changes in intensity levels independently at each
of its pixels. Given a pixel location (x, y), the funda-
mental working principle of an event-based camera is to
measure the change in logarithmic brightness at that pixel,
i.e., ∆log I({x, y}, t) where I is the photometric intensity.
When this change in logarithmic brightness exceeds a set
threshold, the camera generates an ‘event’, reporting the
time and location of change, along with whether the change
is an increase or decrease in intensity at that pixel location.
In contrast to conventional cameras which output a set num-
ber of frames per second, an event camera outputs events

sparsely and asynchronously in time as a stream of bytes,
which we refer to as an event ‘bytestream’. These events are
produced at a non-uniform rate, and the number can range
from zero to millions of events per second. For example, the
DAVIS 240 camera [41] has a theoretical maximum limit of
12 million events per second.

3.2. Definitions and Notations

For an event camera of resolution (H,W), we define an
event as a tuple of four quantities e = (t, x, y, p) where t
is a global timestamp at which the event was reported by
the camera, (x, y) the pixel coordinates, and p the polar-
ity. A sequence of events over a time window of τ can thus
be represented as Eτ = {ei|t < i < t + τ}. When slid-
ing a constant time window of τ over a longer sequence of
events, we can see that the length of Eτ will not be con-
stant as the number of events fired in that interval would
change based on environmental or sensory considerations.
The events in Eτ can also be accumulated and represented
as a corresponding event image frame IEτ .

3.3. Event bytestream processing

Given event data as an arbitrarily long bytestream Eτ ,
the objective of representation learning is to map it to a
compressed vector representing the latent state of the envi-
ronment zτ through an encoder function qe(Eτ). The chal-
lenges here are two-fold. First, due to the non-uniform and
asynchronous nature of the event camera data, the same ob-
ject being imaged multiple times by an event camera could
result in different permutations of the output. Hence, to han-
dle the asynchronicity of event cameras, we require a fea-
ture computation technique that is invariant to data order-
ing. Secondly, while event sequences are time-based data,
recurrent neural networks would prove to be infeasible due
to the often long sequence lengths. Decoupling the tem-
poral information from the spatial/polarity information al-
leviates this problem. To achieve this, first we build upon
the architectures aimed at learning unordered spatial data:
PointNet [21], which computes features for 3D point sets,
and EventNet [27], which extends the concept to event data
by adapting it for recursive processing of events.

We build upon these architectures to create an ‘Event
Context Network’ (ECN). The ECN is functionally simi-
lar to PointNet, wherein it takes an arbitrarily long list of
events, and first computes a feature for each event. Eventu-
ally, these features are passed through a symmetric function
(similar to PointNet, we also use a max operation), resulting
in a global feature that is expected to condense information
from all the events. The symmetric nature of this function
ensures that these events in a given list can be processed ei-
ther as a single batch, or recursively with any minibatch size
to compute the output. We call the output of this feature net-
work the ‘context vector’. The ECN consists of three dense

3

Figure 2: Architecture of the event variational autoencoder (eVAE). Events from the bytestream are directly processed by a PointNet-styled
network to compute individual features. Temporal embeddings are added to these features and the max operation results in a global context
vector. This is then projected into a latent space, and subsequently decoded into an ‘event image’.

layers which, for N input events, output an N × D set of
features. The data passed into these dense layers is only the
(x, y, p) part of the events - and we discuss how we handle
the temporal information next.

3.3.1 Temporal embedding

Timestamps in the event data inherently encode the
continuous-time representation of the world that was per-
ceived during the given time slice, and it is important to
retain them so the compressed representation is sufficiently
informative of the evolution of the world state. On the other
hand, incorporating the timestamp is not equally straight-
forward. Due to the asynchronicity of the data, a particu-
lar event that has fired may have any arbitrary timestamp
within the sequence. Hence, including the temporal data as
an input to the ECN directly would interfere with the feature
computation, as the global timestamps are arbitrary values,
and even the relative time difference of each event would
change every time new events are is received, necessitating
a recomputation of the features.

