
TO BRIDGE NEURAL NETWORK DESIGN AND REAL-WORLD
PERFORMANCE: A BEHAVIOUR STUDY FOR NEURAL NETWORKS

Xiaohu Tang 1 2 Shihao Han 3 2 Li Lyna Zhang 2 Ting Cao 2 Yunxin Liu 2

ABSTRACT
The boom of edge AI applications has spawned a great many neural network (NN) algorithms and inference
platforms. Unfortunately, the fast pace of development in their fields have magnified the gaps between them. A
well-designed NN algorithm with reduced number of computation operations and memory accesses can easily
result in increased inference latency in real-world deployment, due to a mismatch between the algorithm and the
features of target platforms.

Therefore, it is critical to understand the behaviour characteristics of NN design space on target platforms.
However, none of existing NN benchmarking or characterization studies can serve this purpose. They only
evaluate some sparse configurations in the design space for the purpose of platform optimization rather than
the scaling in every design dimension for NN algorithm efficiency. This paper presents the first empirical study
on the NN design space to learn NN behaviour characteristics on different inference platforms. The revealed
characteristics can be used as guidelines to design efficient NN algorithms. We profile ten-thousand configurations
from a cutting-edge NN design space on seven industrial edge AI platforms. Seven key findings as well as their
causes and implications for efficient NN design are highlighted.

1 INTRODUCTION

Numerous edge devices such as mobile phones, cameras
and speakers provide real-world usage scenarios for NN
technology. To enable affordable NN inference on edge
devices, remarkable innovations have been achieved on the
design of efficient NN algorithms and the development of
inference platforms (including hardware accelerators and
the corresponding inference frameworks on top).

However, there is a gap between NN algorithm design and
inference platforms. Current NN design has no consider-
ation of the features of target platforms but only aims to
reduce the number of computation operations (OPs1) for
efficiency. Given an AI task, as shown in Fig. 1, NN experts
carefully configure each dimension in a huge design space
by manual or Neural Architecture Search (NAS) (Tan et al.,
2019) techniques, to find the model with a tradeoff between
high accuracy and low OPs. The designed model is then
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1This paper uses OPs rather than FLOPs due to different preci-
sions of AI chips. This definition also follows (Zhang et al., 2018),
i.e., the number of multiply-adds.

Figure 1. The standard process from NN design to on-device model
deployment.

deployed to various inference platforms.

Unfortunately, just reducing OPs or memory accesses does
not always reduce inference latency, but easily increases
latency in real-world deployment. For example, the well-
known MobileNetV3 (219 MOPs, 8 MB memory footprint)
has much less OPs and memory footprint than MobileNetV2
(300 MOPs, 11 MB memory footprint). Its inference runs
25% faster than MobileNetV2 in TFLite (Google, 2020b) on
ARM Cortex A76 CPU. However, it runs 71% slower than
MobileNetV2 in OpenVINO (Intel, 2020) framework on an
Movidius VPU chip (Movidius, 2020) due to a mismatched
design with platform implementation.

Consequently, it is critical to understand the behaviour char-
acteristics of the NN design space on target platforms to
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find efficient configurations. However, they are still unclear
by now. This is partially because of the intrinsic separation
of NN designers and platform developers. Besides, there
are more and more inference platforms released frequently.
Many of them are closed source. It is challenging to under-
stand the behaviours on these platforms.

Although there are NN characterization or benchmark-
ing works before, such as BenchIP (Tao et al., 2018),
DeepBench (Baidu, 2020), MLPerf (Reddi et al., 2020),
ParaDnn (Wang et al., 2020a) and others (Gao et al., 2020;
Bianco et al., 2018; Zhang et al., 2019; Turner et al., 2018;
Hadidi et al., 2019; Wu et al., 2019b), they cannot be used to
guide efficient configurations for NN design. On the other
hand, they aim at performance comparison of NN platforms
and expose platform optimization opportunities. Therefore,
only some sparse points of a NN design space (i.e., some
popular NN models and operators) are included in the eval-
uation dataset rather than the scaling of each dimension of
the NN design space.

This paper presents the first comprehensive empirical study
on NN design space to learn its behaviour characteristics
on inference platforms. The revealed characteristics can
thus be used as guidelines to design fast NNs in real-world
deployment, as well as accelerate the design process by
excluding inefficient configurations. We evaluate the latency
response to the scaling of each dimension of cutting-edge
NN design space, including building blocks, the number of
channels, input size, kernel size, activation function, and
data precision. The size of study dataset is in the order of
ten thousands. Rather than for a specific model, the study
results can benefit various model design for different AI
tasks on a target platform. The paper currently focuses on
CNNs (Convolutional Neural Networks) due to their high
design complexity.

Particularly, this study aims to answer the following ques-
tions. (i) What are the behaviour characteristics that show
an inconsistent latency response to the change of OPs and
memory accesses of a configuration in the design space? For
example, latency increase is much bigger than OPs increase.
These cases should be specifically avoided in the design. (ii)
What are the root causes for these unexpected characteris-
tics? (iii) What are the implications of these characteristics
for efficient-NN design?

Surprisingly, our results show that many of latency re-
sponses are against the change of OPs and memory ac-
cesses, advocating the necessities of this empirical study.
By now, we profile the design space on seven representa-
tive industrial AI platforms such as Edge TPU (Google,
2020a), Rockchip NPU (Rockchip, 2019) and Kendryte
KPU (Kendryte, 2020a) with their corresponding frame-
works (a whole list in Table 2). For each design dimension,
this paper highlights one finding from the data. Implica-

tions for NN design are also described. All the findings are
thoroughly explained through hardware features, framework
implementations and NN structures.

To demonstrate the value of the findings, we conduct two
case studies of NN design: channel pruning and hardware-
aware neural network search. By applying these findings
to eliminate the inefficient configurations, the design space
sizes in the two case studies can be reduced by 1012× and
32×, respectively.

Major conclusions from the findings are: (i) The use of
more convolution channels and bigger filter kernels does
not necessarily increase latency. For example, the latency of
convolution increases with the number of output channels
in a step pattern rather than linear on every platform, except
for the KPU. (ii) The use of non-Conv operators can largely
increase latency except for the ARM CPU. For example,
adding Squeeze&Excitation (SE) block to the MobileNetV2
block barely adds time cost on the CPU, but adds 15× time
cost on the KPU, and 51× on the Edge TPU. (iii) The use
of INT8 can achieve > 11× speedup compared to FP16
on the Rockchip NPU. (iv) Considering robust support for
various NN models, the ARM CPU is the best platform.
Considering the latency, power and energy cost, Edge TPU
and the Rockchip NPU are the best platforms. For example,
the energy cost of MobileNetV1 inference on the Edge TPU
is only 4% of that on the ARM CPU.

To sum up, the key contributions of this paper are as follows.
We perform the first comprehensive empirical study on NN
design space to learn NN behaviour characteristics for ef-
ficient NN algorithm design. We highlight seven findings,
and provide thorough explanation as well as the implication
for NN design for each finding.

2 BACKGROUND AND RELATED WORK

2.1 Efficient NN design

Discovering efficient NN models remains a laborious task
due to the huge design space, and the tension between im-
proving accuracy and reducing inference latency. This sec-
tion introduces the dataset our paper study on i.e., NN design
space, and current techniques for efficient NN design.

