
Is your smoke detector working properly?
Robust fault tolerance approaches for smoke detectors

Arjun Tambe∗
Microsoft Research, India
arjuntambe1@gmail.com

Akshay Nambi
Microsoft Research, India
akshayn@microsoft.com

Sumukh Marathe
Microsoft Research, India
t-summar@microsoft.com

ABSTRACT
Billions of smoke detectors are in use worldwide to provide early
warning of fires. Despite this, they frequently fail to operate in an on-
going fire, risking death and property damage. A significant fraction
of faults result from drift, or reduced sensitivity, and other faults
in smoke detectors’ phototransistors (PTs). Existing approaches
attempt to detect drift from the PT output in normal conditions
(without smoke). However, we find that drifted PTs mimic the
output of working PTs in normal conditions, but diverge in the
presence of smoke, making this approach ineffective.

This paper presents two novel approaches to systematically de-
tect faults and measure and compensate for drift in smoke de-
tectors’ PTs. Our first approach, called FallTime, measures a PT
“fingerprint,” a unique electrical characteristic with distinct behav-
ior for working, drifted, and faulty components. FallTime can be
added to many existing smoke detector models in software alone,
with no/minimal hardware modifications. Our second approach,
DriftTestButton, is a mechanical test button that simulates the
behavior of smoke when pressed. It offers a robust, straightforward
approach to detect faults, and can measure and compensate for drift
across the entire smoke detector system. We empirically evaluate
both approaches and present extensive experimental results from
actual smoke detectors deployed in a commercial building, along
with custom-built smoke detectors. By conducting tests with live
smoke, we show that both FallTime and DriftTestButton per-
form more effectively than existing fault tolerance techniques and
stand to substantially reduce the risk that a smoke detector fails to
alarm in the presence of smoke.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Hardware→ Fault tolerance.
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(a) NoSmoke condition (b) Smoke condition
Figure 1: Working principle of a Photoelectric Smoke Detec-
tor [49].

1 INTRODUCTION & RELATEDWORK
Smoke detectors (or smoke alarms/sensors) are currently being
integrated into smart homes, hospitals and shopping malls, and
constitute one of the most important, safety-critical applications
of networked sensor systems. These smoke detectors are deployed
at scale to provide early warning of fires, and are responsible for
precipitous declines in fire deaths [12, 13]. Despite this, smoke
detectors frequently fail to operate in an ongoing fire, risking death,
injury and property damage. In the US alone, smoke alarms failed to
operate in 15% of all fires, contributing to nearly 2,000 fire casualties
and property damage of $10 billion per year [13]. Improving the
reliability of smoke detectors can significantly reduce the rates
of death, injury, and property damage, which represents a key
application of mobile systems.

Photoelectric detectors are the most common type of smoke
detector, and are more responsive to smoldering fires [7], which are
frequent in household and commercial settings [13]. Photoelectric
smoke detectors employ a light source (LED) and a phototransistor
(PT), which converts light signals into electrical signals. Figure 1
shows the working principle of photoelectric detectors. As smoke
enters the chamber and crosses the path of the light beam, light
is scattered by smoke particles toward the PT. Figure 2 shows a
simplified circuit diagram of a smoke detector. A microcontroller
(MCU) reads the PT output; if the PT output exceeds a pre-calibrated
threshold, the MCU triggers an alarm.

A smoke detector may fail to alarm promptly for numerous
reasons. Significant progress has already been made to address a
subset of failure scenarios such as, (i) failure of a power source; (ii)
improper placement of the unit, preventing smoke from flowing to-
wards the detector; and (iii) basic electrical failures, such as broken
connections. For (i), most detectors issue light indications or audio
commands when the battery is low [49]. For (ii), government regu-
lations (such as NFPA 72 [15]) mandate the number and position of
smoke alarms to be installed in a given building. For (iii), modern
smoke detectors annunciate loose or broken connections, which is
required by NFPA 72 [15, 24].

Detecting damage or faults in smoke detectors’ phototransistors
remains an unsolved problem, despite great attention to improving
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Figure 2: Circuit diagram of a smoke detector.

smoke detector reliability. This is because detector with faulty com-
ponents generally does not output data that differs obviously from
that with a functioning component—until an actual fire occurs (see
Section 2). Phototransistors (PTs) are a key problem area because
they are a major cause of smoke detectors’ failure to alarm, as we
verify in Section 2.1. While fault detection techniques exist for other
smoke detector components like the LED [39], techniques for pho-
totransistors remain highly limited [14]. PTs present a particular
challenge for fault detection because they do not consume power,
making other common fault detection techniques inapplicable.

PTs undergo two classes of faults: drift, in which PT responsivity
to light is reduced, and catastrophic faults, in which the PT no longer
responds to light at all. Wear and tear of PTs due to continuous
operation and deployment for several years, as well as exposure to
harsh conditions (high temperature in case of a fire event, humidity,
dust, etc.) produces drift that gradually increases over time, andmay
eventually cause a catastrophic fault [13, 31]. As the PT experiences
drift, the smoke detector’s sensitivity is reduced, leading to delayed
detection of smoke [31].

Faults or drift typically go undetected for several months at a
time, as the detector is only triggered during a fire event or mainte-
nance, both of which occur infrequently [14]. Thus, drift or faults
may occur "silently" - i.e., without warning - which can be disas-
trous in a real fire [30]. Existing methods to test the PT’s health
manually or automatically are incapable of testing for drift, as we
show in Section 3. New, automated detection techniques are needed
to improve smoke detector fault tolerance and reduce fire risk. This
paper presents a novel approach to detect catastrophic faults and
drifts in smoke detector PTs. We present experimental evidence
for a key finding in phototransistor physics that the root causes
of PT drift also increase the time required for the PT to switch
from a "high" to a "low" state (its fall time), resulting in a strong
correlation between the fall time and PT drift. We use this finding
to devise a phototransistor “fingerprint” we name FallTime that
differs between working and faulty sensors, and can be used to
quantify drift.

The FallTime fingerprint has the following key characteris-
tics: (i) Distinct for a working, drifted and faulty component; (ii)
Environment-agnostic and robust to variations in temperature, hu-
midity and dust accumulation; (iii) Quantifies the amount of drift;
(iv) Requires no or minimal hardware modification to existing smoke
detector models and can be automatically measured using light-
weight APIs. A baseline fingerprint is first determined “in the fac-
tory" before deployment to characterize a working component. The
fingerprint is measured periodically in a deployed device and com-
pared against the baseline. Depending on the level of deviation,
the component can either be classified as working, catastrophically

faulty, or drifted. If it is drifted, the quantity of drift can be esti-
mated to apply appropriate compensation so that the detector is
as sensitive as, and alarms in a fire as quickly as, a functioning
detector.

To show the efficacy of the proposed fingerprints, we first show
that the fingerprint effectively detects faults and quantifies drift
in two commercial smoke detector models, namely, Firelite detec-
tor [29] (12 instances) and System Sensor [1] (9 instances). We also
built three new smoke detectors (Custom1- 6 instances, Custom2- 7
instances, Custom3- 6 instances) using components commonly used
in commercial smoke detectors, and showed that our fingerprinting-
based approach can be applied to these components. Finally, we test
our approach with real smoke, using the fingerprint to compensate
for drift in sensors with drifted PTs.We show that the detectors with
our approach operate within desired bounds despite PT drift, while
smoke detectors employing the conventional approach frequently
fail to alarm before reaching lethal concentrations of smoke.