Instead, we propose using temporal embeddings. We uti-
lize the positional encoding principle that was first proposed
for Transformer networks in [8]. For an event set En with
n events, we first normalize the timestamps to [0, 1] such
that the timestamp correesponding to the end of the window
maps to 1. The ECN computes a D-dimensional temporal
feature for each normalized timestamp as follows:

te(t, 2i) = sin

(
100t

1000i/d

)
, te(t, 2i+ 1) = cos

(
100t

1000i/d

)
(1)

where i ∈ [0, d/2], t ∈ [0, 1]

These embeddings are summed up with their corre-

sponding features. The ECN passes this N ×D feature set
through the symmetric function max to obtain a 1 × D fi-
nal context vector. The ECN contains three dense layers for
the feature computation along with the temporal embedding
module and the max pool operator (Fig. 2).

3.4. Event Variational Autoencoder

When learning representations for control, it is important
for an efficient dimensionality reduction technique to create
a smooth, continuous, and consistent representation. It is
also desirable to have the encoded vectors’ dimensions map
to specific learned attributes of the perceived information,
which can then be exploited by the control policies for in-
terpretable learning. To achieve this, we extend the feature
computation described in the previous section using varia-
tional autoencoders.

A variational autoencoder (VAE) [11] provides a prob-
abilistic framework for mapping observations into a latent
space. A VAE thus requires its encoder to describe a prob-
ability distribution for each latent attribute, instead of map-
ping attributes to outputs randomly. The VAE attempts to
learn a parametric latent variable model by maximizing the
marginal log-likelihood of the training data, composed of a
reconstruction loss and a KL-divergence loss.

l(θ) ≥
M∑
i=1

EQi(zi)[logpθ(xi|zi)]–DKL(Qi(zi|xi)||p(zi))

(2)
The event VAE (eVAE) operates on the context vector

computed by the ECN. Our encoder is composed of two
dense layers as seen in Fig. 2. Instead of trying to recon-
struct the entire input stream in the decoding phase, we use
an ‘event image decoder’ which attempts to decode the la-
tent vector back to an approximate event image correspond-
ing to the input sequence. This event image is a single

4

channel image frame that is the result of accumulating all
the events according to their pixel locations and polarity
values, scaled by the relative timestamps. Through this re-
construction loss, we ensure the representation captures the
key features of object locations, motion (through polarity),
and the recency of events. We assume that a representa-
tion driven by an image decoder is sufficient for tasks like
reactive navigation as it can capture the essence of the en-
vironment from fast event data, and perfect reconstruction
of the input stream is not the main goal. The decoder qD
is another two dense-layer network that takes the (sampled)
latent vector zτ and outputs a reconstructed image ÎEτ . To
compute the reconstruction loss, we use the mean squared
error (MSE) between the reconstructed image and the ex-
pected event image. The eVAE is trained using the combi-
nation of the reconstruction loss and the Kullback-Liebler
(KL) divergence loss.

The training is performed end-to-end, so the weights for
the ECN and encoder-decoder are all learnt simultaneously.
During training, we use the annealing trick from [42] for
the KL divergence loss in order to prevent KL vanishing,
allowing the latent space to first encode as much global in-
formation as possible in the latent variables. While training,
the eVAE can receive input data in two ways. The data can
be passed as a set of batches with a predefined number of
events per batch, or can be sliced according to a predefined
time window where each window has a different number of
events. During inference, as in our application, the eVAE is
expected to drive control commands, the length of the time
window corresponds to the control frequency of the vehicle.
This allows the context vectors to be computed either once
at the end of the time window, or recursively at a faster rate
where the context is computed and updated internally, and
mapped to the latent vector when the control command is
needed.

4. Event-based Reinforcement Learning
Through the use of the eVAE, we can learn task-agnostic

representations of event sequences. The next problem we
wish to tackle is the idea of using event cameras for naviga-
tion/planning purposes. While a straightforward approach
would be to learn perception features together with actions,
this would not scale well to event bytestreams. As event
cameras return data at a very high rate, relying on slow re-
wards, for instance, to learn features in an end-to-end man-
ner would be a disadvantage. Recent research has identified
that decoupling perception and policy networks and using
intermediate representations enables faster training, higher
performance and generalization ability [43]. We adapt this
approach to event cameras, and propose using the eVAE
representations in a reactive navigation framework to val-
idate their effectiveness in perception-action loops. We de-
fine our task as collision avoidance for a quadrotor drone:

Figure 3: Training environment for obstacle avoidance, and a
sample RGB image with corresponding event image view.

where in simulation, the drone is expected to navigate from
a start region to a goal region through an obstacle course,
while avoiding collisions with any obstacle. In order to
safely navigate in this way, the drone needs to be aware
of the state of the environment s, given which the drone
is expected to select an optimal action a∗. Regardless of
global positions of the drone or the obstacle(s), the drone
should move in a particular direction that allows it to con-
tinue in collision-free areas, and repeat this behavior till the
drone reaches its goal state. Hence, navigation and obstacle
avoidance constitute a sequential decision making problem,
which we address through reinforcement learning.

4.1. Background

We follow a conventional RL problem formulation for
the reactive navigation task. As the quadrotor navigates
in the environment and obtains event camera data, we pass
the sequences output by the camera through the eVAE’s en-
coder and consider the output latent vector z to be the ob-
servation of the world state, such that zt = O(.|st). The
objective of the reinforcement learning approach is to learn
a good policy πθ(a|z).

We train our policies using the Proximal Policy Opti-
mization (PPO) [44] algorithm. PPO is an on-policy pol-
icy gradient method, a class of methods that generally seek
to compute an estimator of the policy gradient and use
a stochastic gradient ascent algorithm over the network
weights. The core principle of PPO is to ‘clip’ the extent of
policy updates in order to avoid disastrously large changes
to the policy. At time t, for an advantage functionAt and for
a given ratio of probability under new and old policies rt,
PPO solves a modified objective function for the estimator
that can be written as:

LclipPG (θ) = Ê
[
min(rt(θ)Ât, clip

1+ε
1−ε(rt(θ))Ât)

]
(3)

4.2. Implementation

We create an obstacle avoidance scenario within the high
fidelity quadrotor simulator AirSim [45], coupled with a
modified version of the event data simulator from [40].
The quadrotor is assumed to be equipped with a forward-
facing event camera. As the event simulator emulates events
through the difference of two subsequent normal (RGB
or grayscale) images, it is necessary to capture images at

5

whichever frequency we desire to control the drone. Due to
this limitation, we discretize the motion model of the drone,
where assume that the drone is moving at a constant pre-
defined velocity but the actions are of a variable step size
that is dependent on the control frequency. We assume the
drone to be a simplistic point model moving at a speed of
20 m/s; thus, for example, the step size for a 200 Hz control
would be 0.1 m. For simplicity, we use a discrete action
space with three actions: forward, left, and right, each as
long as the desired step size. Fig. 3 shows an example of
RGB frame capture from AirSim using the drone’s camera,
as well as the event camera simulator’s 2D reconstruction
output.

Given a timeslice of event data, we use the eVAE to en-
code it into a latent vector of dimension 1 × 8; and for the
RL algorithm, we provide a stack of the three most recent
latent vectors as the observation. As the policy network is
trained on top of an existing representation, it can be small:
we use a two-layer network with 64 neurons each to output
the action given the stack of z vectors.

We train two types of policies using the eVAE as the ob-
servation - one that encodes just the XY locations of the
event data (we refer to this as BRP-xy), and the other encod-
ing full event data (BRP-full). For comparison as a baseline,
we train a third policy: a CNN trained end-to-end, using the
event image as input (similar to [39, 40]), which we call the
event image policy (EIP). We use the PPO implementation
from stable-baselines [46] for training.

5. Results and Discussion

5.1. Representation Learning

Our first set of experiments aims to validate the learn-
ing of compressed representations encoded from the event
sequences, and analyze the context-capturing ability of the
eVAE. To train the eVAE, we simulate event data through
AirSim’s event simulator in three environments named
poles, cones, and gates (drone racing gates), each indicative
of the object of interest in it. The simulated event camera is
assumed to be of 64×64 resolution and the data is collected
by navigating in 2D around the objects.

Qualitative performance: Fig. 4a displays the general
performance of the eVAE at learning context out of event
bytestreams. From the reconstructions, we observe that the
eVAE latent space is able to encode the underlying essence
of the input bytestream: locations of the objects, patterns
of polarities, and information regarding the time of firing
(brighter pixels in original/reconstruction indicate recent fir-
ings) are captured. We note that by encoding the arrange-
ment of polarities, the latent space implicitly captures direc-
tion of motion, which in this case is due to the egomotion
of the vehicle as we assume the environments to be static.