2.1.1 Design space

Regarding CNN models, we categorize the design space
into layer type and layer hyperparameters.

Layer type. A CNN is composed of sequential layers,
where each layer (notated as O) can be a primitive operator
(e.g., convolution layer) or a building block (e.g., separable
depthwise convolution layer). Primitive operators mainly
include: fully-connected operator, element-wise operator,
activation function and convolution operator. A building
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(a) ResNetV1 (b) DenseNet (c) MobileNetV1 (d) MobileNetV2∗ (e) ShuffleNetV1 (f) ShuffleNetV2 (g) SE

Figure 2. Representative building blocks from state-of-the-art CNN models. ∗: We also consider MobileNetV2+SE block, we follow
(Howard et al., 2019) and insert SE between the DWConv and last 1×1 Conv.

block consists of multiple primitive operators. Fig. 2 shows
the commonly used building blocks in efficient CNN design.

Layer hyperparameters. Once the layer type is decided,
NN designers need to carefully configure layer hyperparam-
eters to find the tradeoff between accuracy and efficiency.
Layer hyperparameters mainly include (i) basic parameters:
input height (H) and width (W ), input channel number
(Cin) and data precision (P ); (ii) operator parameters: ker-
nel size (K), stride (S), and number of filters (Cout).

In summary, for each layer, the major design space is a 8-
dimension vector: (O,K, S,H,W,Cin, Cout, P ). The size
of the design space is the multiplication of the size of every
dimension and can easily reach billions.

2.1.2 Design space exploration

To feasibly reduce design cost from the huge space, NN de-
signers normally tune only one or a subset of dimensions to
explore the best configurations, and fix other dimensions to
pre-defined configurations. Current exploration approaches
are based on human heuristics (He et al., 2016; Sandler
et al., 2018) and NAS (Tan et al., 2019; Cai et al., 2019).
We now explain the exploration of two design dimensions
as examples.

For layer type (O) configuration, the common heuristic is
to select an operator or a building block and then repeat
it for every layer. Early CNN models frequently apply
the 2D convolution operator as the core component of a
layer (Krizhevsky et al., 2012). Nowadays, new blocks (He
et al., 2016; Huang et al., 2017; Howard et al., 2017; Ma
et al., 2018) with reduced cost and higher accuracy have
been invented. For example, MobileNetV1 (Howard et al.,
2017) introduces depthwise separable convolution to reduce
OPs. These cutting-edge blocks are used as candidates for
layer type in NAS-based model design (Zhang et al., 2020).

For channel number configuration, a general heuristic
is “half size, double channel”, which was introduced in
VGG (Simonyan & Zisserman, 2014). The rule is that when

the feature map size is halved, the number of filters (Cout) is
doubled. Apart from such human-designed heuristics, many
pruning-based and NAS-based approaches (Li et al., 2017;
He et al., 2018; Liu et al., 2019) are proposed to explore
optimal channel number from a candidate integer set.

2.1.3 Unawareness of deployment platforms

Current NN design mostly focuses on model accuracy and
rarely considers inference efficiency on various edge plat-
forms. The common efforts for efficiency are to limit the
OPs of the model or replace the computation-intensive con-
volution with more memory-intensive operators (Howard
et al., 2019; Ma et al., 2018). These efforts can gain latency
reduction on CPUs. However, current NN platforms, mainly
designed for convolution, hardly adapt to these efforts and
thus performance is degraded (analysis in Sec. 4). Further-
more, NN platforms have different features. There is no
one-size-fits-all model design for all platforms.

Some NN researchers notice these issues. However, due to
the unawareness of behaviour characteristics of the design
space, they use the measured (Dai et al., 2019; Yang et al.,
2018; Tan et al., 2019) or predicted latency (Yang et al.,
2017; Qi et al., 2017) for every configuration in the space
to search for the accuracy and efficiency tradeoff. However,
considering the huge design space, it is unbearable to con-
duct real measurements for every model design. Latency
prediction can avoid the costly measurements, but it is dif-
ficult to build prediction models since many platforms are
blackbox and updated frequently.

Some efficient NN designs closely cooperate with
platform development teams, such as EfficientNet-
EdgeTPU (Suyog Gupta, 2019) and MobileNetEd-
geTPU (Andrew Howard, 2019). The two works aim to
design efficient models for Edge TPU by augmenting the
design space with expert-selected building blocks that run
efficiently on Edge TPU. Except for building blocks, other
design dimensions are exhaustively searched. However, gen-
eral NN designers hardly get support from platform teams.
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Table 1. Configurations selected for each dimension of the CNN design space. ∗ DFP: dynamic fixed point
Layer type

(O)
Kernel

size (K)
Stride
(S)

Input H×W
(H=W )

Channel in
(Cin)

Channel out
(Cout)

Precision∗
(P )

Channel Conv, DWConv 1,3,5,7 1,2 224,112,56
28, 14,7 3 to 1000 3 to 1000

FP32
FP16

DFP16
INT8

UINT8
DFP8

Operator

Fully connect - - - - 1024,1280 1000
Element-wise Pooling 7 -

224,112,56
28,14,7,3

32,64,96
128,160,240
256,320,480

512,640

32,64,96
128,160,240
256,320,480

512,640

Add, Concat, Multiply, Shuffle - -

Activation ReLU, ReLU6,
Sigmoid, HardSwish, Swish - -

Convolution Conv, DWConv
Dilated, Group, MixConv 1,3,5,7 1,2

Block MobileNetV1, ShuffleNetV1/V2, DenseNet
MobileNetV2 with/without SE, ResNetV1 3,5,7 1,2

Our work profiles the NN design space to expose behaviour
characteristics, which can guide general NN design. The
methodology and tool can apply to different platforms.

2.2 NN inference on edge platforms

After NN experts finish model design, an offline deploy-
ment process is then executed to enable the model run on
target platforms. The software framework of a platform
such as TFLite normally conduct two major steps for de-
ployment. (i) Convert the original model format to the
current framework format. For example, TFLite requires
the graph to be converted from the TensorFlow protobuf
(.pb file) to its FlatBuffer-based format (.tflite file); (ii) Op-
timize the model graph, plan model execution, or conduct
code generation. The most important graph optimization is
operator fusion (Chen et al., 2018). It fuses the computation
of adjacent operators together and avoids saving interme-
diate results in memory, which can greatly reduce latency.
The memory-intensive operators which cannot be fused into
convolution will cause major overhead (analysis in Sec. 4).

2.3 Limitations of existing works for NN design

Our paper aims at efficient NN algorithm design. It studies
the scaling of each dimension of the whole design space to
tell the efficient configurations.

Existing benchmarking works, on the other hand, are for the
purpose of cross-platform comparison to expose NN plat-
form optimization opportunities. Representative works in-
clude BenchIP (Tao et al., 2018), DeepBench (Baidu, 2020),
AIBench (Gao et al., 2020), ParaDnn (Wang et al., 2020b),
MLPerf (Reddi et al., 2020), and NNBench-X (Xie et al.,
2019). According to this purpose, they just select some
typical points of the design space i.e., mature models or
operators, in the profiling dataset. To better expose plat-
form limitations, they also include configurations suitable
for hardware evaluation but rarely considered in NN de-
sign. For example, BenchIP also covers configurations with
diverse hardware behaviours, such as various branch pre-
diction rate and data reuse distances. ParaDnn generates
parameterized models, such as varying the batch size to
challenge the bounds of the underlying hardware.