As an alternative to the fingerprint approach, we also present
a mechanical DriftTestButton that can be incorporated into a
smoke detector’s physical body to detect faults and drift in its
components. Intuitively, if existing approaches fail to predict the
device’s behavior in Smoke conditions, then a method to simulate
the behavior of smoke offers a promising and more robust test.
Our DriftTestButton protrudes into the sensing chamber when
activated, reflecting light from the LED into the PT in the same way
that smoke would. We test the proposed button with live smoke and
show that it, too, is more effective than the conventional approach
in compensating for drift. The key contributions are:

• We show that phototransistor drift is an understated contributor
to smoke detector failure, and identify a phenomenon in photo-
transistor physics in which phototransistor fall time is related to
its drift.

• We develop a novel “fingerprint" exploiting this phenomenon to
measure and compensate for phototransistor drift.

• We design a mechanical DriftTestButton that simulates smoke
conditions to measure and compensate for drift.

• We show that these two approaches outperform existing methods
with five smoke detector models in real Smoke conditions.

2 UNDERSTANDING SMOKE DETECTOR
FAULTS

In this paper, we focus on faults that directly threaten fire safety, or
cases in which a fire is not detected quickly, or not detected at all,
and the device fails to alarm quickly enough for people to evacuate
from the fire.

A major cause of failure that has received inadequate attention
is sensitivity drift, which is caused by “wear and tear” or aging
of sensing components, and is highly prevalent in smoke detec-
tors [13, 31]. Specifically, phototransistors (PTs) accumulate damage
over time through hot carrier injection, which reduces the device’s
forward-bias current gain [18, 36, 61]. This presents a substantial
challenge because smoke detectors are expected to last for 10 years
of continuous operation, or about 88,000 hours, so even relatively
minor levels of drift per year will pose safety risks, compromising
the “margin of safety” for a smoke detector to alarm in time for



Is your smoke detector working properly?
Robust fault tolerance approaches for smoke detectors MobiSys ’21, June 24– July 02, 2021

0 100 200 300 400
Time (s)

0

100

200

PT
 o

ut
pu

t

SmokeNo Smoke

P

Q

t1 t2

Working
Faulty
Alarm Threshold

(a) PT Drift

0 100 200 300 400
Time (s)

0

100

200

PT
 o

ut
pu

t

SmokeNo Smoke

R

S

Shorted

(b) PT Catastrophic Fault
Figure 3: Faults observed in smoke detector PTs

people to evacuate [30]. Yet, methods to measure drift are lacking
[14].

To illustrate the effects of various faults, Figure 3 compares the
PT output of working sensors with that of faulty sensors. The x-
axis indicates the time in seconds; smoke is introduced and begins
accumulating after 150 seconds of data accumulation. The black
horizontal line represents an alarm threshold.

Under NoSmoke conditions the PT of a working sensor does not
directly receive light from the LED, resulting in a low PT output
as shown in Figure 3(a) region P. When smoke enters the sensing
chamber, light emitted by the LED is scattered by the smoke parti-
cles and the intensity of light incident on the PT increases, which
is converted into an electrical signal, resulting in a high output, as
shown in Figure 3(a) region Q. Crucially, higher densities of smoke
will scatter more light and increase the PT output. When the output
of the PT is above a set threshold, an alarm is triggered.

Case 1: Drift: Figure 3(a), region Q, illustrates that PT drift in a
faulty sensor causes a delay in alarm. The PT must wait for higher
smoke densities before crossing the alarm threshold and activating
an alarm. Thus, a working sensor alarms at time 𝑡1 while a drifted
sensor alarms later, at 𝑡2. This threatens fire safety.

Case 2: Catastrophic faults: Some PT faults can cause the
output to “float” (or take on arbitrary values due to being electrically
un-grounded) in the normal output range (region R), without rising
in the presence of smoke (region S, Figure 3(b)).

Key challenge: The PT output of a drifted or faulty PT component
is not distinguishable from the output of a working sensor in NoSmoke
conditions (regions P, R) and deviates only in smoke conditions (regions
Q, S).

While LED faults or drift also cause failure, existing approaches
can already detect it, as we describe in Section 3. Conversely, the
effect of PT drift/fault remains poorly studied. In the next section, we
address this gap by conducting natural and controlled experiments
that demonstrate PT drift is highly prevalent and impactful on
smoke detector operation, highlighting the need for drift detection
techniques for PTs. The tests are conducted with sensors already
using a conventional, industry-standard fault compensation approach,
indicating that existing approaches fail to correct for drift.

2.1 Case study: Impact of PT drift in smoke
detectors

Natural experiments. We collected 12 Firelite detector (see Sec-
tion 6.1 for details), one of which was brand-new and 11 of which
had been in use in a commercial building for 1 - 5 years, compared
to the detectors’ rated lifetime of 10 years. To determine whether

their PTs were drifted, we measured the response of the PT to
varying light intensities. An LED [46] is shone straight into the PT
from 2 cm away, in the absence of ambient light, and the PT has a
15KΩ load resistor.

Figure 4(a) shows the response for four of the detectors’ PTs
(collector current in mA) to increasing light intensities (measured in
Watts per steradian, W/sr), which corresponds to increased smoke
densities. Increasing the light intensity increases the PT output,
as expected. However, the PT output at any given light intensity
varies considerably between PTs, indicating drift. For instance, the
sensor corresponding to the bottom orange line would require
higher smoke densities than the sensor corresponding to the top
blue line, to cross the alarm threshold.

To quantify the level of drift, we define a “drift score" ranging
from 0 to 1 for each PT. The score quantifies how far the behavior
of a drifted PT deviates from a new PT, and is proportional to the
area between the curves for a new PT and for a drifted PT in Figure
4(a). It is defined as follows:

𝐷𝑃𝑇 = 1 −
∑

𝑖∈𝐼 𝑃𝑇𝑡𝑒𝑠𝑡 (𝑖)∑
𝑖∈𝐼 𝑃𝑇𝑛𝑒𝑤 (𝑖) , (1)

where 𝑖 ∈ 𝐼 represents the set of light intensities tested, 𝑃𝑇𝑡𝑒𝑠𝑡 (𝑖)
and 𝑃𝑇𝑛𝑒𝑤 (𝑖) represents the PT’s output at light intensity i for the
PT under test and the new PT, respectively. The new PT has a score
of 0 and a higher score, up to 1, indicates more drift. Figure 4(b)
uses a bar-and-whisker plot to show the distribution of drift scores,
between 0 to 0.3 with a mean of about 0.14, for the 12 Firelite detector
deployed in the field.

To study the impact of PT drift on detector sensitivity, we con-
ducted a series of 20 smoke tests in which the Firelite detector is
exposed to an increasing density of smoke. We recorded the time
and the smoke density at which the detector alarms. We conducted
the test with five of the 12 detectors in our smoke chamber setup
(see Figure 17(a)) because each must be connected to a Fire Alarm
Control Panel, limiting the number of detector used in each test.