Invariance to sparsity: In Fig. 4b, we show a compar-

ison of the decoded image, when the eVAE is given se-
quences of different lengths starting at the same timestamp.
The eVAE is quickly able to represent the object as a ‘gate’
once a minimum number of events matching that spatial
arrangement are seen, and this projection into the latent
space stays constant as more events are accumulated. The
ability to extract a high-level context quickly from short
event sequences makes it viable to learn navigational primi-
tives even at very high control frequencies, especially as the
amount of change in the environment may not be very sig-
nificant between sampling steps. We show another example
in Fig. 4c, where very short event streams get mapped to
the right objects/polarities in the latent space, and the re-
construction ‘fills the gaps’ in the object being visualized.

Generalization: This context capturing ability also ex-
tends to unseen environments. In Fig. 4d, we show samples
of an eVAE trained on the poles data trying to decode data
from the cones environment, and vice versa. Main envi-
ronmental features (location of object, polarities etc.) are
still captured by the latent vector, while the decoded image
maps to the objects the eVAE has seen during training. This
creates a degree of robustness in the eVAE for reactive nav-
igation, where it is able to understand the existence/motion
of an object regardless of its shape, texture etc. We also
observe that disentanglement to a certain degree automat-
ically arises within the latent variables (Fig. 4e shows the
features captured by individual latent variables on the cones
environment), which is beneficial when learning navigation
policies, and can allow for attention over the perceived fea-
tures.

Smoothness of latent space: Lastly, smoothness of the
state space is a desirable property when attempting to learn
a control policy. As the eVAE combines the inherent man-
ifold smoothness advantage of VAEs with high frequency
input data, we observe that the smoothness automatically
arises within the latent space as similar environmental fac-
tors map to the same latent variable values. We show an ex-
ample in Fig. 4f where we take a representation trained on
the gates environment, which contains a set of drone racing
gates, and observe the latent vectors when a drone navi-
gates through the gates while collecting event observations.
As the drone executes this set of actions, we see that the
eVAE-encoded representation also takes a continuous, well
structured trajectory in the latent space. This way, state in-
formation from event data can potentially be projected into
an approximately locally linear latent space, which has been
shown to benefit high speed optimal control [47].

5.2. Reinforcement Learning for Obstacle Avoid-
ance

Policy training and control performance: Next, we eval-
uate the results of using these pretrained representations as
observations in reinforcement learning framework for colli-

6

(a) Comparison of expected event frames (top) and reconstructed
(bottom). The eVAE encodes locations of the obstacles and mo-
tion information from input sequences.

(b) The eVAE is capable of extracting salient in-
formation even from sparse data, reconstructing a
gate correctly from data of different lengths.

(c) Reconstruction of objects and
polarities from short, sparse in-
put event sequences.

(d) eVAE trained on one environment can generalize to oth-
ers, by retaining contextual information like object location.
Decoded images still map to objects seen during training.

(e) Disentangled encoding of
environmental features over
latent variables.

(f) Latent space transitions corresponding to the actions
from a control policy form a structured trajectory in the
space.

Figure 4: Qualitative results of the event variational autoencoder learning from various types of sequences.

sion avoidance. Considering that the bytestream-based poli-
cies are being trained over smooth, low dimensional latent
spaces, we observe improved performance during training.
Comparison of the training rewards over the first 500000
timesteps can be seen in Fig. 5a, where the bytestream rep-
resentation policy (BRP) training is seen to have lower sam-
ple complexity than the event image policy (EIP) or RGB
images.