3 EVALUATION METHODOLOGY

In this paper, we present the first study on NN design space.
There is no existing public dataset or measurement tool for
this purpose. This section elaborates our dataset and tool
which automates dataset generation and profiling for latency,
energy and model accuracy on target platforms.

3.1 Dataset selection

For the dataset, it is impossible to profile full combinations
over all design dimensions in a feasible time. Fortunately,
we observe the general practice for NN design is to explore
only one design dimension (e.g., Cout) at one time to re-
strain design cost (He et al., 2017; Liu et al., 2019; Tan
et al., 2019; Cai et al., 2019). Inspired by this, we fix the
configurations of the other dimensions and only vary one di-
mension at one time to generate the characterization dataset.
By this method, the insights for one dimension can be di-
rectly applied to NN design process, and the dataset is also
constrained to a practical size.

Table 1 lists configurations of each dimension in our dataset,
which are from state-of-the-art design space used by the
current efficient models for edge platforms (as introduced
in Sec. 2.1). Particularly, input height H and width W are
set to equal, as this is the most common setting in vision
tasks. The Cout and Cin are only evaluated for convolution
(Conv) and depthwise convolution (DWConv) operators as
they dominate the CNN inference latency.

The dataset includes six precisions supported by our seven
evaluation platforms. Besides latency, data precision also
impacts inference accuracy. To evaluate the accuracy impact,
our dataset collects 14 representative models from both
manually-designed and NAS-searched ones with different
levels of computation and memory cost. The model list
together with the evaluation results are in Appendix B.4.

3.2 Evaluated edge platforms

We have measured the dataset on seven typical industrial
edge platforms listed in Table 2. The abbreviations will be
used to refer to each platform. Unless specifically stated,
the hardware processor and its bundled software frame-
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Table 2. Measured platforms. ∗: we measure Adreno GPU’s peak performance by the Clpeak (Bhat, 2020) since no official number can be
found. Other peak performance numbers are claimed by producers. We only profile one CPU core to avoid scheduling interference.

Processor Precision Peak perf. per sec. Framework Device Abbr.
Cortex A76 CPU FP32/INT8 23 GOPs / core (FP32) TFLite v2.1 Snapdragon 855 SoC on Mi 9 CPU
Adreno 640 GPU FP32/FP16 840 GOPs (FP16)∗ TFLite v2.1 Snapdragon 855 SoC on Mi 9 GPU
Hexagon 685 DSP INT8 256 GOPs SNPE v1.30(Qualcomm, 2020) Snapdragon 845 SoC on Pixel3XL DSP

Movidius Myrid X VPU FP16 5 TOPs OpenVINO 2019R2(Intel, 2020) Intel Neural Compute Stick 2 VPU
Edge TPU INT8 4 TOPs TFLite-based Coral USB Accelerator TPU

Kendryte KPU INT8 0.5 TOPs NNCASE (Kendryte, 2020b) Cannon Kendryte K210 SoC dev. board KPU
Rockchip NPU FP16/DFP16/DFP8/UINT8 3 TOPs (UINT8) RKNN v1.2.1(Rockchip, 2020b) RK3399Pro SoC on Toybrick SBC NPU

work are treated as a whole platform in our analysis. This
is because 1) except for the CPU, GPU, and DSP, the other
accelerators and frameworks are all blackbox. It is hard to
attribute the NN behaviour to the framework or the accelera-
tor; 2) our goal is to guide efficient NN design. To this end,
it is not essential to analyze them separately.

We will briefly introduce key features of the evaluated AI
accelerators to help understand the analysis in Sec. 4. The
main idea of NN accelerators is to support vector or matrix
computation units of different width to increase data-level
parallelism. It is hard to get more details because these ac-
celerators are proprietary with limited published documents.

Qualcomm Hexagon DSP 600 series (BDTi, 2015) feature
a Hexagon vector extension (HVX) for image and computer
vision tasks. The width of vector registers is 1024 bits and
each VLIW instruction supports four vector slots.

Intel Movidius Myriad X VPU integrates 16 SHAVE
(Streaming Hybrid Architecture Vector Engine) cores and a
neural compute engine. The SHAVE core (WikiChip, 2018)
uses a hybrid RISC/DSP/GPU architecture. The vector reg-
ister is 128-bit wide. A VLIW instruction supports one to
four vector slots.

Rockchip NPU (Rockchip, 2020a) features a NN spe-
cific engine and a vector processing unit as the supple-
ment (Rockchip, 2019). The NN engine can run 1920
multiply-add operations in INT8, 192 in INT16, and 64
in FP16 per cycle. The vector unit can perform one multi-
ply/add operation per cycle. Most element-wise and matrix
operations are processed in this vector unit.

CNN structure is hardwired in Kendryte KPU as Conv +
batch normalization (BN) + activation + pooling. It is not
tolerant to other NN structures.

No official design document can be found for Edge TPU.

Frameworks. Except for TFLite, all the other frameworks
are proprietary software developed by the processor man-
ufacturer. SNPE’s Hexagon NN library for DSP is open
source but other parts are closed-source. There are quite
a few open-source frameworks for the CPU and GPU. We
pick TFLite due to its wide usage in the real-world mobile
applications (Xu et al., 2019).

Single layer/block 
Tensorflow model 
graph generation

Convert to target 
framework graph 

and precision

Precision 
calibration data

Profile on 
target 
device

Collect 
layer/total 

timing

Figure 3. The measurement tool.

Table 3. Operator OPs and mac calculation.
Conv Group Conv DWConv Ele-wise

OPs H2CinCoutK2 H2CinCoutK2/G H2CinK2 nH2Cin

mac H2Cin + H2Cout

+K2CinCout

H2Cin + H2Cout

+K2CinCout/G
2H2Cin

+K2Cin
H2Cin

3.3 Measurement tool

Fig. 3 shows the high-level working process of our mea-
surement tool. For each configuration in the dataset, it first
generates a single-layer model graph in TensorFlow pro-
tobuf format, which is generally-supported by every NN
platform. The graph is then converted to the format and data
precision e.g., INT8 of the target platform by invoking the
platform’s conversion API such as SNPE’s snpe-tensorflow-
to-dlc. The generated graph is then pushed to the target
platform for latency, energy, and accuracy measurement.

It is non-trivial to accurately profile latency for a single
layer on all platforms. The goal of the single layer mea-
surement is for NN design. The measured latency of a
single layer should be the same as when it is within a
complete model. For AI accelerators, there is normally a
host-accelerator data transfer before and after the inference
execution. This cost needs to be excluded in the single
layer profiling. However, not every framework supports
fine-grained timing. For example, TFLite only provides an
end-to-end latency on mobile GPU and Edge TPU, which
includes the operator/block execution time, as well as the
data layout conversion and transfer time. We implement
operator-level profiling in TFLite for mobile GPU. For the
close-source TFLite backend for Edge TPU, we pile the
same operator/block into two multi-layer models, and use
their latency difference to calculate a single layer’s latency.

More implementation details on latency, accuracy, and en-
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Figure 4. The latency of Conv shows a step/staircase pattern with Cout. Configuration: H ×W = 28× 28, Cin = 320, K = 3, S = 1.
The X-axis is Cout (different intervals to better show the pattern) while the Y-axis is the latency in milliseconds.

ergy measurement are in Appendix A.