Figure 4(c) shows the mean results from all the smoke tests. The
x-axis shows the drift score. The left y-axis shows the mean smoke
density (in obscuration %/ft [17]), at which each detector alarmed.
The right y-axis shows the time at which each detector alarmed,
normalized so that the fastest sensor to alarm has a value of 1.
The drift score correlates positively with smoke density and time
required to trigger the alarm. Detectors whose PTs had more drift
needed higher smoke densities and more time before alarming. For
example, detectors with drift scores between 0.2 and 0.3 (rightmost
bar) alarm at smoke densities 10% points higher and 1.5 times
slower than fully functional detectors (leftmost bar). This represents
a dangerous delay in alarm in the drifted sensors.

We compute the coefficient of determination for the correlation
between drift and density level, and between drift and the time
at which a detector alarms, across all 20 smoke tests. The drift
score explains 67% of the variance in both measures. The impact
is also very substantial: a single standard deviation increase in the
drift score prolongs a detector’s time taken to alarm by 16.4%, and
increases the smoke density level at which it alarms by 3.94%/ft,
which is dangerously high [21].

Controlled experiments. To strengthen the above finding, we
conducted experiments on 9 newly purchased commercial smoke
detectors, System Sensor [1]. We manually drifted the PTs in all
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Figure 4: (a) PT output vs light intensity for four of the twelve Firelite detector, (b) Box plot Firelite detector drift scores. Orange
line, box edges, and whisker edges mark the mean, 25th/75th percentiles, and min/max of the drift scores, respectively, (c)
Smoke density and time to alarm for drifted Firelite detectors, (d) PT output vs light intensity for four of the nine System
Sensor, (e) Smoke density and time to alarm for System Sensors.

but two of the System Sensor using the procedure explained in
Section 6.2. Figure 4(d) shows the PTs’ responses for 4 detectors to
different light intensities. The drifted PTs’ (orange line) have a lower
response than the working PT (blue line). Further, the manually
drifted PTs’ responses from System Sensor closely matches the
responses of the naturally drifted PTs from Firelite detector (see
Figure 4(a)). In this controlled experiment, the PTs are the only
components that experience degradation while the remainder of
the circuit remains intact. This allows us to isolate PT drift as the
single cause of delayed alarm.

We conducted another series of 20 tests in which the 6 System
Sensor are exposed to an increasing smoke density, and recorded
the time and smoke density at which each sensor alarms. Figure 4(e)
shows the results of smoke tests on System Sensor . As before, de-
tectors with drifted PTs need much higher smoke density levels
and time than functional detectors to alarm. In this case, PT drift
explains 54% of the variance in the time and smoke density level at
which a detector alarms. A modest increase in the PT’s drift score
by 0.1 points increases the time to alarm by 18% and the smoke
density at which a sensor alarms by 1%/ft.

Finding: Phototransistor drift has a substantial effect on smoke
detector’s sensitivity, and greatly reduces the detector’s speed in re-
sponding to smoke.

These results are notable because it is typically assumed that
LED drift accounts for the majority of sensitivity drift, as in opto-
couplers [2]. As a result, research on smoke detectors has devoted
limited attention to phototransistor drift. We show that even mod-
est PT drift can have a significant impact on device performance,
even when no other part of a smoke detector has been changed.
Drift detection for phototransistors is thus a critical part of the
overall reliability of smoke detector circuits.

3 EXISTING FAULT DETECTION METHODS
In this section, we highlight the shortcomings of existing fault
detection methods.

Manual approaches: Many smoke detectors have a “test but-
ton," but this merely closes a switch to activate an alarm, testing
only the siren and not the sensing components [49]. Other test but-
tons activate a test mode that employs the IndustryApproach [44],
which we address below. Another common approach is the use of
“canned smoke” or aerosols that can be sprayed into the sensing

chamber to mimic smoke [47]. This cannot detect drift because
the amount of aerosol entering the detector cannot be precisely
controlled. It is thus discouraged as an effective testing mechanism
by various fire protection agencies [35, 47, 54]. In general, manual
intervention is disfavored because it severely limits the frequency
of testing.

Newhardware signature-based approaches:New techniques
monitor the current consumption of the sensor component to de-
termine if it is working or faulty [38], [39]. These approaches are
designed for high-power-consuming components such as LEDs.
However, the PT in the smoke detector does not consume signif-
icant power, so its current consumption characteristics are not
affected by faults or drifts. Thus, the current-monitoring approach
is unable to tackle PT faults and drift. [19] uses the shape of a sen-
sor’s “fall curve," or its voltage output after the device is switched
off, to detect faults in simple analog sensors. This technique only
detects catastrophic faults and classifies devices as either working
or faulty. As such, it cannot detect or quantify drift in phototran-
sistors. Quantifying PT drift is essential in the context of smoke
detectors because drift substantially delays the time at which a
detector alarms (Section 2.1). Thus, new fault tolerance techniques
are needed in our context.

The existing Industry Standard approach: A common ap-
proach implemented in commercial smoke detectors, which we call
the Industry Standard Approach or IndustryApproach, uses the
response from the PT in the NoSmoke condition to estimate drift.
Most “intelligent" smoke detector models available in the market
use this approach [1, 28, 29, 34], and it is the leading method cited
in NFPA 72 [15], recent publications [10], and patents [20]. This
method saves a baseline PT output, and compares the measured PT
output (typically over several days) in “normal" smoke conditions
against the baseline. A response below the baseline indicates the
PT is drifted, and corresponding gain is applied to the PT to offset
the drift or to issue a warning to the user.

We argue that this fault detection scheme has inherent limi-
tations because the output of the PT in low light intensities (i.e.,
NoSmoke) cannot accurately estimate its behavior at higher light
intensities (i.e., Smoke). Intuitively, Figure 4(a) and (d) show that
drifted sensors do not have a significantly different output at low
light levels (i.e. lines are very close together on the left side of the
graph), even if they have substantially different outputs at high
light levels (lines diverge on the right side).
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Figure 5: Fit between High and Low Light Intensities. Value
at low light intensity is a poor predictor of value at high
light.

To quantify this claim, we train a simple linear model to estimate
the PT’s output in high light intensity (Smoke) using the PT’s output
in low light intensity (NoSmoke). We used 12 instances of Firelite de-
tector and 6 instances of System Sensor with components of varying
drift scores. The low light intensity is chosen to match the typical
PT output in NoSmoke and the high light intensities is in the PT’s
active range at 1.5 W/sr. We take roughly 100 measurements at
each intensity.

Figures 5(a), 5(b) shows the result. Each point represents data
from one instance of one PT. Each point is positioned according to
the PT’s response at low light intensity (x-axis) and at high light
intensity (y-axis). Blue dots correspond to working sensors and
orange dots correspond to drifted sensors. Visually, drifted sensors
(orange) have lower high-light responses (lower on the y-axis) than
working sensors, but do not appear to have distinguishable low-
light responses (x-axis). Concretely, the fit (green line) is very poor,
with 𝑟2 values [16] of 0.016 for Firelite detector and 0.001 for System
Sensor .