Given the high data rate from event cameras, it is possi-
ble to control the vehicles at a higher frequency than with
standard RGB camera images. We conduct an experiment
where all trained policies are tested at different control fre-
quencies of the drone. As conventional CMOS cameras of-
ten output data around 30-60 Hz, we choose 45 Hz as the
minimum for the test, and 400 Hz (motor level control fre-
quency of quadrotors) as the maximum. The results are seen
in Fig. 5b as success percentage over 40 trials in two envi-
ronments, with success defined as whether or not the drone
navigates through a 100m long obstacle course without col-
lisions. We observe that all modalities suffer from low rate
of success at 45 Hz, demonstrating the drawbacks of slow
control in densely populated obstacle courses. Although
the motion of the camera (and subsequently the number of
events) is smaller when the data is being read in more fre-
quently, extracting a latent representation allows the BRPs
to be accurate, reaching over 95% accuracy for 200-400 Hz.
Intuitively, being able to perceive and control faster also
means that the agent has enough chances to recover even

in case of the occasional bad action. In contrast, we notice
a falloff in the accuracy of EIP at higher control frequencies,
as the event images get much sparser, which could prove to
be problematic for a CNN.

Robustness to environmental changes: We also observe
that policies trained over the bytestream representations ex-
hibit robustness to several factors. We analyze this by run-
ning 20 trials of a policy under the test settings, and com-
paring the mean and standard error of the distance traveled
without collision. First, we evaluate the performance when
transferring a policy trained on the poles policy to unseen
environments. We test two scenarios here: one involving a
change in texture of the obstacles, and another involving a
change in shape. From the results in Fig. 5c, we see that the
end-to-end event image policy, exhibits good performance
on the environment it was trained on, but fails when ap-
plied to other environments due to the radically different
image inputs. Whereas, as seen in section 5.1, the eVAE
brings a degree of invariance to the latent space projection,
and hence the both BRPs perform better with different tex-
ture/shape.

Robustness to camera parameters: Similarly, we exam-
ine the effect of event camera sensor parameters on policy
performance. For instance, in Fig. 5d we examine the effect
of the event threshold: which is the parameter that deter-
mines at what level of intensity change should an event be
fired. A low value of threshold thus means a large number
of events are fired, making the camera more sensitive to mo-

7

0 100000 200000 300000 400000 500000
Timestep

−100

0

100

200

R
ew

ar
d

Training performance

BRP-xy
BRP-full
EIP
RGB

(a) Low dimensional state representations re-
sult in faster training of policies compared to
event images and RGB images.

45 Hz 100 Hz 200 Hz 400 Hz
Control frequency (Hz)

0

25

50

75

100

P
er

ce
n

ta
g

e
o

f
su

cc
es

s

Effect of control frequency on navigation performance

BRP-full

BRP-xy

EIP

(b) Bytestream representations allow high
speed control as they can extract sufficient in-
formation even from short event sequences.

Normal Texture change Shape change
0

25

50

75

100

125

D
is

ta
n

ce
tr

av
el

ed
(m

)

Effect of environmental changes on policy performance
BRP-full

BRP-xy

EIP

(c) Bytestream representation exhibit a higher de-
gree of robustness to obstacles of unseen textures or
shapes, compared to CNNs + event images.

THR: 0.05 THR: 0.2 THR: 0.5
0

25

50

75

100

125

D
is

ta
n

ce
tr

av
el

ed
(m

)

Effect of camera threshold on policy performance
BRP-full

BRP-xy

EIP

(d) Bytestream representations allow the policies to
maintain higher performance than event images for
different thresholds than what was used in training.

Off: 0% Off: 20% Off: 50%
0

25

50

75

100

125

D
is

ta
n

ce
tr

av
el

ed
(m

)

Effect of pixels not firing on policy performance
BRP-full

BRP-xy

EIP

(e) Policies trained over bytestream representations
exhibit robustness to induced sparsity in event data
due to the eVAE’s encoding.

BA: 0% BA: 5% BA: 10%
0

25

50

75

100

125

D
is

ta
n

ce
tr

av
el

ed
(m

)

Effect of random pixel noise on policy performance
BRP-full

BRP-xy

EIP

(f) Policies trained over bytestream representations
also exhibit robustness to additional noisy event fir-
ing. (BA: background activity)

Figure 5: Analysis of policy learning using event bytestream representations, compared against end-to-end trained event image + CNN
policy.

tion. When tested with different camera thresholds, which
results in changing amounts of detail in the sequences,
BRPs outperform the EIP. The eVAE affords the policies
a degree of invariance to this redundant/unnecessary data,
whereas the end-to-end CNN model may not.