OPs and memory access calculation. We are particularly
interested in the behaviour characteristics that show an in-
consistent latency response to the number of computation
operations (OPs) and memory accesses (mac). Table 3
shows formulas to calculate them for typical operators.
Clearly, Conv has the highest data reuse rate (i.e., oper-
ational intensity, calculated as OPs/mac), and thus is the
most computation-intensive. For Group Conv, filters are
divided by groups (G) to reduce OPs, and thus the data
reuse is reduced. DWConv can be assumed as G = Cin.
Its data reuse is dozens of times less than Conv. Element-
wise operators and activation functions execute computa-
tion operations to each element of a tensor. They are the
most memory-intensive operators, very sensitive to hard-
ware memory bandwidth.

We profile the whole dataset on all platforms. For each
design dimension, only one example set of hyperparameter
configurations will be analyzed in Sec. 4. For other con-
figurations, the basic tendencies are similar but certainly
with variations. For data precision, unless the quantization
analysis, FP32 data is used for the CPU as a baseline. The
lowest precision data is used for other platforms to show
their best performance.

4 NN BEHAVIOUR CHARACTERISTICS

Out of the many findings, we highlight one finding for each
major design dimension 2. For each finding, the three re-
search questions will be answered: (1) the characteristic
that shows an inconsistent latency response to OPs and mac
change of a configuration; (2) the reason for this character-
istic; and (3) the implication for NN design.

4.1 Do more Conv channels increase latency?

The number of channels is an important hyperparameter
to tune for efficient-NN design. This section analyzes the

2Please refer to Appendix B for additional analysis for other
design dimensions.
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Figure 5. Matrix multiplication of TFLite ruy. The orange color
shows the elementary block. Data is padded to be a multiple of 8.

latency response to Cout. When other hyperparameters are
fixed and only Cout varies, the computation and memory
complexity of a Conv operator is linear O(Cout) (refer to
Table 3 for calculation formulas). Therefore, the measured
latency should also have a linear relationship with Cout.
However, the measured Conv latency is against this expec-
tation. Fig. 4 shows the latency responses on four of our
platforms. Results for other platforms are in Appendix B.1.

Finding 1. The latency of Conv increases in a step pattern
rather than linear with the number of output channels on the
NN platforms, except for KPU.
Cause: The input tensors are padded to fully utilize the
hardware data-level parallelism.
Implication: For potential higher accuracy, it is encouraged
to keep the largest number of channels in each latency step
in the NN design space and skip the other ones.

Hardware processors employ vectorization/matrix comput-
ing units to accelerate tensor computation. To fully utilize
these units, the corresponding software frameworks pad the
input tensors accordingly, which results in the step-pattern
latency response.

We will take the CPU and DSP results as examples to elab-
orate this phenomenon since their frameworks are open
source (GPU analysis is provided in Appendix B.1). For the
other processors with closed-source frameworks, we expect
that similar explanations apply too.

CPU. The evaluated inference framework on the CPU is
TFLite v2.1. It uses the popular im2col (expand image
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into a column matrix) (Vasudevan et al.) data transforma-
tion to convert Conv to matrix multiplication. TFLite’s
ruy library (TensorFlow, 2020) is then invoked for matrix
multiplication execution.

To use all the 128-bit SIMD (i.e., Neon) registers (ARM,
2019) on the ARM CPU, as shown in Fig. 5, ruy sets the ele-
mentary matrix multiplication block to be (8, 1)× (1, 8)→
(8, 8) for FP32 data type ((x, y) denotes a x × y matrix).
To adapt this elementary block, the two input matrices are
padded to be a multiple of 8. For this reason, when other
hyperparameters are fixed and only Cout varies, the latency
shows a step pattern in the width of 8 as shown in Fig. 4(a).

DSP. To utilize the vector registers of 1024 bits width,
the Hexagon NN library designs the data format as
Depth32 (Kuo, 2016), which sets the basic data block to
be (1,4,32) for a 3D tensor (H,W,C). Each block is exactly
32 × 4 × 8 bits = 1024 bits for INT8 precision. To ac-
commodate this data format, all the tensors are padded as
a multiple of 4 in the width dimension W and a multiple
of 32 in the channel dimension C. Two basic block inputs
are packed into a pair and fed into two streams for execu-
tion. This is why Fig. 4(c) shows that the DSP latency has a
64-width step (32×2) as Cout increases.

For similar reasons, other platforms in Fig. 4 also show
a step pattern. KPU shows a linear relationship between
channel number and latency (refer to Fig. B.1). We assume
the reason is that it calculates each channel one by one, and
thus there is no need for padding.

The detailed analysis demonstrates again that understanding
NN behaviour is costly, which demands deep knowledge in
NN platforms. This highly motivates our characterization to
fill the gap between NN design and the underlying platform.
We also provide analysis for DWConv in Appendix B.2.

4.2 Does a building block have similar relative
latency on different NN platforms?

NNs typically are composed of repeated building blocks.
The selection of appropriate blocks is an essential design
consideration. Intuitively, the relative latency of a building
block should be similar on different platforms, since the
OPs and mac are the same. However, the measured relative
latency varies greatly on each platform and is mostly against
the computation and memory complexity.

We pick four building blocks as examples and list their
relative latencies on each platform, as well as their OPs and
mac in Fig. 6(a). The values are all referenced to the ones
of MobileNetV1Block on the same platform. Except for
the CPU, the platforms have some unsupported building
blocks, such as the ShuffleNetV2Block on the GPU and
Edge TPU. Their results are thus missing in the figure.
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Figure 6. (a) Latency characteristics of blocks vary greatly on each
processor. Configuration: H × W = 56 × 56, Cin=Cout=32,
K = 3, S = 1. (b) Memory and computation rooflines for the
CPU and GPU. The upper and lower markers for each block are
the measured performance on the GPU and CPU, respectively.

Finding 2. The relative latency of a building block varies
greatly on different platforms. The non-Conv operators can
largely increase latency on NN platforms except CPU.
Cause: The mismatch of computation and memory band-
width is severe and the support for non-Conv operators is
weak on the NN platforms except CPU.
Implication: It is encouraged to customize the set of candi-
date blocks in the NN design space for each platform.

Bandwidth impact. Fig. 6(a) shows that only on the CPU,
the relative latency and OPs of building blocks have a
direct relationship. The reason is explained in Fig. 6(b).
The figure shows the ideal CPU and GPU performance
rooflines (Williams et al., 2009) as well as the measured
performance (OPs / latency) of each block. If the data reuse
rate of a block is lower than the ridge point, the performance
is bounded by memory bandwidth, otherwise it is bounded
by computation bandwidth. Note that the CPU and GPU
we use are on the same SoC and share the memory, so the
memory bounds in the figure are aligned.

On the single-core CPU (black color in the figure), since
the memory and computation bandwidth are similar, the
data reuse rate at the ridge point is low. Except for the
ShuffleNetV2Block, the measured blocks are all compu-
tation bound, and the latency is directly related to OPs.
By comparison, the mismatch of computation and memory
bandwidth on GPU is bigger. Blocks with lower data reuse
like MobileNetV2Block+SE become memory bound, which
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Figure 7. The latency of DWConv+activation functions. The la-
tency of DWConv+ReLU (white bar) equals the DWConv latency.
Configuration H = W = 28, Cin = Cout = 96, K = 3, S = 1.

restrains the performance. The bandwidth mismatch on NN
accelerators is more serious. Thus, the relative latency of
low-data-reuse blocks increases on these accelerators. For
example, MobileNetV2Block runs 1.89× faster than Dense-
Block on the CPU due to much less OPs, 1.13× faster on
the GPU, but only 0.25× faster on the Edge TPU.