We repeat this test at six different high light intensities ranging
from an intensity corresponding to a smoke density of 1%/ft, to the
intensity that saturates the PT output. The same pattern holds for
these trials for both Firelite detector and System Sensor , with 𝑟2 [16]
never exceeding 0.07. This implies that the PT output in low light
is a very poor predictor of PT output in high light intensities. It is
not possible to accurately distinguish working from faulty sensors
based on their low-light output alone. IndustryApproach is thus
incapable of diagnosing drift in these sensors.

Table 1 gives an overview of the detection capabilities of a few
popular smoke detector models. While the datasheet of Firelite de-
tector and System Sensor claims to perform drift compensation, it
did not appear to work in our real-world tests. Both the Firelite
detector collected from the live deployment and the System Sensor
detectors whose PTs we manually drifted failed to issue a warn-
ing about the condition of the detector, despite the fact that their
PTs were substantially drifted. Further, as noted in Section 2.1, we
conducted smoke tests on these sensors with drifted PTs, and the
drift compensation algorithm provided by the manufacturer did
not adequately offset the drift. The drifted detectors still alarmed
substantially later, when smoke reached dangerously high density
levels of 10%/ft and higher.

4 SENSOR FINGERPRINTING APPROACH
In this section, we propose a “fingerprint" that captures the electri-
cal characteristics of the PT. As described in Section 3, traditional

Detector Model LED Fault Led Drift PT Fault PT Drift

GST [4] No No No No
First Alert [3] No No No No
Kidde P9050 [5] Yes No Yes No
Firelite SD355 [29] Yes No Yes No*
System Sensor 3150E [1] Yes No Yes No*

Table 1: Detection capabilities for popular detectors.
*The datasheet claims to use drift compensation; our experimental

data show that it has limited effectiveness.

techniques monitor the PT output to estimate drift, which is ineffec-
tive. The FallTime fingerprint estimates drift more accurately by
monitoring the PT’s intrinsic electrical characteristics. Our experi-
ments also reveal fundamental insights into phototransistor physics,
and contribute to the field’s understanding of how phototransistors
age.

Central idea: The FallTime fingerprint measures the time re-
quired for the PT output to fall from high to low after the base
input current (generated by light incident on the PT’s) falls to zero
as the incident light is switched off. The length of the fall time
is used to determine the PT’s “health," or classify if it is working,
faulty, or drifted, and estimate the quantity of drift. Due to parasitic
capacitance in the PT, the output signal takes a few microseconds
to decrease to zero after incident light is switched off [19, 45]. Our
approach measures the time taken to fall from 90% of its high-state
value to 10% of that value [59] ("90-10% fall time"). The fingerprint
measured in the field is compared to a baseline, which is measured
“in the factory" for a fully functional sensor of the same model, to
determine the sensor’s health. For instance, we collect a fingerprint
only once for a fully functional PTmodel, which can then be used as
a baseline fingerprint for all individual PTs of the same model type.
Further, the fingerprint collection can be easily implemented with
lightweight firmware updates to existing commercial smoke detec-
tor models that can support a sampling rate adequate to measure
FallTime (updates typically must be made by the manufacturer,
not by the user), or can be implemented with minimal hardware
changes to smoke detectors that do not support such sampling rates
as described next.

4.1 FallTime characteristics
We now describe FallTime’s key characteristics.

❶ Distinct for working, drifted and faulty components.
Faults/drift in a PT result from physical degradation of the de-
vice, which also changes its FallTime. FallTime can therefore be
measured as a proxy for drift/faults. Figure 6(a) shows the voltage
response of two working and three drifted PTs. The graphs show
the raw output values. The two working PTs have similar voltage
response and FallTime, but the FallTime of a drifted PT or a faulty
PT is distinct from that of the working PT. Deviation in the length
of a sensor’s FallTime can be used to distinguish working from
drifted PTs. Faulty PTs’ outputs may “float" in the active region
as shown in Figure 6(a), and can easily be distinguished by their
irregular fall times.

❷ Environment-agnostic. The FallTime of a PT is agnostic
to environmental changes, such as temperature or humidity. In all
smoke detector designs, the PT is housed in a closed chamber, which
blocks ambient light and reduces the impact of temperature and
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Figure 6: (a) Voltage response from which FallTime is measured for two working and three drifted PTs, (b) Voltage response at
two different temperatures, (c) Fall time evaluation on working/drifted detectors with and without dust.

humidity changes. FallTime is also robust to those changes. We
measured FallTime fingerprints of a working PT in two different
temperature conditions. Figure 6(b) shows that across different
temperatures, the FallTime remain same.

FallTime is also operable in the presence of dust. Dust accumu-
lation typically increases the reflectivity inside the smoke chamber.
Because FallTime measures fundamental device properties rather
than the reflectivity (as explained in the next subsection), it is more
robust to dust than IndustryApproach, which measures reflectiv-
ity in order to infer device properties. As shown in Figure 6(c), dust
affects the fall time by a much smaller degree than even modest
levels of PT drift (drift score = 0.34). The presence of dust changes
the fall time negligibly for either a working or drifted sensor, so
FallTime can quantify drift even in the presence of dust.

❸ Quantifies drift. The central characteristic is that as a PT
experiences drift, its FallTime correlates well with its drift score.
Figure 7(a), (b) shows this result for PTs from Custom1and Custom3
detectors (see Section 6.1). As the PT’s drift score (x-axis; see Eq. 1)
increases, the FallTime (y-axis) decreases with strong correlation,
shown by the best fit line (𝑟2 scores are given in the graphs’ corners).
Measuring the FallTime allows us to quantify the level of drift,
and then compensate for that drift so that the detector alarms in
the presence of smoke as quickly as a working one.

❹ No orminimal hardwaremodification required. To mea-
sure the FallTime, we continue to sense the PT output for a short
period of time after incident light is switched off. Smoke detec-
tor circuits pulse the LED on and off, so the PT fall time can be
measured without changing the sensor’s basic operation.

Measuring FallTime also requires sampling the PT’s analog out-
put value at a rate of at least 1 megasamples per second (1Msps).
Many smoke detector models integrate microcontrollers with this
capability [53, 56], or simpler microcontrollers with separate 1Msps
sample-and-hold analog-to-digital converters (ADC) [55]. In such
cases, fingerprint collection can be easily implemented with light-
weight firmware updates. Smoke detectors lacking these compo-
nents must make one of three hardware modifications to collect
FallTime fingerprint, all of which can be made with minimal cost
overhead (typically in the range of a few cents to US$1) and in-
trusion: (i) replacing the microcontroller with a a newer class of
microcontrollers with a >1Msps ADC sampling, (ii) adding a sepa-
rate >1Msps ADC with sample-and-hold capability, or (iii) use of a
larger load resistor to the photo-sensing circuit to greatly increase
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Figure 7: Fall time vs drift score for different PTs.

the fall time, thus allowing existing slower-sampling ICs to still
measure FallTime.

4.2 Underlying physics and insights into PT
aging and lifecycle

We now describe the physics underlying the change in FallTime.
FallTime results from parasitic capacitance in the PT component.
The base current will charge the parasitic capacitance between the
base and emitter when it is switched on, and when switched off,
the capacitor will discharge into the emitter region, prolonging the
FallTime. It is well-known that phototransistors accumulate dam-
age over time from hot-carrier injection [11, 25, 57, 58], degrading
their current gain. We argue that this also reduces base-emitter
diffusion capacitance in NPN phototransistors [27, 33, 61]. Lower
capacitance (due to aging) will reduce the time required for it to
discharge, thereby reducing the fall time.