We also observe the bytestream representations benefit-
ing the policy in case of induced sparsity in the event data.
For this, we manually ‘turn off’ certain pixels in the camera
data. Fig. 5e shows that the bytestream representation helps
the policy maintain accuracy even up to the case where the
event data is 50% sparser. Finally, event cameras are also
prone to additive noise in the stream, i.e., events being fired
when there is no real intensity change. This is referred to as
background activity (BA) [48] and to simulate this, we add
random events to the sequences. We observe that the BRPs
still outperform the EIP (Fig. 5f) - but we note that the BRPs
are more sensitive to this type of noise than induced sparsity.
In case of BA noise, BRP-full exhibits lower performance
than BRP-xy due to spurious polarities.

6. Conclusions
The event-based camera, being a low-level modality with

fast data generation rate, is a good choice for high speed,
reactive behavior. As conventional CNN based perception
typically uses synchronous frame-based inputs, we propose
an unsupervised representation learning framework to learn
directly from event camera bytestreams. We present an
event variational autoencoder that combines a spatiotem-

poral feature computation framework with the inherent ad-
vantages of variational autoencoders, enabling the learning
of smooth and consistent representations. When trained in
simulation with data from a drone moving around simple
objects, we show that these compressed representations ef-
fectively encode environmental context directly from fast
event streams, and can extract object locations, timing and
motion information from polarity etc. in a way that gener-
alizes over different sequence lengths, different objects etc.

Furthermore, we show that event data can be made viable
for learning navigation policies by decoupling perception
and planning. We use pretrained event representations as
observations within a reinforcement learning pipeline and
train policies for obstacle avoidance in simulation. Com-
pared to previous approaches that used event images and
end-to-end training, we show that policies trained over rep-
resentations not only allow for faster control, but also gen-
eralize to unseen data and exhibit robustness to noise.

Some areas we identify for future exploration are using
imitation learning with event representations for complex
tasks such as drone racing; combining recent advances in
the area of asynchronous and sparse convolutional networks
[24] with representation learning; integrating high speed
control with the slow deliberative perception stack (thinking
fast and slow [49]). The low-level nature of event data also
makes it a generally interesting candidate for robust percep-
tion, particularly for computational efficiency, and perhaps
for inducing shape bias as opposed to texture bias [50].

8

References
[1] Davide Falanga, Suseong Kim, and Davide Scaramuzza.

How fast is too fast? the role of perception latency in high-
speed sense and avoid. IEEE Robotics and Automation Let-
ters, 4(2):1884–1891, 2019. 1

[2] David Tedaldi, Guillermo Gallego, Elias Mueggler, and Da-
vide Scaramuzza. Feature detection and tracking with the
dynamic and active-pixel vision sensor (davis). In 2016 Sec-
ond International Conference on Event-based Control, Com-
munication, and Signal Processing (EBCCSP), pages 1–7.
IEEE, 2016. 1

[3] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego,
Narciso Garcı́a, and Davide Scaramuzza. Event-based vision
meets deep learning on steering prediction for self-driving
cars. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5419–5427, 2018. 2,
3

[4] Anh Nguyen, Thanh-Toan Do, Darwin G Caldwell, and
Nikos G Tsagarakis. Real-time 6dof pose relocalization for
event cameras with stacked spatial lstm networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 0–0, 2019. 2, 3

[5] Moritz B Milde, Hermann Blum, Alexander Dietmüller,
Dora Sumislawska, Jörg Conradt, Giacomo Indiveri, and Yu-
lia Sandamirskaya. Obstacle avoidance and target acquisi-
tion for robot navigation using a mixed signal analog/digital
neuromorphic processing system. Frontiers in neurorobotics,
11:28, 2017. 2

[6] Lei Deng, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding,
Guoqi Li, Guangshe Zhao, Peng Li, and Yuan Xie. Rethink-
ing the performance comparison between snns and anns.
Neural Networks, 121:294–307, 2020. 2

[7] Emre O Neftci, Charles Augustine, Somnath Paul, and Geor-
gios Detorakis. Event-driven random back-propagation: En-
abling neuromorphic deep learning machines. Frontiers in
neuroscience, 11:324, 2017. 2

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 2,
4

[9] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jonathon Shlens. Stand-
alone self-attention in vision models. arXiv preprint
arXiv:1906.05909, 2019. 2