Weak non-Conv operator support. Bandwidth difference
is not the only reason for various relative latencies on the
platforms. For example, adding SE to MobileNetV2Block
only increases mac by 64% and OPs by 1.4%, but the
use of SE dramatically increases the latency except on
the CPU as shown in Fig. 6(a). The latency of Mo-
bileNetV2Block+SE is 3× longer than MobileNetV2Block
on the GPU, 2× on the VPU, 5× on the DSP, 51× on the
Edge TPU, and 15× on the KPU. This is due to the weak
support for non-Conv operators by platforms.

As discussed in Sec. 2.2, operator fusion can greatly reduce
memory accesses and so does latency. The fusion is imple-
mented either in frameworks or hardware accelerators (refer
to Sec. 3.2). However, they are normally behind NN design
innovations. Current fusion is generally implemented for
traditional Conv-related structures like Conv+Element-wise,
but fails for new structures like the SE block.

Therefore, non-Conv operators of new structures such
as Global Pooling and tensor-vector Multiplication in
SE (Fig. 2(g)) become latency bottlenecks. For exam-
ple, Global Pooling takes 71.7% of the latency of Mo-
bileNetV2Block+SE on the GPU. Neither the Global Pool-
ing nor Multiplication can run on the KPU. They fall back
to run on the RISC-V CPU on the SoC, so the latency is
extremely high. The Edge TPU team also mentions that SE
is suboptimal on Edge TPU (Andrew Howard, 2019).

4.3 Do activation functions barely increase latency?
A popular belief is that activation functions have marginal
impact on model latency. The reason is that Conv/DWConv
+ activation function is a common structure. For traditional
activation function like ReLU, platforms support operator
fusion for this structure and thus the cost of activation func-
tions is negligible.
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Figure 8. Relative latency of (a) Conv (reference to K=1), and
(b) DWConv (reference to K=3) increases much less than OPs
(marked by black dash lines) on accelerators. Configuration: H =
W = 56, Cin = Cout = 32, K = 3, S = 1.

However, the belief does not hold for more recent activa-
tion functions. Fig. 7 shows that the latency impact of
some activation functions can be significant, and the im-
pact varies greatly on different platforms. We evaluate the
structure of DWConv + activation function rather than the
activation function itself, since it is normally fused with
Conv/DWConv. The latency of DWConv+ReLU (white
bar) in the figure basically equals the latency of DWConv.
(Missing data is due to the lack of support on platforms.)

Finding 3. Only ReLU and ReLU6 have negligible latency
impact on every platform. HardSwish has negligible impact
only on the CPU and GPU. Swish largely increases latency
on every platform except for the KPU.
Cause: Inference platforms have poor operator-fusion sup-
port for novel activation functions.
Implication: It is encouraged to remove the costly activa-
tion functions from the NN design space for each platform.

The legend in Fig. 7 shows the computation formula of each
activation function. The comparison of OPs is thus ReLU
< ReLU6 < HardSwish < Sigmoid < Swish. Only on
the CPU, the latency of activation functions is consistent
with the OPs. On the KPU, the activation functions all have
similar latency because each activation function is actually
approximated by a piecewise cubic spline and then executed
on the same Conv + BN + activation hardware pipeline.
Other than the CPU and KPU, the obvious latency increases
by activation functions on other platforms are all due to the
failure of fusion with DWConv. HardSwish on the NPU is
extremely slow (13.7×) since it is split into multiple non-
fused operators by its framework. Swish cannot be fused on
any platforms in this paper.

4.4 Does smaller Conv kernel size reduce latency?

The general belief is that the increase of Conv kernel size
K can largely increase latency. This is because when other
hyperparameters are fixed, the computation complexity of
Conv and DWConv is O(K2) (refer to Table 3). Thus, for
efficient NN design, the kernel size is normally set as 1× 1
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for Conv, and 3×3 for DWConv in a block to reduce latency
(refer to Fig. 2). However, the measured results in Fig. 8
show that except for the CPU and GPU, the latency increase
is much smaller than the OPs, particularly on the NPU, DSP,
and VPU for DWConv, and NPU and Edge TPU for Conv.

Finding 4. As kernel size increases, the Conv latency
increases much less on the other platforms than the CPU
and GPU, except for DWConv on the Edge TPU.
Cause: The Conv and DWConv are memory bound on the
platforms except for the CPU and GPU.
Implication: It is encouraged to use bigger kernels rather
than just the smallest one on the NPU, DSP, and VPU for
DWConv, as well as NPU, DSP, and Edge TPU for Conv.

Conv is computation bound on the CPU and GPU. Thus,
the latency increase is consistent with OPs increase. By
comparison, the latency increase on the other platforms is
much less than OPs because Conv is memory bound rather
than computation bound on these platforms. Compared to
the quadratic increase of OPs, mac only increases 4% for
K=3 and 12% for K=5 compared to K=1. Thus, the latency
increase is much less compared to the CPU and GPU.

For DWConv, the latency increase with kernel size is even
smaller compared to Conv, particularly on the DSP, VPU,
and NPU. This is because the mac increase is more marginal,
only 0.4% for K=5 compared to K=3. The behaviour on
the Edge TPU is an outlier. The reason is not clear since
both the hardware and framework are black box.

4.5 Does low data precision reduce latency with
marginal accuracy loss?

Low data precision is recognized as an effective way to
speed up inference with marginal accuracy loss. However,
measured latency and accuracy do not always meet the ex-
pectation. Table 4.4 compares the inference latency and ac-
curacy on the ImageNet 2012 dataset (shown in parentheses)
of different precisions on the CPU, GPU, and NPU, since
they support multiple precisions. The table only shows the
models in our dataset supported by NPU (except for Shuf-
fleNetV1). A complete result on each platform for every
model is in Appendix B.4.

Finding 5. The use of INT8 on the NPU achieves > 11×
speedup compared to FP16 except for MobileNetV3 (2.5×),
while on the CPU, it shows < 3.6× speedup and even a
slowdown for ShuffleNetV1.
Cause: The NPU features an engine specific for INT8 com-
putation, rather than sharing computation units for different
precisions like the CPU and GPU. The INT8 requantization
is very costly for low-data-reuse operators on the CPU.
Implication: For optimal latency on the CPU, it is encour-
aged to select suitable data precision for each operator ac-
cording to its data reuse.

SIMD units on the CPU support 4 FP32 or 16 INT8 op-
erations at a time. Ideally, INT8 can achieve 4× speedup
compared to FP32. However, the speedup is lower than that
mainly for two reasons. The first reason is the computation
implementation, which is hard to fully utilize all the SIMD
units. The second reason is the cost of requantization. To
avoid overflow, the output tensor of INT8 operators is in
INT32. Requantization is needed to map the INT32 tensor
to the range of INT8 (Krishnamoorthi, 2018). For high data-
reuse operators, this cost is amortized. For low data-reuse
operators, this cost can outweigh the performance gain of
quantization. For example, the Add operator in INT8 can
run 4× slower than FP32. Thus, MobileNetV3 with SE
achieves only 1.54× speedup in INT8 compared to FP32.
For ShuffleNetV1, INT8 even increases the latency by 13%.