To validate and generalize this result, we use a circuit simulator
to characterize PT behavior. We model the PT as an ideal transistor
with parasitic capacitances between its junctions, and use a current
source to simulate incident light, which injects current into the
base of a real PT [32]. Figure 8(a) shows the circuit diagram used
in our simulation. We matched parameters to the datasheet of a
real phototransistor (Vishay BPV 11 [51]) where available, and
experimentally derived other values. We simulate our hypothesized
effect of hot-carrier injection by decreasing 𝐶𝐵𝐸2 from 2 nF to 20
pF, and feed the circuit to a SPICE simulator [6, 48]. We compared
the simulated voltage response and FallTime of a working sensor
against that of a drifted sensor (with 𝐶𝐵𝐸2 reduced).

Figure 8(b) shows the voltage response of working and drifted
sensors, from both simulated and real PTs. Each graph shows when
the base current is turned off for reference (orange line). The vertical
dotted lines in red indicate the beginning and end of the FallTime
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Figure 8: Simulation results. (a) PT circuit used in simula-
tion. 𝐶𝐵𝐶 : 19pF, 𝐶𝐵𝐸1: 1.5nF, 𝐶𝐵 : 500nF, 𝑅𝐵 : 30Ω, 𝐶𝐵𝐸2: 2nF,
𝐶𝐶𝐸 : 15pF, 𝑅𝐿 : 15KΩ. (b) Voltage response for simulated &
real PT.

(90-10% of the high-state value). The voltage response and FallTime
for the simulated and real PT match closely in both working and
drifted conditions, confirming that reduced 𝐶𝐵𝐸2 models the effect
that degradation has on a PT’s fall time.

This finding is important because it ❶ strengthens our under-
standing of the physical causes of phototransistor degradation,
which can contribute to designing chips with longer lifetimes [42],
❷ identifies a hitherto unknown effect as phototransistors degrade,
which can help improve the long-term performance of systems
sensitive to changes in phototransistor switching times, and ❸ can
be used for fault detection in the same manner as this paper in the
hundreds of other applications of phototransistors [43].

4.3 Fault tolerance algorithm
Once FallTime is measured, we use the following procedure to
compensate for drift and detect faults. First, “in the factory," or
before the sensor is deployed, the manufacturer models the relation
between the fingerprint and drift score for a given smoke detector
model type. This relationship is modeled generically for a given PT
part number, and applies to all PTs of the same part number, rather
than beingmeasured for each individual PT. The relation is modeled
simply by selecting m and b to fit a line 𝑘𝐹𝑎𝑙𝑙𝑇𝑖𝑚𝑒 =𝑚∗𝑑𝑃𝑇 +𝑏 for a
set of PTs of the same model with varying drift scores, as shown in
Figure 7. 𝑑 represents the PTs’ drift scores and 𝑘 represents the PTs’
FallTime. 𝑏 corresponds to the “baseline," or the fall time of a fully
functioning sensor, and𝑚 is the rate at which fall time decreases
relative to drift score.

When a given detector is deployed in the field, we periodically
measure the FallTime fingerprint, and use the linear model above
to obtain 𝑑 , an estimate of the sensor’s drift score, without needing
to directly measure it. To avoid applying gain to “false positive"
cases of drift that reflect noisy measurements instead of a genuine
decrease in FallTime, we only apply this procedure if the measured
fall time is below 2 standard deviations of the baseline fall time. We
take the mean of several FallTime measurements to reduce the
impact of measurement error.

The gain required to offset a given drift score follows from Equa-
tion 1 and results in the gain:

Algorithm 1: Sample smoke detection and drift compen-
sation routine
staticm, b; ⊲ set in the factory
static alarm_threshold; ⊲ set in the factory
static tolerable_margin; ⊲ set in the factory
gain = 1;
Do once a month: ⊲ drift compensation routine

turn_LED_on();
turn_LED_off();
k = read_PT_fall_time();
if abs(k - b) >= tolerable_margin then

warn_user();
else

gain = m / (m - k + b);
Do every 15 seconds: ⊲ smoke detection routine

turn_LED_on();
output = read_PT_output() * gain;
turn_LED_off();
if output >= alarm_threshold then activate_alarm() ;

𝐺 =
𝑚

𝑚 − 𝑘𝐹𝑎𝑙𝑙𝑇𝑖𝑚𝑒 + 𝑏
(2)

where 𝑘𝐹𝑎𝑙𝑙𝑇𝑖𝑚𝑒 represents the FallTime measured in the field.
𝐺 is applied to the PT output (in software) so that it matches the
output of a sensor in good condition, in order to compensate for
drift. The FallTime fingerprint should be measured periodically
(e.g., weekly or monthly) to adjust the gain as drift increases over
time.

Algorithm 1 shows our procedure to update the gain from Fall-
Time measurements alongside the procedure for smoke detection.
The gain is set to 1 for a fully functional detector.

Catastrophic fault detection: Detectors with measured fall
times outside of a “tolerable margin” can be classified as having
catastrophic faults, which cannot be compensated for. The margin
is defined by experimental evidence on the bounds for FallTime.
For instance, in Figure 7, Custom1sensors have a minimum fall time
close to 80 𝜇s. Sensors never reach a lower fall time or greater drift
score without undergoing a catastrophic fault. We set the tolerable
margin accordingly. An audio warning (like low battery warnings
found in most detectors) can be issued to the user in this case.

5 MECHANICAL DRIFTTESTBUTTON TO TEST
SENSOR COMPONENT HEALTH

This section exhibits a novel design for a physical test button, in-
dependent of the previous fingerprinting approach, that enables
simple and robust fault and drift diagnosis and compensation.

The basic shortcoming of the Industry Standard Approach (de-
scribed in Section 3) is that the output of the PT in NoSmoke does not
predict the output in Smoke. Intuitively, a method to simulate the
behavior of smoke offers an elegant and robust test of sensor fault
and drift. Thus, as an alternative to FallTime, we present a me-
chanical DriftTestButton that precisely simulates the behavior
of smoke.

The proposed DriftTestButton protrudes into the sensing cham-
ber when activated/pressed, reflecting light from the LED into the
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Figure 9: Schematic of the DriftTestButton: (a) Button Inac-
tive/Default, (b) Button Activated/Pressed.

(a) (b) (c)

Figure 10: DriftTestButton integrationwith physical smoke
detectors: (a) Without DriftTestButton (b) Button Inac-
tive/Default state, (b) Button Activated/Pressed state.

PT in the same way as smoke. The button reflects a precise, pre-
determined amount of light into the PT to mimic a smoke density
close to the sensor’s chosen alarm threshold. When a user peri-
odically activates the button, the device compares the PT output
against a baseline (measured before deployment) to test for faults
and drift in both the LED and PT. Unlike existing “canned smoke"
techniques, which cannot detect drift (Section 3), our technique can
detect and measure drift because the amount of light reflected is
precisely controlled. This solution is particularly robust because it
tests the entire sensing pathway at once, and essentially measures
drift directly rather than estimating it. It thus obviates the need for
any alternative fault detection techniques.