[10] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 2

[11] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 2, 4

[12] I. Higgins, Loı̈c Matthey, A. Pal, C. Burgess, Xavier Glorot,
M. Botvinick, S. Mohamed, and Alexander Lerchner. beta-
vae: Learning basic visual concepts with a constrained vari-
ational framework. In ICLR, 2017. 2

[13] David Ha and Jürgen Schmidhuber. World models. arXiv
preprint arXiv:1803.10122, 2018. 2

[14] Rogerio Bonatti, Ratnesh Madaan, Vibhav Vineet, Sebastian
Scherer, and Ashish Kapoor. Learning controls using cross-
modal representations: Bridging simulation and reality for
drone racing. arXiv preprint arXiv:1909.06993, 2019. 2

[15] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Ville-
gas, David Ha, Honglak Lee, and James Davidson. Learning
latent dynamics for planning from pixels. In International
Conference on Machine Learning, pages 2555–2565. PMLR,
2019. 2

[16] Giuseppe Cuccu, Julian Togelius, and Philippe Cudré-
Mauroux. Playing atari with six neurons. arXiv preprint
arXiv:1806.01363, 2018. 2

[17] Ryad Benosman, Sio-Hoi Ieng, Charles Clercq, Chiara Bar-
tolozzi, and Mandyam Srinivasan. Asynchronous frameless
event-based optical flow. Neural Networks, 27:32–37, 2012.
2

[18] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier
Lagorce, and Ryad Benosman. Hats: Histograms of aver-
aged time surfaces for robust event-based object classifica-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1731–1740, 2018. 2

[19] Xavier Lagorce, Garrick Orchard, Francesco Galluppi,
Bertram E Shi, and Ryad B Benosman. Hots: a hierarchy
of event-based time-surfaces for pattern recognition. IEEE
transactions on pattern analysis and machine intelligence,
39(7):1346–1359, 2016. 2

[20] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased
lstm: Accelerating recurrent network training for long or
event-based sequences. Advances in neural information pro-
cessing systems, 29:3882–3890, 2016. 2

[21] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 2, 3

[22] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Se-
ungjin Choi, and Yee Whye Teh. Set transformer: A frame-
work for attention-based permutation-invariant neural net-
works. In International Conference on Machine Learning,
pages 3744–3753. PMLR, 2019. 2

[23] Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpa-
nis, and Davide Scaramuzza. End-to-end learning of repre-
sentations for asynchronous event-based data. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 5633–5643, 2019. 3

[24] Nico Messikommer, Daniel Gehrig, Antonio Loquercio,
and Davide Scaramuzza. Event-based asynchronous sparse
convolutional networks. arXiv preprint arXiv:2003.09148,
2020. 3, 8

9

[25] Marco Cannici, Marco Ciccone, Andrea Romanoni, and
Matteo Matteucci. Asynchronous convolutional networks
for object detection in neuromorphic cameras. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019. 3

[26] Alex Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas
Daniilidis. Ev-flownet: Self-supervised optical flow estima-
tion for event-based cameras. In Proceedings of Robotics:
Science and Systems, Pittsburgh, Pennsylvania, June 2018. 3

[27] Yusuke Sekikawa, Kosuke Hara, and Hideo Saito. Event-
net: Asynchronous recursive event processing. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3887–3896, 2019. 3

[28] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and
Kostas Daniilidis. Unsupervised event-based optical flow us-
ing motion compensation. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 0–0, 2018. 3

[29] Evangelos Stromatias, Miguel Soto, Teresa Serrano-
Gotarredona, and Bernabé Linares-Barranco. An event-
driven classifier for spiking neural networks fed with syn-
thetic or dynamic vision sensor data. Frontiers in neuro-
science, 11:350, 2017. 3

[30] Michael Pfeiffer and Thomas Pfeil. Deep learning with spik-
ing neurons: opportunities and challenges. Frontiers in neu-
roscience, 12:774, 2018. 3

[31] Yu Miao, Huajin Tang, and Gang Pan. A supervised multi-
spike learning algorithm for spiking neural networks. In
2018 International Joint Conference on Neural Networks
(IJCNN), pages 1–7. IEEE, 2018. 3