On the Adreno GPU, the FP16 and FP32 computation also
share the same units. Ideally, FP16 can achieve 2× speedup
compared to FP32. The output tensor of FP16 computation
is still in FP16, so no requantization is needed. The speedup
of FP16 is 1.5× to 2.0× compared to FP32.

On the NPU, the use of INT8 achieves >11× speedup than
FP16. This is due to the exceptional 8-bit computation
performance of the specific NN engine (refer to Sec. 3.2).
Global Pooling and Multiplication in SE are not supported
by this engine, so the speedup for MobileNetV3 is only
2.5×. The use of DFP16 accelerates model inference by
1.31× to 3× than FP16, due to the better performance of
fixed-point 16-bit than float-point 16-bit computation.

For accuracy, we find that INT8 can cause unexpected accu-
racy loss. For example, Table 4.4 shows a big accuracy drop
for MobileNetV3 on the CPU (-58.4%) and NPU (-75.6%).
Moreover, we also observe some dramatic accuracy drop on
other platforms. The accuracy of MnasNet-A1 is reduced by
64.7% on the Edge TPU. MobileNetV2 has a 70% accuracy
drop on the DSP. These are because the ReLU6 and Swish
activation functions in these models are not well supported
by the quantization algorithms of the frameworks on the
Edge TPU and DSP (Liu, 2020; Sheng et al., 2018).

Finding 6. INT8 can dramatically decrease inference ac-
curacy of various models.
Cause: The INT8 quantization algorithms are not robust for
every model on some NN platforms.
Implication: If the target data precision is INT8, it is neces-
sary to remove building blocks and operators that will cause
accuracy loss from the NN design space.

4.6 An across-platform comparison in latency,
energy, and accuracy

We finally conduct an comparison among the seven plat-
forms to see which is the best choice in terms of inference
latency, energy, and model accuracy.
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Table 4. Latency and ImageNet accuracy comparison of different data precision. INT8 significantly reduces accuracy for MobileNetV3
and ShuffleNetV1. In the form ”x(y)”, ”x” means the latency and ”y” means the accuracy after quantization for pre-trained models.

Model OPs
Top1- CPU GPU NPU
Acc FP32 INT8 FP32 FP16 FP16 DFP16 DFP8 UINT8
(%) ms ms (%) ms ms (%) ms (%) ms (%) ms (%) ms (%)

MobileNetV1 569M 71.0 36.2 13.5 (70.4) 12.1 5.9 (71.6) 70.2 (70.9) 53.3 (71.0) 7.8 (50.5) 5.7 (65.9)
MobileNetV2 300M 71.8 24.9 12.5 (71.2) 9.9 6.2 (71.8) 72.7 (71.8) 49.5 (71.8) 8.8 (59.1) 6.2 (69.3)
MobileNetV3 219M 75.8 19.9 12.9 (17.4) 10.1 6.5 (75.4) 105.2 (75.3) 72.5 (75.3) 39.7 (0.2) 41.5 (0.44)
ShuffleNetV1 140M 67.6 31.7 35.8 (0.10) - - - - - -
InceptionV1 1448M 69.8 89.1 24.9 (70.3) 28.8 19.8 (70.6) 103.2 (69.7) 34.0 (69.7) 5.3 (66.2) 5.4 (69.2)
ResNetV1 50 3485M 75.1 208.5 63.7 (74.7) 53.2 33.3 (75.1) 348.6 (75.1) 145.6 (75.0) 13.5 (72.9) 13.4 (74.7)
ResNetV2 50 6548M 75.9 378.9 136.3 (75.0) 120.2 68.9 (75.8) 491.6 (75.5) 290.5 (75.5) 45.1 (72.0) 42.7 (75.2)

The CPU provides the most robust support for models. By
comparison, all other platforms have operators not sup-
ported or not well performed, which harms model accuracy.

However, for models that NN platforms provide good sup-
port for, substantial improvement in latency and energy can
be achieved. The best speedup compared to the CPU in
our evaluation is 25× for InceptionV1 on the Edge TPU
and ResNetV1 on the NPU. The most energy saving is Mo-
bileNetV1 on the Edge TPU and ResNetV1 on the NPU
which cost only 4% and 3% of the energy on the CPU,
respectively. All the data of the models is in Appendix B.4.

Finding 7. Considering the robust support for NN models,
particularly the novel ones, the CPU is the best choice.
Considering the latency and energy cost for basic popular
NN models, Edge TPU and the NPU are the best choice.

Finally, we raise a contradiction between the design of
edge NN platform and efficient NN algorithm exposed
during our study. Current edge NN platforms are mostly
designed for computation-intensive convolution operators.
However, the trend in efficient NN design is to introduce
more memory-intensive blocks e.g., Shuffle and SE. These
blocks become the latency bottlenecks, which shows an
opportunity for future platform design.

5 CASE STUDIES ON NN DESIGN
This section utilizes channel pruning and NAS as examples
to show how the revealed findings can improve the NN
design process.

Channel pruning. The layer-wise pruning ratio is difficult
to set in channel pruning. This process requires huge time
cost to achieve the optimal accuracy and efficiency trade-off.
Findings in Sec. 4.1 indicate that the decrease in Cout does
not always decrease latency. We can thus accelerate the
pruning process by keeping the largest number of channels
in each latency step for better accuracy, and skip others.

For instance, MetaPruning (Liu et al., 2019) searches
for Cout from [int(0.1 × Cl

out), C
l
out] for layer l of Mo-

bileNetV1, with the step of int(0.03× Cl
out), where Cl

out

indicates the original output channel number for layer l. For
a layer with Cout = 32, the original step size is 1 and the

candidate channel selections are 30 (ranging from 3 to 32).
The total search space contains 3014 channel configurations
for MobileNetV1 (14 layers to search), which is huge to
explore. Fortunately, findings show that the latency of Cout

decreases with a step width of 8 for Conv on the CPU (c.f.
Fig 4(a)). The candidate channel selections are reduced
from 30 to 4 (i.e., 8, 16, 24, 32), and the search space is
reduced from 3014 to 414. In total, we reduce the channel se-
lections by 7.5× for each layer, and accelerate MetaPruning
with a 1012× search space reduction for MobileNetV1.

Hardware-aware NAS. The unawareness of hardware di-
versity misleads current NAS works to apply an identical
manually elaborated search space based on CPUs for all
platforms (Cai et al., 2019; Wu et al., 2019a). Findings in
Sec. 4 expose the inefficiencies in such search space and
suggest new principles.

Recent hardware-aware NAS methods adopt a layer-level
hierarchical search space, where each layer searches for
the optimal operator/block from several block choices (e.g.,
MobileNets block variants with different DWConv kernel
sizes). The search space is usually huge and expensive.
For example, the search space size of MnasNet (Tan et al.,
2019) is 1013, and the search cost is 40,000 GPU hours.
As discussed in Sec. 4.2, SE dramatically increases the
latency on all other hardware except the CPU. As a result,
we suggest removing SE from MnasNet’s search space for
AI accelerators. It can reduce the search space size by 32×.

For future search space design, we summarize the follow-
ing guidelines: (i) The NN search space needs to be cus-
tomized for each hardware; (ii) CPU prefers blocks with
less computations, while AI accelerators prefer blocks with
less memory accesses; (iii) Novel block design should con-
sider the platform optimizations (e.g., operator fusion) and
robustness of quantization.