Previous button designs differ from our design in several ways.
Unlike [40], our button is designed to reflect a pre-determined
amount of light into the PT, rather than an uncalibrated, unspeci-
fied amount. Unlike [23], which focuses solely on detecting faults,
our DriftTestButton measures and compensates for drift in addi-
tion to faults. We also provide experimental results to support the
effectiveness of the DriftTestButton in Smoke conditions.

5.1 Physical design
In our DriftTestButton design, the button hangs down from the
smoke detector’s chamber and protrudes through the detector’s
plastic casing (Figure 9(a)). The button’s “head” (Figure 9(a) and
11(a), label B) is attached to the top of the button, and is raised
towards the PT and LED when the user presses the button. We
3D printed the test button; Figure 11(a) shows the assembly of the
button in CAD and Figure 10 shows the actual DriftTestButton
integration with Firelite detector . We now describe its key charac-
teristics:
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Figure 11: (a) Exploded view of button, (b) PT output when
button is activated, (c) Response of button to drift, (d) Rela-
tionship between PT output and button position when acti-
vated.

❶ DriftTestButton simulates smoke by increasing reflec-
tivity in the sensing chamber. Smoke reflects light from the LED
into the PT. To simulate this, the button also reflects light from the
LED into the PT, increasing the PT output, as shown in Figure 9(b).
However, if the reflectivity is too high, the PT output saturates at its
high value whether the components are drifted or working, giving
a false indication that the sensor is working. Therefore, the button
must avoid saturating the PT output. To accomplish this, the head
of DriftTestButton has a grated, black surface; we verified that
this keeps its reflectivity well below saturation.

❷ DriftTestButton detects faults and quantifies drift. To
detect faults and drift, we can compare the PT’s response (when the
button is pressed) against a “baseline," or the response expected for
a working sensor, as shown in Figure 11(b). The level of deviation is
used to quantify drift. In Figure 11(c), we show the button’s behavior
in relation to drift. Each point represents one phototransistor, with
its drift score on the x-axis and the response it gives when the
button is pressed on the y-axis. The graph shows that greater drift
decreases the PT response when the button is pressed. When the
button is activated, the PT response is affected by the cumulative
effect of PT and LED drift, allowing us to measure and compensate
for both drifts simultaneously, without needing to isolate the faulty
component.

❸ DriftTestButton has lowmeasurement error. In order to
measure drift precisely, with low error, the button must produce a
consistent response to a fixed amount of drift. To verify this, we used
a 3D printer to produce 5 copies of the DriftTestButton. We tested
each button’s behavior across 100 button presses on 17 different PTs
(of three different models, Custom1, Custom2, Custom3: see Section
6.1) with varying levels of degradation. Figure 11(c) shows the
results of this trial. Each point represents the mean response of one
PT across 500 total button presses (100 presses for each of 5 buttons).
The PT output is shown on the y-axis, and the standard deviation for
each PT across 500 presses are shown as error bars. We can observe
that the standard deviation is very small or negligible. The drift we
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Figure 12: Commercial smoke detectors used in our exper-
imental setup: (a) Firelite detector (b) System Sensor (c) Cus-
tom

seek to detect is typically at least an order of magnitude larger than
this deviation, indicating that the button gives a response consistent
enough to measure drift precisely.

❹ DriftTestButton design can be easily adapted to fit any
smoke detector. The DriftTestButton can easily be integrated
into existing or new smoke detector designs. As noted above, the
DriftTestButtonmust reflect a controlled amount of light into the
PT, which will depend on the LED and PT model selected. To adapt
our design, a smoke detector manufacturer should select a desired
PT response within the PT’s active region. To match that value, they
may increase or decrease the length the button travels upward. In
Figure 11(d), the x-axis shows button’s displacement, or its position
when activated, relative to the surface of the PT. Lower (negative)
values indicate the button’s surface is further away from the PT,
and 0 indicates the button’s surface touches the PT. The y-axis
shows the PT response. Designing the button so that it is closer to
the PT when pressed increases the PT response. If a manufacturer’s
circuit requires the button to produce a particular PT output, the
manufacturer can edit the button’s design accordingly, by displacing
the button closer or further to the PT.

Further, it is straightforward to design a button that is durable
and will perform consistently after years of wear and tear. Our
design does not require deformation of the button’s plastic, which
is the primary cause of failure in such designs [60]. Plastic buttons
are typically designed for a lifetime of 1 million presses; routine
monthly use of our test button would require only 120 presses to
outlast the typical ten-year lifetime of a smoke detector.

5.2 Button operation
Before deployment, “in the factory," the PT response when the
button is pressed is recorded as a baseline. In the field, pushing the
button closes a switch that activates a test mode in the software. In
test mode, the PT output is compared against the baseline to detect
faults or detect, measure, and compensate for drift. This is done
in exactly the same manner as in Algorithm 1, using the button
response rather than FallTime to measure drift. Figure 11(b) shows
the PT output of a working and a drifted sensor before and after
the button is pressed. The working sensor represents the baseline.
If the response matches the baseline, no changes need to be made.
If the response is substantially lower than the baseline but within a
tolerable bound, the detector can be diagnosed as drifted and gain
can be applied to the PT output so that its output matches that of the
working sensor. If the PT response is outside of a tolerable bound,
the sensor can warn the user of a fault. While this test method is
a manual process, it is far more precise and robust to error than
other methods.

6 EXPERIMENTAL SETUP
6.1 Smoke detectors
We test our proposed fault detection and drift compensation meth-
ods with 5 different smoke detector models, two commercially
available and three custom-built.

Commercial detectors.We selected two popular commercially
available detectors: (i) 12 Firelite detector Model SD335 [29], 11 of
which had been deployed in a commercial building for 1-5 years
(Figure 12a), and (ii) 9 System Sensor Model 2351E [1], each pur-
chased brand new (Figure 12b).

Custom-built detectors. The commercial detectors do not en-
able re-programming of the microcontroller by the user, making it
impossible to implement the proposed approaches directly on these
detectors. Hence, we built three custom smoke detectors circuits.
The circuit design includes an LED and PT placed inside a sens-
ing chamber obtained from Firelite detector to ensure the physical
setup mimics commercial designs (Figure 12c). Each of the three
custom smoke detectors uses a different PT model and the same
LED. All chosen components are commonly used in smoke detector
applications. The LED model is SFH 4550 [46]. The three PT models
are BPV 11 [51], BPW 96 [50], and OP 505 [26], forming the three
custom detectors, Custom1 (6 detectors), Custom2 (6 detectors), and
Custom3 (6 detectors), respectively. We use an STM32 [9] MCU to
control the device.

6.2 Degradation procedure for PTs
Our tests are designed to offset the effects of drift, which results
from “wear and tear” of sensor components over time. Since we
had access to a limited number of detectors (12 Firelite detector)
deployed for 1-5 years, we manually degrade the PTs from System
Sensor , Custom1, Custom2 and Custom3 to simulate the effects of
several years of wear and tear (i.e., “Highly Accelerated Life Testing”
or HALT). This is a standard technique when designing for device
longevity that reliably simulates the conditions devices are exposed
to over the course of several years [18, 36, 37, 42, 61].