[32] Guangzhi Tang, Neelesh Kumar, and Konstantinos P Mich-
mizos. Reinforcement co-learning of deep and spiking neural
networks for energy-efficient mapless navigation with neuro-
morphic hardware. arXiv preprint arXiv:2003.01157, 2020.
3

[33] Alexander Kugele, Thomas Pfeil, Michael Pfeiffer, and Elis-
abetta Chicca. Efficient processing of spatio-temporal data
streams with spiking neural networks. Frontiers in Neuro-
science, 14:439, 2020. 3

[34] Peter O’Connor, Daniel Neil, Shih-Chii Liu, Tobi Delbruck,
and Michael Pfeiffer. Real-time classification and sensor fu-
sion with a spiking deep belief network. Frontiers in neuro-
science, 7:178, 2013. 3

[35] Bas J Pijnacker Hordijk, Kirk YW Scheper, and Guido CHE
De Croon. Vertical landing for micro air vehicles us-
ing event-based optical flow. Journal of Field Robotics,
35(1):69–90, 2018. 3

[36] Jesse J Hagenaars, Federico Paredes-Vallés, Sander M
Bohté, and Guido CHE de Croon. Evolved neuromorphic
control for high speed divergence-based landings of mavs.
arXiv preprint arXiv:2003.03118, 2020. 3

[37] Nitin J Sanket, Chethan M Parameshwara, Chahat Deep
Singh, Ashwin V Kuruttukulam, Cornelia Fermuller, Davide
Scaramuzza, and Yiannis Aloimonos. Evdodge: Embodied

ai for high-speed dodging on a quadrotor using event cam-
eras. arXiv preprint arXiv:1906.02919, pages 31–45, 2019.
3

[38] Rika Sugimoto Dimitrova, Mathias Gehrig, Dario Brescian-
ini, and Davide Scaramuzza. Towards low-latency high-
bandwidth control of quadrotors using event cameras. In
2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4294–4300. IEEE, 2020. 3

[39] Riku Arakawa and Shintaro Shiba. Exploration of reinforce-
ment learning for event camera using car-like robots. arXiv
preprint arXiv:2004.00801, 2020. 3, 6

[40] Nikolaus Salvatore, Sami Mian, Collin Abidi, and Alan
George. A neuro-inspired approach to intelligent collision
avoidance and navigation. In 2020 IEEE/AIAA 37th Digital
Avionics Systems Conference (DASC). IEEE, 2020. 3, 5, 6

[41] IniVision. DAVIS 240 dynamic vision sensor. https:
//inivation.com/wp-content/uploads/2019/
08/DAVIS240.pdf, 2019. 3

[42] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M
Dai, Rafal Jozefowicz, and Samy Bengio. Generat-
ing sentences from a continuous space. arXiv preprint
arXiv:1511.06349, 2015. 5

[43] Brady Zhou, Philipp Krähenbühl, and Vladlen Koltun. Does
computer vision matter for action? Science Robotics, 4(30),
2019. 5

[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 5

[45] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish
Kapoor. Airsim: High-fidelity visual and physical simula-
tion for autonomous vehicles. In Field and service robotics,
pages 621–635. Springer, 2018. 5

[46] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam
Gleave, Anssi Kanervisto, and Noah Dormann. Stable base-
lines3. https://github.com/DLR-RM/stable-
baselines3, 2019. 6

[47] Manuel Watter, Jost Springenberg, Joschka Boedecker, and
Martin Riedmiller. Embed to control: A locally linear latent
dynamics model for control from raw images. In Advances
in neural information processing systems, pages 2746–2754,
2015. 6

[48] R Baldwin, Mohammed Almatrafi, Vijayan Asari, and Keigo
Hirakawa. Event probability mask (epm) and event denois-
ing convolutional neural network (edncnn) for neuromor-
phic cameras. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1701–
1710, 2020. 8

[49] Daniel Kahneman. Thinking, fast and slow. Macmillan,
2011. 8

[50] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. arXiv preprint
arXiv:1811.12231, 2018. 8

10

https://inivation.com/wp-content/uploads/2019/08/DAVIS240.pdf
https://inivation.com/wp-content/uploads/2019/08/DAVIS240.pdf
https://inivation.com/wp-content/uploads/2019/08/DAVIS240.pdf
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