6 CONCLUSION
To summarize, we propose a dataset which covers major
NN design dimensions. By profiling this dataset on seven
representative edge platforms, we highlight seven findings
as guidelines to improve efficient NN design. Case study
shows that the design space can be largely reduced for chan-
nel pruning and NAS by our findings.
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A MEASUREMENT SETTINGS

Figure A.1. Power curve of MobileNetV2 execution on VPU, in-
cluding the pre-processing and 140 inference runs.

Latency measurement. TFLite currently doesn’t provide
operator-level profiling for accelerators. For GPU backend,
we implement an operator profiler by utilizing the OpenCL
profiling events, and record the GPU latency of operators
and data transfer separately. TFLite has both OpenCL and
OpenGL implementations for GPU backend. This paper
picks the OpenCL one due to its better performance. Since
the TFLite backend for Edge TPU is closed-source and only
report end-to-end latency, we pile the same operator/block
into two multi-layer models e.g., a 40-layer one and a 10-
layer one. The latency is calculated by the latency difference
of two models divided by their depth difference.

Except for TFLite, the operator-level profiling of each plat-
form reports the data transfer and operator cost separately.
We directly use the reported operator latency. Block latency
is calculated as the sum of its constituent operators, due to
the serial execution of operators in these frameworks.

For whole model latency, we disable the operator-level pro-
filing and report the end-to-end time cost as in real industry
deployment. The reported latency in the paper is the arith-
metic mean of 50 runs after 10 warmup runs. The 95%
confidence interval is within 2%.

Accuracy evaluation. We evaluate the model accuracy on
ImageNet 2012. Pre-processing includes cropping, nor-
malization, and resizing, which are necessary steps before
model inference. This is done by TFLite model accuracy
tool. Finally, the pre-processed data are used as model
inputs for each framework to test the inference accuracy.

Energy measurement. We monitor power trace to calcu-
late energy consumption. For our compute stick devices
(i.e., VPU, Edge TPU, NPU, KPU), power trace is sampled
by a calibrated power meter at 1 KHz. For android devices
(i.e., CPU, GPU, DSP), power trace is collected through sys-
tem PMIC (power management integrated circuit) at around
800 MHz.

As illustrated previously, model execution time includes
not only inference time but also initialization time, data
layout conversion time, etc. It’s challenging to align the
start time of power sampling and inference on our platforms.
To locate the inference time, we run hundreds of sequential

inference runs. As shown in Fig. A.1, we observe that
power fluctuations ahead of actual inference execution, and
then shows stable repeating patterns until inference finishes.
Therefore, we use the average power of inference stage to
compute the energy (i.e., energy = power × time).

Frequency setting. For measurement stability, we disable
the OS DVFS and try to fix the processor frequency. We
set he CPU frequency to the highest 2.84 GHz. Edge TPU
uses the runtime version that operates at the max frequency.
KPU is set to 400 MHz although it can be overclocked to
800 MHz. The GPU also provides frequency setting inter-
face for users. However, its DVFS cannot be disabled and
still scales frequency according to the workload. We sample
the GPU frequency during each inference run. Results show
that the GPU frequency is stable at 585 MHz. No available
methods to set frequency for the other processors.

B ADDITIONAL RESULTS FOR NN DESIGN
SPACE

B.1 Conv output channel numbers analysis

Fig. B.1 shows the latency of Conv with different output
channel numbers on other three platforms. Except KPU, the
latency shows a step pattern with Cout on TPU and NPU.

GPU. In this paper, we utilize TFLite’s OpenCL backend
on the Adreno GPU for accurate latency measurement. The
OpenCL execution model decomposes an index space into
work groups (i.e., blocks in CUDA) (Lee et al., 2019). For
Conv, the decomposition is done on the index space of the
output tensor as shown in Fig. B.2. A work group is es-
sentially the elementary computation block for GPU SIMT
parallelism, since threads (called work items in OpenCL) in
a work group execute the same shader code and use the same
work-group barrier. The output tensor needs to be padded
according to the work group size, and thus the latency also
shows a step pattern in Fig. 4(b).

However, the step width for the GPU is not constant as the
CPU. This is because the work group size is not fixed as the
width of the vector registers. The suitable work group size
depends on various hardware configurations, such as wave
size, number of computing units, and shared memory size.
As a result, TFLite conducts an exhaustive search for the
best work group size according to the output tensor, which
leads to the varied step width.

B.2 Depthwise Conv channel numbers analysis

DWConv is introduced for edge-regime NN models. Each
filter only convolves with one input channel rather than all
channels to largely reduce computation. The filter kernel
number, therefore, equals input channel number i.e., Cin =
Cout. The computation complexity is O(Cin) when only
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Figure B.1. The latency of Conv with different Cout on other three platforms. Configuration: H ×W = 28× 28, Cin = 320, K = 3,
S = 1. The X-axis is Cout (different intervals to better show the pattern) while the Y-axis is the latency in milliseconds.

Figure B.2. TFLite OpenCL Conv implementation. Dash line
marks work group and padding. Orange color shows the com-
putation of one element in the result tensor.

Cin changes (Table 3). The latency has the following find-
ings (figure not shown). Fig. B.3 shows the latency and
channel number relationship for DWConv.

Finding 8. The latency of DWConv increases with the
channel number in a step pattern for CPU, DSP, TPU and
VPU; quadratically for NPU; and linearly for GPU, KPU.

For DWConv on CPU, TFLite uses direct Conv for each
channel rather than the im2col+MM algorithm. This is be-
cause the low computation amount cannot amortize the data
transformation cost. For the same reason, the input tensors
are not padded either. Instead, TFLite uses three loops with
different loop unrolling stride as shown in Fig. B.4. The
first loop uses a stride = 16, i.e., each loop iteration con-
volves 16 channels. The second loop has a stride = 4, and
the third stride is 1. The 16 stride has better instruction
parallelism, SIMD units utilization, cacheline alignment,
and reduced branch cost. Thus, the latency shows a zig-zag
pattern in Fig. B.3(a), and achieves the local minimum when
the channel number is a multiple of 16.

As is shown in Fig. B.3(a), latency rises from 16k to 16k +
12 channels and then drops drastically when reaching 16(k+
1). We read the corresponding code for depthwise Conv
in TensorFlow Lite. And we found that the accumulation
loop along the channel axis is manually unrolled to the
template of b c

16cloop0+b c mod 16
4 cloop1+(c mod 4)loop2.

In this template, loop0 uses 4× 3 (cache for input, filter and
result) 128-bit wide registers to operate 128bit

32bit/channel × 4 =
16 channels at a time. Similarly, loop1 utilizes 3 NEON
registers and Mul-Adds for 4 channels while loop2 does the
plainest operation without SIMD instructions.

Since correctly-implemented loop unrolls can minimize
branch penalty and increase parallelism by reducing data
dependencies between instructions, fully unrolled accumu-
lation loop is faster than partially unrolled one. Therefore,
the latency of loop0 is smaller than 4 times the latency of
loop1, hence the rise-and-then-fall zig-zag latency diagram
of DWConv.