To degrade a PT, we applied a high reverse bias (beyond datasheet
ratings) until substantial current begins flowing and sensor heats
up, a common HALT method [18, 36, 61]. This simulates years of
natural aging by increasing the mean electron energy to increase
the rate of hot carrier injection, which occurs at a lower rate in
normal conditions [25]. In order to obtain different levels of drift,
we apply high reverse bias for varying periods of time [37]. We
validate our degradation procedure by comparing against the 12
naturally drifted Firelite detector from the field. The PT response
to increasing light intensities of naturally degraded sensors closely
matches that of the manually degraded sensors: compare Figure 4(a)
(naturally degraded) against Figure 4(d) (manually degraded). We
also verify that the shape of the curve representing the PT output
when the LED is switched off (see Figure 6(a)) also matches that of
manually degraded sensors.

7 RESULTS
We first present the efficacy of the FallTime fingerprint to detect
faults and measure drift. Then, we test our drift compensation
technique with the three custom smoke detector models in tests
with actual Smoke.



MobiSys ’21, June 24– July 02, 2021 Arjun Tambe, Akshay Nambi, and Sumukh Marathe

0.0 0.1 0.2 0.3
Drift Score

0.0

0.5

1.0

1.5

2.0

Fa
llT

im
e 

(u
s)

A

(a) Firelite Sensor

0.0 0.1 0.2 0.3
Drift Score

0.0

0.2

0.4

0.6

Fa
llT

im
e 

(u
s)

A

(b) System Sensor

0.0 0.2 0.4 0.6
Drift Score

0

50

100

150

200

Fa
llT

im
e 

(u
s)

A
B
C

(c) Custom1 PT

0.0 0.2 0.4
Drift Score

0

20

40

60

Fa
llT

im
e 

(u
s)

A
B
C

(d) Custom2 PT

0.0 0.2 0.4 0.6
Drift Score

0

50

100

150

Fa
llT

im
e 

(u
s)

A
B
C

(e) Custom3 PT
Figure 13: FallTime vs drift score for all smoke detector models.
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Figure 14: Drift vs fall time at 3.3V and 5V voltage levels.

7.1 Efficacy of the FallTime fingerprint
We now present extensive results on the relationship between drift
and the FallTime fingerprints. We conducted experiments on all
five smoke detector models, i.e., Firelite detector , System Sensor ,
Custom1, Custom2, and Custom3.

Figure 13(a) shows FallTime for 5 different Firelite detector ,
which are naturally drifted in the field. As the drift score increases,
the FallTime decreases. We also degraded the PTs of System Sen-
sor , Custom1, Custom2, Custom3 in small increments, measuring
the FallTime after each step.We record the mean of 1000 FallTime
measurements in each step. Figure 13(b)-(d) shows FallTime of
System Sensor and three PT instances of each of Custom1, Custom2
and Custom3 detectors. In each graph, each color corresponds to
a single sensor instance; there are several markers of each color
because drift and FallTime of a single sensor instance are mea-
sured at each step as it is degraded in increments. The graph shows
FallTime and drift scores are strongly correlated across all sensors
(shown with the best fit line). The same pattern holds for three ad-
ditional sensor instances of each model (omitted to avoid cluttering
the graph). 𝑅2 is at least 0.95 for all sensor instances.

To evaluate the consistency of FallTime measurements at dif-
ferent supply voltages, we measured fall time in a Custom1 sensor
powered with 5V and 3.3V instead of 10V. Figure 14 shows the drift
score and fall time remain highly correlated for both circuits with
different supply voltages, viz., 3.3V and 5V.

Result. The proposed FallTime fingerprint works consistently in
a variety of sensors and circuits and is therefore a highly promising
approach to measure PT drift accurately.

7.2 Gain determination
We now evaluate our proposed drift compensation methods. First,
we measure the FallTime fingerprints, and the PT output when the
DriftTestButton is activated. Then, we compute the gain using
the procedure described in Sections 4.3 and 5.2, comparing it against
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Figure 15: Gain recommended by each compensation algo-
rithm.
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Figure 16: Smoke Chamber Experimental Setup

the IndustryApproach (Section 3). The gain indicates the factor
by which the PT output is increased to keep its sensitivity close
to that of a working sensor. Sensors with more drift require more
gain to offset the drift.

Setup:We used 5 PTs of varying drift scores for each of the three
custom detector models. The drift scores range from 0 to 0.8 for each
of the three PTmodels. Along with drifted sensors, we also run each
algorithm (IndustryApproach, FallTime, DriftTestButton) on
the working sensors to ensure our algorithm does not apply exces-
sive gain to a working PT, which would increase the probability of
false alarms.

Figure 15 shows the gain recommended by each algorithm (y-
axis) against the drift score (x-axis) for Custom1 and Custom2 PTs.
Each point represents the gain applied to one PT and each color
corresponds to a compensation algorithm. As the drift increases,
the gain needed to offset the drift should also increase. The gains
recommended by both FallTime and DriftTestButton (shown
in orange and green) are similar, and they increase across all PTs
as drift score increases. Conversely, the gain recommended by the
IndustryApproach (shown in red) is inconsistent with the increase
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Figure 17: Impact of drift compensation using different approaches in Smoke condition.

in drift scores. For instance, the yellow highlighted region in Fig-
ure 15(b) shows one Custom2 sensor instance with a drift score
of 0.67. The sensor needs considerable gain to offset its high drift
score; both FallTime and DriftTestButton recommend applying
a gain of about 2.5, while IndustryApproach incorrectly recom-
mends applying almost no gain.

Result. The gain determined by both FallTime and
DriftTestButton accurately compensates for the PT drift and out-
performs IndustryApproach.

7.3 Smoke tests: Drift compensation
We now test our approaches in tests with real smoke.

Setup: We expose six instances of each of Custom1, Custom2,
and Custom3 detectors (18 in total) to increase densities of smoke.
We created a smoke chamber to ensure that a consistently increas-
ing amount of smoke is exposed to the detectors. Figure 16 shows
our smoke test setup with 2 chambers. Incense sticks are burned in
Chamber 1 to generate smoke, and the smoke is pumped into Cham-
ber 2, where smoke detectors are placed. Incense smoke matches
the properties of smoke from many household materials, and is a
common smoke detector test method [35, 41]. Both chambers are
closed to eliminate the effect of the ambient environment.

Drift compensation occurs entirely in software. The microcon-
troller (MCU) records the PT’s raw output, and applies gain to this
value as specified by one of the drift compensation algorithms. This
allows the MCU to apply all three drift compensation methods
in parallel so we can compare them directly for the same smoke
detector in the same experiment.

Figure 17(a)-(c) shows smoke experiments results from two smoke
detectors, one working (purple line) and one with a drifted PT. For
the drifted PT, we show the raw PT output (blue line) and the PT
output compensated with each of IndustryApproach, FallTime
and DriftTestButton approaches (red, orange, and green lines, re-
spectively). We set the alarm threshold at 1% obscuration /ft, which
represents a common sensitivity settings for smoke detectors. At
the start of the experiment (t = 2s), we begin burning the incense
sticks in Chamber 1. As smoke accumulates, the PT output should
gradually increase. The raw data from the drifted sensor (shown in
blue) increases much more slowly than the working sensor (shown
in purple). The orange and green lines show the PT output after
applying the FallTime and DriftTestButton drift compensation,
respectively. Each approach applies adequate gain, and the output
of the drifted sensor roughly matches that of the working sensor, and
alarms as quickly as the working sensor.

The IndustryApproach (red line), on the other hand, does not
apply adequate gain, and does not reach the alarm threshold quickly
enough (or at all, in some cases). The drifted detectors with either
FallTime or DriftTestButton compensation typically trigger an
alarm almost as quickly (taking only up to 5% more time) as the
working detector.

Result. The output of drifted sensors closely matches the working
sensor when the gain is applied using FallTime and DriftTestBut-
ton, thus increasing the reliability of smoke sensors.

7.4 Smoke tests: Extensive results
We now present detailed results from many smoke tests performed
on the three custom detectors.

Setup: We run the experiment ten times for each of the three
smoke detector models. Each experiment contains six sensors of the
same model with varying drift scores. The smoke chamber is reset
after each experiment by clearing both chambers and the detectors
of smoke and soot. As smoke accumulates, we measure the "ground
truth" smoke density by measuring the light attenuation over a
path of one foot (obscuration percent per foot). We record the true
smoke density and the time at which each sensor’s output crosses
the alarm threshold (1%/ft), for each compensation algorithm. We
report the mean value across all 10 experiments.

Figure 18(a)-(d) show our results in terms of smoke density and
time for Custom2 and Custom3 detectors at a 1%/ft alarm threshold.
The x-axis of each plot is the drift score and the y-axis is either the
smoke density or time at which the sensor alarms. Each graph has
four sets of points, colored blue, red, orange and green, correspond-
ing to raw data, IndustryApproach, FallTime and DriftTest-
Button compensation methods, respectively. Each set of points are
aligned on the x-axis because they correspond to a single smoke
detector with the same drift score, but the y-values vary depending
on the compensation algorithm. The goal of compensation is to
reduce the influence of drift. An ideal compensation algorithm will
eliminate the influence of drift, so its line should have 0 slope as
the drifted sensors should alarm as quickly as working sensors.
Figures 18(a) and (b) show that as the drift score increases, the un-
compensated drifted sensors require higher smoke densities to trig-
ger an alarm, as expected. IndustryApproach differs only slightly
from the raw data, and still requires very high smoke densities
to alarm. Conversely, FallTime and DriftTestButton compensa-
tion each significantly mitigate the effect of drift, with the fit lines
having slope close to 0 (orange and green lines). For example, in Fig-
ure 18(a), the point on the far left corresponds to a working detector,



MobiSys ’21, June 24– July 02, 2021 Arjun Tambe, Akshay Nambi, and Sumukh Marathe

0.00 0.25 0.50 0.75
Drift Score

0

10

20

Sm
ok

e 
De

ns
ity

 (%
/f

t)

Raw
Industry
FallTime
TestButton

(a) Custom2 PT Drift vs Smoke
Density

0.0 0.2 0.4
Drift Score

0

2

4

6

8

Sm
ok

e 
De

ns
ity

 (%
/ft

)
(b) Custom3 PT Drift vs Smoke
Density

0.00 0.25 0.50 0.75
Drift Score

1

2

3

4

5

Ti
m

e 
(n

or
m

al
ize

d)

(c) Custom2 PT Drift vs Time

0.0 0.2 0.4
Drift Score

1.0

1.5

2.0

2.5

Ti
m

e 
(n

or
m

al
ize

d)

(d) Custom3 PT Drift vs Time
Figure 18: Influence of drift on smoke detector time and
smoke density required to alarm, for each compensation al-
gorithm. Flatter, lower lines indicate better drift compensa-
tion.

while the far right corresponds to severely drifted detectors. For the
severely drifted detector, IndustryApproach would require nearly
16x the smoke density (16%/ft) to alarm, compared to a working
sensor (1%/ft). On the other hand FallTime and DriftTestButton
compensated detectors each trigger an alarm at roughly the same
smoke density as the working detector (i.e. 1%/ft).

Similar behavior can be seen in Figure 18(c) and (d), which shows
the time required to trigger an alarm as the drift score of a detec-
tor increases. The y-axis represents the time at which a sensor
alarms and is normalized so that a value of 2 indicates a sensor took
twice as long to alarm as the fastest sensor. For example, in Fig-
ure 18(c) detectors that are severely drifted (e.g. the point on the far
right) require up to 4x the time to alarm using IndustryApproach
compared to the working sensor (far left, drift score 0). However,
FallTime and DriftTestButton trigger the alarm as quickly as a
working sensor (near time = 1). We found pairwise comparisons
between our new methods against existing methods (i.e. each of
IndustryApproach and no compensation versus each of FallTime
and DriftTestButton) for each alarm threshold and sensor type
to be statistically significant.

Result. On average, across all the three type of smoke detectors,
we found that IndustryApproach requires 12%/ft higher smoke den-
sity and takes 65% longer time to trigger an alarm compared to the
FallTime fingerprint and DriftTestButton approaches. These dif-
ferences are highly significant in terms of fire safety.

8 DISCUSSION & FUTUREWORK
We now present a few limitations of our fingerprint-based approach
and directions for our future work:

Long-term evaluation: the compensation algorithms and the
impact of drift on smoke density/time to alarm was shown only

on custom detectors (Section 7.4) rather than commercial models,
because their microcontrollers are not reprogrammable. We plan
to deploy our custom detectors at scale to evaluate the proposed
fingerprints over long periods.

Fingerprint-based approach vs.mechanical DriftTestBut-
ton approach: the proposed fingerprint approach requires soft-
ware API changes with minimal/no hardware modification, thus
enabling scaled deployments. On the other hand, the DriftTest-
Button based approach is precise and robust, but requires a manual
button press by users and hardware modification (insertion of but-
ton). The former issue could be resolved by automating the button
press using a relay and a switch, and given that the button cost
is low, for large-scale deployment, manufacturers can include the
button in future designs.

Generalization of the proposed fingerprint beyond smoke
detectors: PTs are one of the most commonly used electrical com-
ponents, and are used in numerous light scattering sensors, such
as particulate matter air pollution sensors [52], water turbidity
sensors [22], and proximity sensors [8], across many application
scenarios. The proposed FallTime fingerprint can be employed in
these sensors to monitor faults and measure drift. As part of our
future work, we plan to apply FallTime in a variety of sensors and
make the software available for the IoT and Sensing community.

9 CONCLUSIONS
Smoke detectors have played a key role in precipitous declines in
fire deaths. In spite of this, they still frequently fail to alarm in the
presence of smoke due to component faults or degradation, which
current techniques cannot detect. This work first presents a key
finding that phototransistor (PT) component drift may be wide-
spread in smoke detectors, contributing to greatly reduced speed
in responding to fire. To address this, we present a novel FallTime
fingerprint assessing key electrical properties of the PT to detect
faults and measure drift in smoke detectors. We also designed a
mechanical DriftTestButton to simulate smoke conditions that
can test for faults and drift in the field. We conduct extensive tests
with real Smoke to assess the ability of the proposed approaches to
accurately compensate for drift in sensor components. We showed
that the FallTime and DriftTestButton approach each outper-
form existing solutions, and can greatly improve fire safety. Moving
forward, we will be extending the applicability of the fingerprint
to other sensor types.
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