The output feature map of DWConv on GPU is also par-
titioned into work groups as Conv in Fig. B.2. However,
rather than a clear step due to padding, the latency here in
Fig. B.3(b) fluctuates a bit. As explained above, the TFLite
GPU backend searches for the best work group size. We
thus output all the selected work group size to explore the
reason. In Fig. 4(b), the selected work group size is rela-
tively stable and the step is clear. However, the selected
work group size here varies a lot as the channel number
increases, and so thus the latency.

The Rockchip NPU in Fig. B.3(d) shows an unexpected
quadratic increase although the complexity is only O(Cin).
A very possible explanation is that the CNN-specific pro-
cessing units of the NPU is customized only for normal
Conv, and new Conv algorithms have to be converted to nor-
mal Conv to run. We deduce this because the computation
complexity of normal Conv is O(C2

in) when Cin = Cout

as DWConv, and the latency curve is quadratic. Thus, the
quadratic increase for DWConv should be because it runs
as a normal Conv on this NPU. To achieve this, each filter
kernel should be zero padded to the size of Cin and then
conducts Conv with the whole input feature map (hardware
optimization for computations with zero may exist).

For the DSP, VPU and KPU, they basically have the same
latency curve as normal Conv, and we don’t include the
figure here.
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Figure B.3. The latency of DWConv at different channel number. Configuration: H×W=7×7, Cin=Cout, K=3, S=1. The x-axis is
Cout, y-axis is the latency in milliseconds.

Figure B.4. TFLite CPU DWConv implementation. Color shows
each filter only convolves one channel and Cin= Cout.

112 × 112 × 32 56 × 56 × 64 28 × 28 × 128 14 × 14 × 256 7 × 7 × 51210 1

100

101

102

La
te

nc
y 

(m
s)

 (l
og

 sc
al

e)

MobileNetV1
ShuffleNetV2
ResNetV1

ShuffleNetV1
MobileNetV2

MobileNetV2+SE
DenseNet

Figure B.5. The fastest block in each layer is different on the CPU.
Configuration: the layers vary in H × W × Cin, Cin = Cout,
K = 3, S = 1.

B.3 Input size impacts on latency analysis

Current NN designs normally use the same building block
for every layer in a model, assuming one block can perform
well on every layer. However, the measured latency in
Fig. B.5 shows that there is no one block that runs the fastest
in every layer on the CPU. The configurations of input size
and number of channels in this evaluation follow the “half
size, double channel” heuristic rule discussed in Sec. 2.1,
and set H = W and Cin = Cout as it is the most common
setting for CNN models.

Finding 9. No one block is the fastest in every layer on the
CPU, while on the other platforms MobileNetV1Block is
the fastest in every layer.
Cause: The OPs and mac of each block change differently
with layers. The latency is consistent with the change on the
CPU, while inconsistent on the other accelerators because
of their weak support for non-Conv operators.
Implication: It is encouraged for NN design to select dif-
ferent building blocks for each layer on the CPU.

As shown in Fig. B.5, blocks have different latency response
as the layer goes deeper (smaller input and more channels).
The latency of ShuffleNetV1Block and DenseBlock keeps
reducing with the layers, while the latency reduction stops
for the other building blocks in deeper layers. This is be-
cause the OPs and mac of operators change differently with
layers.

According to the formulas in Table 3, under the “half size
double channel setting” rule, the OPs keep the same with lay-
ers for Conv and Group Conv (i.e., (1/2H)2× (2Cin)

2K2),
and get halved for DWConv and Element-wise operators
(i.e., (1/2H)2 × 2CinK

2). The mac of an operator is com-
posed by input and output tensors and the filter kernels. The
mac of input and output tensors gets halved with layers (i.e.,
(1/2H)2 × 2Cin). The mac of filter kernels increases 4×
(i.e., (2Cin)

2K2) for Conv and Group Conv, and 2× (i.e.,
2CinK

2) for DWConv with layers.

For MobileNet blocks which are composed by Conv and
DWConv (see Fig. 2), the mac reduction of input/output
tensors outweighs the mac increase of filter kernels until the
14× 14 layer, which has the minimum mac and latency as
shown in Fig. B.5. This is also why the latency reduction
stops for other building blocks in deeper layers. For Shuf-
fleNetV1Block composed by Group Conv, DWConv, and
Channel Shuffle, the mac of filer kernels is much smaller
than the input/output tensors. The total mac keeps reduc-
ing with layers, so does the latency. ShuffleNetV2Block
replaces the Group Conv in ShuffleNetV1Block by Conv,
and the mac reduction is much smaller. For DenseBlock,
albeit composed by Conv, the two Conv operators have fixed
Cout or Cin. Hence, the OPs keep decreasing with layers,
and so does the latency.

In total, MobileNetV1Block runs fastest in the first two
layers, but beaten by ShuffleNetV1/V2Block afterwards. It
even runs > 1× slower than the well-known computation-
intensive DenseBlock at 7× 7. ShuffleNetV1Block is the
fastest for the 28× 28, 14× 14, and 7× 7 layers.
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Figure B.6. Regarding the accuracy and latency trade-off, the optimal models are different on each platform. Top-1 accuracy on ImageNet
is annotated on the bar. A darker color indicates a larger OPs.

Figure B.7. Energy consumption of one inference run across dif-
ferent platforms. The number followed by each platform on the
x-axis is the average power cost.

For other platforms, MobileNetV1Block is always the
fastest in every layer due to their poor support for non-Conv
operators like Shuffle as discussed in Sec. 4.2.

B.4 Model energy cost, accuracy, and latency on
different platforms

For accuracy evaluation, our dataset collects 14 rep-
resentative models from both manually-designed and
NAS-searched ones: 1) Manually designed: Mo-
bileNetV1/V2, ShuffleNetV1/V2 for light-weight models,
and ResNetV1/V2 (He et al., 2016), InceptionV1 (Szegedy
et al., 2015) for large models; 2) NAS searched:
MobileNetV3-Large1.0 (MobileNetV3) (Howard et al.,
2019), Proxyless mobile/mobile14 (Cai et al., 2019),
MnasNet-A1 (Tan et al., 2019), NasNet-A mobile (Zoph
et al., 2018), and EfficientNet-B0/B1 (Tan & Le, 2019).

These models are with different levels of computation and
memory cost. OPs range from 140 M (ShuffleNetV1) to
6.55 G (ResNetV2). Model size varies from 9 MB (Shuf-
fleNetV2) to 99 MB (ResNetV2).

Fig. B.6 shows the latency and accuracy of all the models
in our dataset on every platform (the missing data is due
to lack of support). We can see that every model can run
successfully on the CPU with no accuracy loss. By com-
parison, the other platforms all have operators or models
not supported or not well performed, especially for more
recently-designed models. MobileNetV3 runs the fastest
on the CPU due to the poor support of SE block on the
other platforms, although it is only a single-core ARM CPU
using FP32 precision. In terms of accuracy, MnasNet-A1
and NasNet-A mobile on the Edge TPU, MobileNet series
on the DSP, and MobileNetV3 on the NPU all experience
dramatic accuracy loss.

Fig. B.7 compares the energy cost of four well-supported
models to conduct one inference execution on every plat-
form. The Edge TPU and NPU show the least power and
energy cost. The energy of MobileNetV1 inference on the
Edge TPU is only 4% of the energy cost on the CPU. The
energy of ResNetV1 on the NPU is only 3% of the cost on
the CPU.

The KPU result is missing in this section because the input
shape of the models is over the KPU limitation. It can run
blocks or shrank models but not default model settings.


